CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020, 144-151

WEB CRAWLER: DESIGN AND IMPLEMENTATION
FOR EXTRACTING ARTICLE-LIKE CONTENTS

Ngo Le Huy Hien
Department of Sciences and Technologies
University of Lorraine
France
ngo-le-huy-hien7 @etu.univ-lorraine.fr

Thai Quang Tien

Est Rouge Technologies JSC

Vietnam

tientq @tech.est-rouge.com

Nguyen Van Hieu*
Department of Information and Technology
University of Science and Technology, The University of Danang

Vietnam

nvhieuqt@dut.udn.vn

Article history:
Received 04.10.2020, Accepted 20.11.2020

Abstract

The World Wide Web is a large, wealthy, and ac-
cessible information system whose users are increas-
ing rapidly nowadays. To retrieve information from the
web as per users’ requests, search engines are built to
access web pages. As search engine systems play a
significant role in cybernetics, telecommunication, and
physics, many efforts were made to enhance their ca-
pacity. However, most of the data contained on the web
are unmanaged, making it impossible to access the entire
network at once by current search engine system mecha-
nisms. Web Crawler, therefore, is a critical part of search
engines to navigate and download full texts of the web
pages. Web crawlers may also be applied to detect miss-
ing links and for community detection in complex net-
works and cybernetic systems. However, template-based
crawling techniques could not handle the layout diversity
of objects from web pages. In this paper, a web crawler
module was designed and implemented, attempted to ex-
tract article-like contents from 495 websites. It uses
a machine learning approach with visual cues, trivial
HTML, and text-based features to filter out clutters. The
outcomes are promising for extracting article-like con-
tents from websites, contributing to the search engine
systems development and future research gears towards
proposing higher performance systems.

Key words

Web Crawler, Search Engine System, Crawling Mech-
anism, Machine Learning, Support Vector Machine,
Grid Search, Cross Validation.

1 Introduction

While the World Wide Web (commonly known as the
Web) comprises a tremendous amount of information
from different areas, its content structure is not cen-
trally organized in a specified way and has no prede-
fined data model. [Mini and Jatinder, 2014] The data
presented in the Web normally contains more text data
which could have various dissimilar formats. [Jain and
Subodh, 2018] A Web crawler is invented as a com-
puter program to download data from the World Wide
Web in a systematic, methodical, and automated man-
ner. [Avinash et al., 2010; Kausar et al., 2013] It is also
named as a spider or a spider-bot, ant, automatic indexer,
bot, worm [Kobayashi and Takeda, 2000], and is typi-
cally used for Web indexing.

The World Wide Web has a graphical structure in
which links displayed on a web page could be used to
open other web pages. The Internet can be described
as a directed graph, consisting of webpages (nodes) and
hyperlinks (edges). Therefore, it can be summarized
that the search operation is a traversing process of the
directed graph (the Internet). [Kausar et al., 2013] Us-
ing the graphical structure of the World Wide Web, web
crawlers can move from page to page and traverse some
new web pages from a web page. From there, the pro-
cess of web crawlers starts from retrieving web pages,
then inserting them into local repositories [Martin et al.,
2004]. As a consequence, web crawlers generate a
replica of all visited pages which later be processed and
indexed by search engines. [Kausar et al., 2013; Pant

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

et al., 2004] Search engines may store information about
web pages that are retrieved from the World Wide Web,
making the searching process fast, accurate, and produc-
tive [Bruce et al., 2009].

Generally, the purpose of web crawlers is to collect,
maintain, manage the index of web pages, and keep
the database in the repositories up-to-date [Jain and
Subodh, 2018]. With a swiftly growing Internet, web
crawling hence is an essential technique to collect data
and keep up with web data for search engine systems.
Web crawlers can also be applied for automatic mainte-
nance for websites, including validating links or verify-
ing HTML code. [Komal and Ashutosh, 2016] More-
over, some may use them to collect particular kinds of
information from webpages, like gathering e-mail ad-
dresses, typically for spam [Desai, 2017].

2 Literature Review

”WebCrawler” was first launched in 1994, with the
world’s first full-text crawler and search engine [Pinker-
ton, 1994]. The “WebCrawler” allowed users to search
web document contents rather than keywords and de-
scriptors, lessening confusing results, and providing bet-
ter search capacities. Since then, there are numerous re-
searchers have used and studied web crawlers and crawl-
ing techniques, which are valuable in examining the cur-
rent work.

