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1 Introduction

Consider the following elementary problem of numerical linear algebra. Sup-
pose we are given a vector x ∈ Rn, not known exactly but located within
a known bounded domain Ω, and a matrix A which is known exactly. We
would like to localize the vector Ax as good as possible. Certainly, Ax is
contained in AΩ, and that’s the best one can say. In practice this answer
may be not good enough, since it might be unfit for computer. In particular,
the domains Ω of uncertainty should have a simple description, that would
allow to check easily (for a computer) whether a given vector is contained in
it.

There are at least two classes of suitable domains: boxes B = {x ∈
Rn : |xi − ai| ≤ bi}, and ellipsoids E = {x ∈ Rn : 〈Q−1(x − a), x − a〉 ≤
1}. Methods of computations with vectors, localized in boxes, are known
as interval analysis, similar methods for vectors, localized in ellipsoids, are
known as ellipsoidal analysis.

The present paper is inspired by [4], where some evidences are presented
that in the problem of multiplication of a vector by matrix the ellipsoidal
analysis is, in certain sense, better than the interval one. More precisely,
suppose the vector is localized in a box B, and E is the minimum volume
ellipsoid containing B. Certainly, E also localizes the vector, and, at this
stage, the substitution of E for B results in a loss of accuracy. However,
upon multiplication by A the domain AB is not necessarily a box, while the
domain AE is still an ellipsoid. To stay within the interval framework one
should substitute the minimal box Box(AB), containing AB, for AB. Finally
we get two localization domains: Box(AB) and AE . It is suggested in [4] to
compare the quality of methods by means of volumes of the final localization
domains.
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1.1 Main inequality

The result of comparison does not depend on the initial box, but only on the
matrix A, and is determined by the sign ≤

≥ in the inequality

n∏
i=1

n∑
j=1

|aij|≤≥
(πn)

n
2 | det A|

2n Γ
(n

2
+ 1

) . (1.1)

The ≤ sign specifies the set of matrices such that the ellipsoidal method turns
to be worse than the interval one. The inequality (1.1) comes directly from
exact formulas for volumes of ellipsoid and box, while the factor πn/2/Γ(n

2
+1)

arises as volume of the circumscribed ball for unit cube. Real problems of
numerical linear algebra correspond to a large dimension n. That’s why we
will compare ellipsoids and boxes as n →∞.

2 Random matrices

The set Ωn of n × n-matrices A such that (1.1) holds with ≤ sign is quite
complicated. In a rather vague way, one can say that Ωn is relatively poor,
i.e. most matrices do not belong to it. Still it is not clear in advance how to
measure properly the size of Ωn, and establish that it is small. We suggest
a stochastic approach to this issue. Namely, we assume that the matrix A
is random so that its elements are independent Gaussian random variables
with zero mean and unit covariance. In particular, the distribution of any
element aij of A takes the form

p(x) =
1√
2π

exp

(
−x2

2

)
. (2.1)

Then, a natural measure for the size of the set Ωn is its probability P(Ωn) =

(2π)−n2/2 ∫
Ωn

e−
1
2

Tr AA∗dA. Here, Tr AA∗ =
∑

a2
ij, and dA =

∏
daij.

3 Main result

Theorem 1 The probability of the event Ωn that intervals are better than
ellipsoids tends to zero as n →∞. In other words,

P(Ωn) = (2π)−n2/2

∫

Ωn

e−
1
2

Tr AA∗dA = o(1) (3.1)

More precisely, P(Ωn) = O(1/(n2 log n)).
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Denote log
n∑

j=1

∣∣∣ aij√
n

∣∣∣ by χi, and define

ψn =
1

n

n∑
i=1

χi, Cn = log
(πn)

1
2

2 Γ
(n

2
+ 1

)1/n
, ∆n =

1

n
log

∣∣∣∣det

(
A√
n

)∣∣∣∣ .

The set Ωn is defined by inequality

ψn ≤ Cn + ∆n (3.2)

and our main result says that this inequality holds with a very small probabil-
ity. The reason is that each term in (3.2) has a definite, and even determinis-
tic “limit in probability” as n →∞: ψn = 1

2
log 2n

π
+o(1), Cn = 1

2
log πe

2
+o(1),

∆n = −1
2

+ o(1), but the limit inequality 1
2
log 2n

π
≤ 1

2
log πe

2
− 1

2
is totally

false. In what follows we expound the above arguments.

