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Abstract
Bifurcation theory is very important in digital phase-

locked loops (DPLLs) which are frequently encoun-
tered in radio engineering and communication and have
been used during 60 years. Calculation of bifurcation
values of the parameters are very important problem for
analysis of working regimes of DPLLs.
Mathematical model of discrete digital phase-locked

loop with sinusoidal characteristic of phase discrimina-
tor is considered. The Feigenbaum’s effect for nonuni-
modal maps which describe such DPLL is investigated
by theoretical approach and numerical calculations. Bi-
furcations parameters of period doubling bifurcation
are calculated.
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1 Introduction
The study of limit cycles for discrete dynamical sys-

tems has a long history and important applications in
various areas of research. The following nonlinear dif-
ference equation of the first order:

x(t + 1) = rx(t)(1− x(t)), t ∈ N, r > 0, (1)

was introduced by Pierre Verhulst in 1845 as a mathe-
matical model of population dynamics within a closed
environment that takes into account internal competi-
tion [Schuster, 1984]. Logistic equation (1), which can
be generalized to the form

x(t + 1) = f(x(t)), x ∈ R, t ∈ N, (2)

has an extremely complex limiting structure of solu-
tions and was intensively studied in the second part of

the 20th century [Sharkovsky, 1995; Li & Yorke, 1975;
Sharkovsky et al., 1997; May, 1976; Metropolis, M.
Stein & P. Stein, 1973; Feigenbaum, 1978; Weisstein,
1999]. In particular, in equation (1), period-doubling
bifurcations were discovered.
Surprisingly, while solutions to a linear multidimen-

sional discrete equation

x(t + 1) = Ax(t), x ∈ Rn, t ∈ N,

and its continuous analogue

ẋ = Ax(t), x ∈ Rn, t ∈ R

(where A is a constant n× n matrix), to a large extent,
possess similar behavior, solutions to equation (2) and
its continuous one-dimensional analogue

ẋ = f(x(t)), x, t ∈ R,

bear qualitatively different structure (see for exam-
ple [Leonov & Seledzhi, 2002; Neittaanmäki & Ruot-
salainen, 1985; Keller, 1977; Marsden & McCracken,
1976]).
One of examples of a nonlinear difference equation

which are important in applications is the following
equation of the first order:

x(t + 1) = x(t)− α sin x(t) + γ, t ∈ N, (3)

where α and γ are nonnegative parameters. Over the
last 40 years, many authors conducted rigorous stud-
ies of equation (3) both as a pure mathematical object
[Arnold, 1983; Jakobson, 1971] and as a mathematical
model of a phase-locked loop [Osborne, 1980; Gupta,
1975; Lindsey, 1972; Lindsey & Chie, 1981].



Equation (3) with γ = 0 describes a wide class of
digital phase-locked loops (DPLLs) with the sinusoidal
characteristic of phase detector [Banerjee & Sarkar,
2005-2008; Leonov et al., 1992; Leonov et al., 1996;
Leonov, 2001; Leonov, 2002; Leonov & Seledzhi,
2005]. Osborne [Osborne,1980] pioneered in the use
of exact methods, such as the Contraction Mapping
Theorem, applicable to the direct study of nonlinear ef-
fects in this system. However, even the exact methods
used by Osborne, while revealing what then appeared
as multiple cycle slipping, followed by a divergent be-
havior of iterations, did not allow for a precise inter-
pretation of nonlinear effects discovered at transition
from global asymptotic stability to chaos through pe-
riod doubling bifurcations [Leonov & Seledzhi, 2005].
The research and development of mathematical the-

ory of DPLLs for array processors are commonly used
in radio engineering, communication, and computer ar-
chitecture [Banerjee & Sarkar, 2005–2008; Zoltowski,
2001; Mannino et al., 2006; Hussain & Boashash,
2002; Kudrewicz & Wasowicz, 2007; Gardner, 1966;
Lindsey, 1972; Lindsey & Chie, 1981; Leonov, Re-
itmann & Smirnova, 1992; Kuznetsov, Leonov &
Seledzi, 2006; Leonov, Ponomarenko & Smirnova,
1996; Lapsley et al., 1997; Kroupa, 2003; Best, 2003;
Abramovitch, 2002]. For example, such digital con-
trol systems exhibit high efficiency in eliminating clock
skew - an undesirable phenomenon arising in par-
allel computing [Leonov & Seledzhi, 2002; Leonov
& Seledzhi, 2005]. DPLLs have gained widespread
recognition and preference over their analog counter-
parts because of their ability to deal with this phe-
nomenon effectively. From a mathematical perspec-
tive, this gives rise to a problem associated with the
analysis of global stability of nonlinear difference
equations that serve as mathematical models of discrete
phase-locked loops [Leonov, 2001]; that is, the analy-
sis can be formulated in terms of parameters for such
systems.
The present paper is devoted to study of bifurcations

of discrete system (3) with γ = 0 and to computation of
bifurcation parameters. Using the qualitative theory of
dynamical systems, special analytical methods, and ad-
vanced mathematical packages designed to work with
long numbers allowed us to succeed in computation of
bifurcation values of parameter of the investigated sys-
tem. The first 14 bifurcation values are calculated with
good accuracy. Also it is shown that for the obtained
bifurcation values of investigated system, which is not
a unimodal map, an effect of convergence similar to fa-
mous Feigenbaum’s effect is observed.