Mridul B. Sahu et al. [Mridul and Bharne, 2016], for
example, revealed in their paper two main approaches
to control the crawler decisions, the supervised learn-
ing approach, and the traversing and ranking all links
approach. They proposed that during the learning pro-
cess, a web crawler may deliver intelligent decisions
on choosing its strategy. A basic web crawling tech-
nique and architecture can be seen from the research of
Christopher Olston and Marc Najork [Christopher and
Marc, 2010]. Vladislav Shkapenyuk and Torsten Suel
[Vladislav and Torsten, 2001] have designed and imple-
mented a distributed web crawler in their paper. Also
presenting a distributed web crawler, Dhiraj Khurana,
and Satish Kumar [Dhiraj and Satish, 2012] described
its pros and cons, along with other types of web crawler.
Meanwhile, different crawling technologies and tech-
niques for crawling hidden web documents were pro-
posed in a research paper of Beena Mahar and C K Jha.
[BeenaMahar and Jha, 2015] Introducing by Priyanka-
Saxena [Priyanka, 2019], a scalable web crawler was
written in java called Mercator, becoming a commercial
use source.

Some studies have been instituted for applying in spe-
cific areas. For example, Minas Gjoka [Minas, 2010]
used a web crawler to extract data for the statistical prop-
erties of online social networks. Continuing the applica-
tion on social networks, Salvatore A. Catanese, Pasquale
De Meo, and Emilio Ferrara [Salvatore, 2011] have ap-
plied web crawlers on Facebook and produced a source
for later use of the community structure of Facebook.

145

Web crawlers were also used to procure biological data
from the web by a study of Ari Pirkola [Ari, 2007].

Furthermore, a number of researchers have put their
efforts to improve and enhance the performance of web
crawlers. Hybrid crawlers were suggested by Hetal J.
Thankil et al. [Thankil, 2015] to improve the quality of
service as it may overcome the limitation of the crawl-
ing algorithm. Different techniques to develop a crawler
and to build an efficient crawler is detailed in a paper of
Raja Iswary and Keshab Nath [Raja and Keshab, 2013],
and an article of Trupti V. Udapure et al. [Trupti et al.,
2014]. Dr. Jatinder Singh Bal et al. advised that choos-
ing the right plan and building an adequate structure are
more challenging than creating a capable web crawler.
At the same time, efficient crawling algorithms should
be deepened to provide better results and higher perfor-
mance [Mini and Jatinder, 2014].

It can be seen that most of the mentioned studies have
concentrated on using template-based crawling tech-
niques; however, they reach a general limitation by this
approach. Those techniques could not handle the lay-
out diversity of objects from web pages. Therefore, in
this paper, a web crawler model was proposed and im-
plemented to extract article-like contents from 495 web-
sites. It uses a machine learning approach with visual
cues [Magall6n-Garcia et al., 2017], trivial HTML, and
text-based features to filter out clutters. Given a web
page Uniform Resource Locator (URL), the model can
extract relevant titles and correspondent contents. The
outcomes are promising for extracting article-like con-
tents from websites, contributing to the fields of cyber-
netics, telecommunication, and physics.

3 System Architecture of Web Crawler

Template-based web crawlers are normally used to ex-
tract data from web-pages, however, specific template
from each website is vary and challenging for this tech-
nique. Therefore, in this paper, a new web crawler is
proposed to extract web-pages from blocks by blocks,
attaching with each title and content, (as shown in Fig-
ure 1) making the crawling data produce contents similar
to an article format.

Block 1:

+ Title

+ Content
Block 2:

+ Title

+ Content

Figure 1. Data layout after web crawling.

The architecture of the topical web crawler designed
and implemented in this paper is indicated in Figure 2.

| Crawling submodule

! URLs
. (from files —> | Crawler
| orDB)

Text data

Trainer

Reports

Training submodule

Figure 3. Proposed web crawler modules.

Figure 4. Website Sample.

Classifying | | Article-like

. Extracting
| 1 —
URL H Clawifing text blocks D) | blocks contents
Model
Training

Proposed ;
Web Crawler Module /

I

Operators

Al Engineers

Figure 2. Proposed web crawler architecture.

The module is performed in a combination of tasks, in-
cluding: Crawling text content from webpages; Extract-
ing text blocks; Verifying manually; Training Machine
Learning models; and Classifying blocks.