3.1 A heuristic analysis of inequality (3.2)

The functions χi can be regarded as independent random variables on the
Gaussian probability space of n× n-matrices, and the left-hand side of (3.2)

has a form of a mean value ψn = 1
n

n∑
i=1

χi. Hence, when n →∞ one can apply

the Law of Large Numbers (LLN) to analyze the left-hand side of (3.2) and
conclude that

ψn =
1

n

n∑
i=1

χi → Eχ1 in probability. (3.3)

By virtue of the Central Limit Theorem (CLT) the distribution of fi =
n∑

j=1

∣∣∣ aij√
n

∣∣∣ is approximately Gaussian with covariance 1− 2
π

and mathematical

expectation
√

2n
π

. Therefore,

Eχ1 = E log f1 = log

√
2n

π
+ o(1) (3.4)

and ψn is contained in o(1)-neighborhood of log
√

2n
π

with probability 1+o(1).

Hence, if n is large the inequality (3.2) with an overwhelming probability
takes the form

∆n ≥ log

√
2n

π
+

1

2
log

πe

2
+ o(1) =

1

2
log n +

1

2
+ o(1), (3.5)

3



where ψn is absent. Thanks to Siegel [1, 2] we have explicit expression

E| det A|k = (2π)−n2/2

∫
| det A|k e−

1
2

Tr(AA∗)dA = 2
kn
2

n∏
i=1

Γ
(

k+i
2

)

Γ
(

i
2

) (3.6)

for E| det A|k with any complex k. In particular, it follows from (3.6) that
Een∆n = o(1). Therefore, ∆n can be large only with (exponentially) small
probability. In particular, the probability of (3.5) decays as n →∞.

3.2 Rigorous analysis of the left-hand side of (3.2)

The above arguments tacitly assume that some limit processes commute. We
will not justify exactly this, and use subgaussian random variables instead
of CLT.

A real random variable is said to be subgaussian if

Eeλξ ≤ e
1
2
λ2

for any real λ. The fact which is very important for us is this:

Theorem 2 If x is a standard Gaussian random variable, then, the random
variable ξ = |x| − E|x| is subgaussian.

A proof is based on the so-called theory of logarithmic concavity [5]. This
immediately implies the following corollary.

Corollary 1 Each random variable fi−
√

2n
π

=
n∑

j=1

|aij |−E|aij |√
n

is subgaussian.

On the basis of this corollary one can show that

E log fi = log

√
2n

π
+ o(1) (3.7)

E log2 fi = log2

√
2n

π
+ o(1) (3.8)

E |log fi − E log fi|2 = O(
log n

n
) (3.9)

In particular, the asymptotic equality (3.4) holds, and LLN can be applied

in order to justify (3.3). Thus, ψn − log
√

2n
π
→ 0 in a reasonable sense.

Finally, from (3.9), (3.4) and the Chebyshev inequality we obtain:

P

(
ψn ≤ 1

4
log n + C

)
= o(1), (3.10)

where C is an arbitrary constant, while o(1) is, in fact, O( 1
n2 log n

). Therefore,
ψn is large with a large probability.
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3.3 Analysis of the right-hand side of (3.2)

As to the random variable ∆n = 1
n

log
∣∣∣det

(
A√
n

)∣∣∣ in the right-hand side of

(3.2), it is not large with an overwhelming probability. In fact, one can show
that ∆n → −1

2
in probability so that the (absolute value of) determinant of

a random matrix becomes more and more deterministic as n →∞.
It follows from the Siegel formula (3.6) that

Een∆n =

(
2

n

)n
2 Γ

(
n+1

2

)

Γ (1/2)
. (3.11)

The logarithm of the right-hand side of (3.11) is

−n

2
− 1

2
+ o(1)

in view of the Stirling formula. Now, by means of the Chebyshev inequality
we can estimate the probability of large values of ∆n as follows:

P(∆n ≥ x) ≤ e−nxEen∆n ∼ e−nx−n
2
− 1

2 .

In particular,

P

(
∆n ≥ 1

4
log n + C

)
≤ (1 + o(1))e−

1
4
n log n, (3.12)

where C is an arbitrary constant.

3.4 Summing up

Now we get back to inequality (3.2), where Cn → C = 1
2
log πe

2
by the

Stirling formula. If the inequality (3.2) holds for a large n, then either ψn ≤
1
4
log n + C + 1, or ∆n ≥ 1

4
log n−C − 1. But, in view of (3.10), (3.12) these

events have small probabilities as n →∞. This proves the main Theorem 1
to the effect that probability of advantage of intervals over ellipsoids is small
as n → ∞. In fact, it is shown that this probability is O(1/(n2 log n)).
These considerations can be regarded as an evidence in favor of ellipsoids vs.
boxes in linear algebraic computations with a guaranteed accuracy.
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