2 Digital phase-locked loops
The nonlinear dynamics of different nonlinear elec-

tronic systems is studied by researchers for at least
three decades. Occurrence of such complex behaviors
as bifurcation, chaos, intermittency etc. in electronic
systems has been revealed from these studies [Baner-

jee & Sarkar, 2008; Kilias et al., 1995; Chen, Chau
& Chan, 1999; Giannakopoulos & Deliyannis, 2005].
In addition, control chaos and bifurcation in electronic
circuits and systems is an active area of research [Chen,
Hill & Yu, 2003; Collado & Suarez, 2005].
By controlling chaos and bifurcation, one can sup-

press chaotic behavior where it is unwanted (e.g. in
power electronics and mechanical systems). On the
other hand, in electronic systems one can harness the
richness of chaotic behavior in chaos based electronic
communication system. Possibility of exploiting the
chaotic signal in chaos based secure communication
system has boosted up the research on the chaotic dy-
namics of electronic circuits and systems [Kennedy,
2000].
Owing to potential application in synchronous com-

munication system and rich nonlinear dynamical be-
havior, PLL is probably the most widely studied sys-
tem among all electrical systems [Gardner, 1966; Ku-
drewicz & Wasowicz, 2007]. At the advent of digital
communication systems, DPLLs have rapidly replaced
the conventional analog PLLs because they overcome
the problems of sensitivity to DC drift, periodic adjust-
ment, and the building of higher order loops [Lindsey
& Chie, 1981].
DPLLs are widely used in frequency demodulators,

frequency synthesizers, data and clock synchronizers,
modems, digital signal processors, and hard disk drives
to name a few [Banerjee & Sarkar, 2008; Zoltowski,
2001; Mannino et al., 2006]. A DPLL is a discrete time
nonlinear feedback controlled system whose nonlinear
behavior is complicated, and it poses exact solutions
only in particular cases. To understand the complete
behavior of a DPLL, it is necessary to resort to modern
nonlinear dynamical tools of bifurcation and chaos the-
ories. Also in this regard bifurcation control of DPLL
has not been explored yet. The study of nonlinear dy-
namics of DPLL has two fold applications. First, using
the insight of nonlinear behaviors of DPLLs, an opti-
mum DPLL system can be designed. Second, by char-
acterizing the chaos from DPLLs, one can explore the
possibility of using DPLLs in chaos based secure elec-
tronic communication systems. Thus, research of non-
linear dynamics of DPLLs is an important problem.
There are different types of DPLLs: positive zero

crossing DPLLs (ZC1-DPLL) [Bernstein, Liberman &
Lichtenberg, 1989; Banerjee & Sarkar, 2005; Banerjee
& Sarkar, 20051; Banerjee & Sarkar, 2008; Leonov &
Seledzhi, 2005], uniform sampling DPLL [Zoltowski,
2001], bang-bang DPLLs [Dalt, 2005], and tanlock
DPLLs [Hussain & Boashash, 2002].
In the present paper, we will consider a discrete dy-

namical system which describes the nonlinear dynam-
ics of dual sampler based zero crossing DPLLs (ZC2-
DPLL). Unlike ZC1-DPLL, in a ZC2-DPLL sampling
is done at the positive and negative zero crossings of the
input signal [Banerjee & Sarkar, 20081]. For this par-
ticular sampling technique, it has a wide frequency ac-
quisition range in comparison with a ZC1-DPLL, and



Figure 1. Functional block diagram of a ZC2−DPLL, [Baner-
jee & Sarkar, 2008].

that is why ZC2-DPLLs have drawn the attention of
researchers for a long time [Majumdar, 1979; Frias &
Rocha, 1980; Banerjee & Sarkar, 2006].
Following [Banerjee & Sarkar, 20081; Majumdar,

1979; Leonov & Seledzhi, 2002], we formulate the
equation of DPLL. Fig. 1 shows the block diagram of
a ZC2-DPLL. It contains two positive edge triggered
samplers. Input signal is fed directly into sampler-
1, and a π shifted version of input signal is fed into
sampler-2. Let e(t) be the noise-free analog input sig-
nal to the system with a phase angle θi(t) relative to
the loop DCO phase. Then the system equation can be
written as

e(t) = A0sin [ω0t + θi(t)] ,

where θi(t) = (ωi − ω0)t + θ0. Here A0 is the
amplitude, and ωi and θ0 are the angular frequency
and phase of the input signal, respectively. ω0 is the
nominal angular frequency of the DCO having time
period T . Writing the sampled version of e(t) at
the kth sampling instant (SI) t(k) as x(k), one can
write the output signals of sampler-1 and sampler-2,
respectively, as follows [Majumdar, 1979]:

x1(k′) = A0sin[ω0t(k′) + θi(k′)],

x1(k′′) = A0sin[ω0t(k′′) + θi(k′′)− π],

where k′ = 2k, k′′ = (2k + 1), k = 0, 1, 2, 3 . . . .