Its operation process is indicated in Figure 2 and de-
scribed as follows.

1. Using URLs, websites were crawled in forms of
HTML files, which includes different web pages;

2. Those pages were then extracted into a number of
blocks, including pictures and texts; filter out and
select only text blocks for the next experiment;

3. The text blocks were manually verified and labeled
by operators, through a UI (user interface);

4. Only usable text blocks for crawling were inputted
for a Machine Leering training model, implemented
by AI Engineers;

5. From there, a model was built from the output of the
Machine Learning process, which will be used (as a
product) to classify blocks into article-like contents.

4 Proposed Web Crawler Module

The proposed module of the entire crawler system is
divided into 4 sub-modules, which are illustrated in Fig-

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

ure 3. Each sub-module implements specific tasks as de-
tailed below.

1. Crawling: getting data from web pages, extracting
text blocks, and saving them into a local database;

2. Verifying: verifying each text block by operators
and submitting results into the database via an API;

3. Training: training Machine Learning models using
data from database and export reports;

4. Classifying: classifying text blocks in the database
using the trained Machine Learning model, export-
ing as files or database.

4.1 Crawling Sub-module

The crawling sub-module is designed to be imple-
mented on the crawling server. By using URL, for ex-
ample, a website sample is crawled as an HTML file, as
shown in Figure. 4. The crawling sub-module runs as a
batch in the background, taking input from CSV/JSON
URL files or the database.

The output of this module is a JSON string that con-

tains a web page’s text blocks and other attributes, as
indicated in Figure 5. Then, the string is inserted into a

local database to verify it in the next step.

[SK
"page_height":3995,
"blocks": B[
(SR
"block": @[
[SK
"bottom":645,
"right":682,
"className":"",
ridmam,
"hidden":false,
"left":0,
"height":71,
"innerHtmlLength":13,
"innerHtml":"SAN FRANCISCO",
"innerTextLength":13,
"top":574,
"innerText":"SAN FRANCISCO",
"isTitle":
"nodeName" : "h1",
"width":682

nigriniz 2m,
"url":"https://www.sftravel.com",
"page_width":1024,

"name":"Visitor Information Center | San Francisco, CA"

Figure 5. Crawling Sub-module Output.

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

[-
Submit
L 1

Block A 0
Page blocks > » Page blocks JSON
JSON Block B 1 + label
Block C 1

Verifying Screen

Figure 6. Verifying Sub-module.

4.2 Verifying Sub-module

The verifying sub-module is integrated into the ad-
min console. This sub-module takes the input of JSON
strings, which contain web pages’ text blocks and their
URLs. Its purpose is to insert a block label of the input
and save it to the database, in order to provide data for a
Machine Learning model, as presented in Figure 6.

4.3 Training Sub-module

4.3.1 Training Module Structure The training
sub-module is implemented on an Al training server,
which runs manually as a batch and monitored by Al en-
gineers. This sub-module takes inputs of JSON blocks
from the database, and outputs report logs and dumped
models, as indicated in Figure 7.

H Block jsons

S—
Model A Crl
[S—

1 fees] ©

Training module

Specify ML T

model,

params, ...
Figure 7. Training Sub-module.

4.3.2 Machine Learning Model: Support Vector
Machine The Support Vector Machine (SVM) was
used in this research to train the module to classify
blocks. [Jankowski et al., 2009] As a supervised ma-
chine learning algorithm, SVM is commonly used for
classification rather than regression purposes. [Kumon
et al., 2007] It is widely used in various classification
applications of input samples [Hieu and Hien, 2020a;
Agarap, 2017; Hieu and Hien, 2020b], and become a
state-of-the-art classifier. Let {(x ;,y ;)}i=1 ¥ be a set
of N training samples, where x ; is the i*” sample in the
input space x, and y ; € {+1, —1} is the class of x ; la-
bel. The SVM decision function which classifies a new
test sample x is represented as

N
f(2) =sgn </_1 aiyik(w;, z) + b)

147

where z is presented as an unclassified sample, « ; is
the Lagrange multiplier of a dual optimization problem
which represents the separating hyperplane; k(. ,.) indi-
cates the kernel function which should satisfy the Mer-
cer’s condition; and b is the threshold parameter of hy-
perplane [Ribeiro, 2005].

The training sample x; (with o ; > 0) is called support
vectors, and the SVM classifier finds the optimal hyper-
plane that maximizes the separating margin between two
classes, as shown in Figure 8 [Song et al., 2002].

Figure 8. Optimal hyperplane of SVM in non-separable cases.

In this research, the fixed hyperparameter Gamma is
’scale’. For tuning, the Kernel used is RBF, sigmoid,
linear, and poly, with a penalty from 0.01 to 1000, and
label 0 weight from 1.0 to 2.5.

4.3.3 Tuning Method: Cross Validation During a
machine learning process, the dataset is normally split
into training and test sets. [Goras and Fira, 2009] After-
ward, the training set is used to train the model and the
test set is handled to evaluate the model performance.
[Ge et al., 2017] However, this method may lead to vari-
ance problems, in which the accuracy obtained on one
test is somewhat different from the accuracy obtained on
another test set using the same algorithm. [Sebastian,
2018]

In order to solve this issue, K-Fold Cross-Validation is
used in this research to evaluate the performance. From
there, the data is divided into K folds, and K-1 sets
are used for training whereas the remaining set is used
for testing. The algorithm is consequently trained and
tested K times, each time using a new set as the test set,
and then using the remaining sets for training. Eventu-
ally, the K-Fold Cross-Validation result is the average of
the results collected from each set. [Sylvain and Alain,
2009]

148
= —
® © o & & 6 o © & o O
§ 0.89—= * * ° *
g o © ¢ ¢ 0 © ¢ © ¢ o o
<
E 0.69—* o ® ® d
g ® © ¢ ¢ 0 © ¢ © ¢ o o
S 0.4 .
v e © ¢ 6 ¢ © o © ¢ o o
029—o ° ° ° °
o © o & & & o O & o
0 02 04 06 08 1
First Parameter
Figure 10. Grid Search space illustration.
Set 1 Test set
Set 2
Dataset Set 3
Training set
Set 4
Set 5

Figure 9. Cross-validation.

For example, Figure 9 illustrates 5-fold cross-
validation, where the data is split into 5 sets, from Set
1 to Set 5. The algorithm is then trained and tested 5
times. In the first fold, Set 1 is used as a testing set, and
the remaining sets are used as training sets. In the second
fold, for example, while Set 2 is used for testing, the rest
of the Sets are used for training. The process continues
continuously until every set is used for testing at least
once. The final result is conducted by the average of re-
sults taken by all folds. The cross-validation method not
only can get rid of the variance but also can find the vari-
ance in the overall result by using the standard deviation
of the results.

4.3.4 Parameter Selection: Grid Search A ma-
chine learning model normally has two types of param-
eters, one is learned through the process, and the other
one is the hyperparameter that we pass to the model.
The value of these hyperparameters is normally set in
random to define what parameters result in the best per-
formance. [Melnikov and Barabanov, 2016] However,
this approach reaches some common limits because one
algorithm can perform better or worse than the other, de-
pending on different sets of parameters, leading to an
inadequate comparison. Therefore, Grid Search is an al-

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

gorithm invented to automatically defines the best pa-
rameters for each particular model. [Petro and Pavlo,
2019]

Grid search is a process of scanning data to config-
ure the best parameters for a given model. Depending
on the model type used, certain parameters are required.
Therefore, grid search not only can apply to one model
type but also can apply across machine learning to calcu-
late the optimum parameters. Grid search then builds a
model based on all possible parameter combinations. It
traverses each parameter combination and stores a model
for each combination. [Petro and Pavlo, 2019]

In the settings for Grid Search in this research, the op-
timized score F-beta and beta are 0.5 (prioritizing Preci-
sion), with the number of folds is 5. There are two main
steps in this process: Selecting kernel, penalty, and class
weight; and the Fine-tuning penalty.

4.4 Classifying Sub-module

This sub-module classifies text blocks in the database,
using a trained Machine Learning model. Then, it ex-
ports outputs in the forms of files or databases, as pre-
sented in Figure 11. At the end of the process, the receive
results are article-like contents, which meets the require-
ment to handle the layout diversity of objects from web

pages.

Article-like contents
(to files or database)

Machine
Learning
Models

Classifier

Figure 11. Classifying Sub-module.

5 Experiment Results
5.1 Dataset Collection

The website dataset was collected from 495 URLs,
which is corresponding to 495 web pages. The fi-
nal blocks extracted from the Crawling Sub-module
are 2082 text blocks, with 777 blocks are classified as
“good” (accounting for 37,32%, containing content in-
formation of the website) and 1305 blocks are classi-
fied as “bad” (accounting for 62.68%, containing navi-
gations, contact boxes, Ads, etc.). There are also 15 nu-
meric features and 1 compound score. The dataset fea-
ture details are shown in Figure 12.

5.2 Experiments

To standardize values, the dataset which contains raw
HTML files was preprocessed by using Selenium [Shau-
mik and Pradeep, 2019]. The next step was to extract
the files into length and width values, before cluster-
ing by Density-based spatial clustering of applications
with noise (DBSCAN) algorithm [Ester, 1996]. Then,

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

Table 2. Training and testing result of the experimented model

Accuracy | Precision | Recall

(%) (%) (%)
Training 86.67 89.08 76.76
Testing 83.93 90.02 72.19

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 2082 entries, © to 2081
Data columns (total 24 columns):

Unnamed: @ 2082 non-null int64
page_id 2082 non-null int64
page_name 2082 non-null object
url 2082 non-null object
block_id 2082 non-null int64

header
contents

2082 non-null object
2082 non-null object

rel_area 2082 non-null float64
rel_width 2082 non-null float64
rel_xcengap 2082 non-null float64
rel_height 2082 non-null float64
rel_ycenter 2082 non-null float64
text_len 2082 non-null int64
html_len 2082 non-null int64
tag_len 2082 non-null int64
digit_len 2082 non-null int64

2082 non-null int64
2082 non-null float64
2082 non-null int64
2082 non-null int64
num_neu_tag 2082 non-null int64
avg_smth_value 2082 non-null float64
label 2082 non-null int64
score 2082 non-null float64
dtypes: float64(8), int64(12), object(4)
memory usage: 3980.5+ KB

bad_word_cnt
text_ratio
num_pos_tag
num_neg_tag

Figure 12. Dataset details.

the blocks were labeled and extracted their features. Fi-
nally, the dataset was split into an unstratified training
test with 20% samples and was delivered to the training
process. Therefore, there is a total of 1665 training text
blocks and 417 testing text blocks in the end.

First, the model suggested by GridSearchCV was used
to train and test the dataset. The features used include
Kernel SVM, gamma = ’scale’, class_weight= {0: 1.9},
and penalty = 1000. Using this model, the training set
obtained remarkably high accuracy and precision scores.
However, there were 3 noticeable drops (with over 10%)
on the testing set. The result of this model is presented
in Table 1.

Table 1. Training and testing result of the model suggested from
GridSearchCV
Accuracy | Precision | Recall
(%) (%) (%)
Training 92.01 96.43 83.53
Testing 81.06 84.62 70.59

Then, the authors experimented another model with
different features, with Kernel SVM, gamma = ’scale’,
class_weight= {0: 1.5}, and penalty = 10. By using this
model, the accuracy, precision, and recall were lower
than the former model. However, it solves the overfit-

149

ting issue that happened in the model suggested by Grid-
SearchCV (less than 5%). The result of this model is
indicated in Table 2.

Comparing the results of 2 models, the GirdSearchCV
is more optimal for crawling websites to create article-
like contents. To indicate the result comprehensively, the
system was trained on this model using different training

set sizes, 100, 500, 1000, and 1665 samples. A compar-
ative figure is presented for the accuracy, precision, and

recall of training and testing scores in Table 3 and Figure
13.

Table 3. Comparative training and testing result on different training
set sizes
Training | Result Accuracy| Precision| Recall
set size (%) (%) (%)
100 Training | 99.23 99.40 99.11
Testing 68.59 65.22 64.17
500 Training | 93.81 99.44 85.51
Testing 79.38 80.24 71.66
1000 Training | 93.32 97.77 85.61
Testing 81.29 83.85 72.19
1665 Training | 92.01 96.43 83.53
Testing 81.06 84.62 70.59

It can be seen from the figure that the bigger the train-
ing set size, the less efficient on the training set, but the
more effective on the testing set, regarding the accuracy,
precision, and recall values.

6 Conclusions

In this paper, a web crawler model was designed and
developed, which extracted websites into article-like
contents. Firstly, the web crawler module was designed
into 4 different sub-modules, crawling, verifying, train-
ing, and classifying. The website dataset was collected
from 495 URLs, then extracted into 2082 text blocks,
and split its 20 percent for the training set. The model
used the Support Vector Machine model to train, Cross-
Validation for tuning, and Grid Search for parameter se-
lection. After experience on different models, the op-
timal suggested is the GridSearchCV, where it may de-
liver 92.01% for accuracy and 96.43% for precision on
the training set, and 81.06%, 84.62% respectively on
the testing set. It is also noticeable that the efficiency,
regarding the accuracy, precision, and recall values are
higher when the training size increases. The system can
accommodate to reduce the workload of management
and optimization in search engine systems, contributing
to the development of cybernetics, telecommunication,

150

100
90
80
70
60
50
40
30
20

10

500 1000 1665

m Accuracy (%) OPrecision (%) BRecall (%)

Figure 13. Comparative chart on training and testing result of differ-

ent training set sizes.

and physics. The outcomes of this study open up new av-
enues for future research and can serve as a hypothetical
source for future web crawler systems to extract article-
like contents.

7 Future Scope

Although substantial efforts have been made in the
past [Pramudita, 2020; Kapil and Mukesh, 2019; Petro
and Pavlo, 2019], our research proposed high-efficiency
models for web crawler to extract article-like contents.
In future research, attempt gears towards applying more
machine learning methods, including Ensemble and
Neural Net, to improve the performance of the model.
In order to reach a higher accuracy, a sitemap scan to ob-
tain main images is needed to upgrade the current work.
Future work will also focus on classifying blocks into
’header’, menu’, ’footer’, ’ads’, ’left-bar’, etc. and ex-
tracting all page attributes (keyword, description, bread-
crumb, etc.) to investigate a higher performance of web
crawler model to extract article-like contents.

References

Agarap, A. F. (2017). An architecture combining convo-
Iutional neural network (cnn) and support vector ma-
chine (svm) for image classification. arXiv.

Ari, P. (2007). Focused crawling: A means to acquire
biological data from the web. University of Tampere
Finland, 978.

Avinash, N. B., Harsha, A. B., and Meshram, B. B.

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

(2010). Intelligent web agent for search engines. Inter-
national Conference on Trends and Advances in Com-
putation and Engineering.

BeenaMahar and Jha, C. K. (2015). A comparative study
on web crawling for searching hidden web. Interna-
tional Journal of Computer Science and Information
Technologies, 6 (3), pp. 2159-2163.

Bruce, C., Donald, M., and Trevor, S. (2009). Search
engines information retrieval in practice.

Christopher, O. and Marc, N. (2010). Web crawling. now
the essence of knowledge, 4 (3), pp. 2010.

Desai, K. (2017). Web crawler: Review of different
types of web crawler, its issues, applications and re-
search opportunities. International Journal of Ad-
vanced Research in Computer Science, 8, pp. 1199—
1202.

Dhiraj, K. and Satish, K. (2012). Web crawler: A re-
view. International Journal of Computer Science and
Management Studies, 12.

Ester, M. (1996). A density-based algorithm for discov-
ering clusters in large spatial databases with noise. pp.
226-231. Second International Conference on Knowl-
edge Discovery and Data Mining (KDD-96).

Ge, Z., Song, Z., Ding, S. X., and Huang, B. (2017).
Data mining and analytics in the process industry: The
role of machine learning. IEEE Access, 5, pp. 20590—
20616.

Goras, L. and Fira, C. M. (2009). Preprocessing method
for improving ecg signal classification and compres-
sion validation. 4th International Conference on
Physics and Control.

Hieu, N. V. and Hien, N. L. H. (2020a). Automatic plant
image identification of vietnamese species using deep
learning models. International Journal of Engineering
Trends and Technology, 68 (4), pp. 25-31.

Hieu, N. V. and Hien, N. L. H. (2020b). Recognition of
plant species using deep convolutional feature extrac-
tion. International Journal on Emerging Technologies,
11 (3), pp. 904-910.

Jain, S. S. and Subodh, P. G. (2018). A methodical study
of web crawler. International Journal of Engineering
Research and Applications, 8 (11), pp. 1-8.

Jankowski, S., Currenti, G., Napoli, R., Szymanskil,
Z., Fortuna, L., and Negro, C. D. (2009). Modelling
volcanomagnetic dynamics by recurrent least-squares
support vector machines. 4th International Conference
on Physics and Control.

Kapil and Mukesh, Y. (2019). Design of a novel interface
for a web crawler. International Journal of Electronics
Engineering, 11 (1), pp. 952-958.

Kausar, M. A., Dhaka, V. S., and Sanjeev, K. S. (2013).
Web crawler: A review. International Journal of Com-
puter Applications, 63 (2).

Kobayashi, M. and Takeda, K. (2000). Information re-
trieval on the web. ACM Computing Surveys (ACM
Press), 32 (2), pp. 144-173.

Komal and Ashutosh, D. (2016). Design issues in web

CYBERNETICS AND PHYSICS, VOL. 9, NO. 3, 2020

crawlers and review of parallel crawlers. International
Journal of Science and Research, 5 (6), pp. 61-64.

Kumon, M., Ito, Y., Nakashima, T., Shimoda, T., and
Ishitobi, M. (2007). Sound source classification using
support vector machine. 9th IFAC Workshop Adapta-
tion and Learning in Control and Signal Processing.

Magall6n-Garcia, D. A., Jaimes-Redtegui, R., Huerta-
Cuellar, G., Gallegos-Infante, L. A., Soria-Fregoso, C.,
and Garcia-Lépez, J. H. (2017). Study of multistable
visual perception using the synergetic model. Cyber-
netics and Physics, 6 (3).

Martin, E., Hans-Peterand, K., and Matthias, S. (2004).
Accurate and efficient crawling for relevant websites.
30th VLDB Conference Toronto, Canada, pp. 396-407.

Melnikov, A. and Barabanov, A. (2016). Guaran-
teed estimation of speech fundamental frequency with
bounded complexity algorithm. Cybernetics and
Physics, 5(1).

Minas, G. (2010). Measurement of Online Social Net-
works. University of California, Irvine.

Mini, S. A. and Jatinder, S. B. (2014). Web crawler: Ex-
tracting the web data. International Journal of Com-
puter Trends and Technology, 13 (3).

Mridul, B. S. and Bharne, S. (2016). A survey on various
kinds of web crawlers and intelligent crawler. Interna-
tional Journal of Scientific Engineering and Applied
Science, 2 (3).

Pant, G., Srinivasan, P., and Menczer, F. (2004). Crawl-
ing the web. In Web Dynamics. Springer, Berlin, Hei-
delberg.

Petro, L. and Pavlo, L. (2019). Grid search, random
search, genetic algorithm: A big comparison for nas.
Pinkerton, B. (1994). Finding What People Want: Ex-
periences with the WebCrawler. Second International
World Wide Web Conference, Chicago, Illinois, USA.
Pramudita, Y. D. (2020). Extraction system web content

151

sports new based on web crawler multi thread. Journal
of Physics: Conference Series, 1569.

Priyanka, S. (2019). Mercator as a web crawler. Interna-
tional Journal of Computer Science Issues.

Raja, I. and Keshab, N. (2013). Web crawler. Interna-
tional Journal of Advanced Research in Computer and
Communication Engineering, 2 (10).

Ribeiro, B. (2005). Support vector machines for qual-
ity monitoring in a plastic injection molding process.
IEEE Transactions on Systems, Man and Cybernetics
C., pp. 401-410.

Salvatore, A. C. (2011). Crawling facebook for social
network analysis purposes. WIMS, 11 (25-27).

Sebastian, R. (2018). Model Evaluation, Model Selec-
tion, and Algorithm Selection in Machine Learning.
University of Wisconsin—-Madison.

Shaumik, D. and Pradeep, K. (2019). Getting started
with web automation testing using selenium and
python.

Song, Q., Hu, W., and Xie, W. (2002). Robust support

vector machine with bullet hole image classification.
IEEE Transactions on Systems, Man and Cybernetics

C., pp. 440-448.

Sylvain, A. and Alain, C. (2009). A survey of cross-
validation procedures for model selection.

Thankil, J. H. (2015). Domain-specific web crawler: A
survey. International Journal of Innovative Research
in Science, Engineering and Technology, 4.

Trupti, V. U., Ravindra, D. K., and Rajesh, C. D. (2014).
Study of web crawler and its different types. IOSR
Journal of Computer Engineering (IOSR-JCE), 16 (1),
pp. 1-5.

Vladislav, S. and Torsten, S. (2001). Design and im-
plementation of a high-performance distributed web
crawler. NSF CAREER Award, CCR-0093400.