Here sampling instants (SIs) are occurring at the end
of each half period of the DCO.
The sequence x(k), k = 0, 1, 2, . . ., is filtered digi-

tally by a loop digital filter (LDF). The transfer func-
tion of LDF in a first order loop is written as a constant
gain G1 (s/volt). The LDF output sequence is given by
yk = G1x(k). The sequences y(k) are used to control
the next half period of the DCO. The kth half period
T ′(k) of DCO can be written as

T ′(k) = T (k)/2 = t(k + 1)− t(k),

in terms of the kth and (k+1)st SIs, respectively. DCO
period T (k + 1) at that instant is governed by the rela-
tion

T (k + 1) =
T

2
− y(k).

In case t(0) = 0 , we get

t(k) =
kT

2
−

k−1∑

i=0

y(i).

Thus, the sampler output at the kth instant is

x(k) = A0sin[φ(k)],

where

φ(k) = θi(k)− ω0

k−1∑

i=0

y(i)

is the phase error between the input signal and the DCO
output at t(k).
Then, the equation for the phase of the ZC2-DPLL can

be written as

φ(k + 1) = φ(k) + π(z − 1)− 1
2
zK1sinφ(k), (4)

where z has been substituted in place of (ωi/ω0) and
K1 = A0ω0G1 is the closed loop gain of ZC2-DPLL.

3 Analytical investigation
In engineering DPLL’s practice, the case of initial fre-

quency of master and local generators coincidence is
very important [Banerjee & Sarkar, 20081; Leonov &
Seledzhi, 2002]. For this instance, in (4),

z = (ωi/ω0) = 1,

and the equation for DPLL can be given by

σ(t + 1) = σ(t)− r sinσ(t), t ∈ N, (5)

where r =
1
2
A0ω0G1 is a positive number [Leonov &

Seledzhi, 2002].
One of the first works dedicated to analysis of system

(5) belongs to Osborne. In [Osborne, 1980], was con-
sidered the algorithm of investigation of periodic so-
lutions, and it was shown that even in a simple dis-
crete model of PLL, the bifurcation phenomenon in-
volved to arising of new stable periodical solutions and



to changing of their period are observed. Later, in the
papers [Belykh & Maksakov, 1979; Belykh & Lebe-
deva, 1983] for such systems, a model of transition
to chaos through a cascade of period-doubling bifur-
cations was considered. Association and development
of these ideas in the works [Leonov & Seledzhi, 2002;
Leonov & Seledzhi, 2005] has allowed to construct bi-
furcation tree of transition to chaos through a cascade
of period doubling (Fig. 2).

Figure 2. Seledzhi’s bifurcation tree.

In [Leonov & Seledzhi, 2002], it was proved that sys-
tem (5) is globally asymptotically stable for r ∈ (0, 2).
Following the works [Osborne, 1980; Leonov &

Seledzhi, 2002], let us consider behavior of periodic
solutions of system (5) for r ≥ 2.
Let r ∈ (2, r1), where r1 is the root of the equation

√
r2 − 1 = π + arccos

1
r
.

Then the following theorem takes place.

Theorem. If r ∈ (2, r1) and σ(0) ∈ [−π, π], then
σ(t) ∈ [−π, π] for all t = 1, 2, ....

This theorem determines system (5) as a map of the
interval [−π, π] into itself for r ∈ (2, r1).
For r < 2, equation (5) is global asymptotically sta-

ble: σ(t) with any initial conditions σ(0) aspire to the
states of equilibrium σ = 2πj, j ∈ Z, t 7→ +∞.
The value r = 2 is the first point of bifurcation. For

r > 2 all the stationary points become Lyapunov unsta-
ble. There is an asymptotically stable, symmetric with
respect to σ = 0, solution with period 2 for r ∈ (2, π).
Let σ(t + 1) = −σ(t), then 2σ(t) = r sin(σ(t)), and

the symmetric solutions of equation (5) with period 2
have the properties:

σ(2j) = σ(0), j ∈ Z,

σ(2j + 1) = −σ(0), j ∈ Z,

where the initial conditions of σ(0) satisfy equality

2σ(0) = r sin(σ(0)). (6)

Equation (6) in the interval [−π, π] has two roots for all
r > 2: σ(0) and −σ(0).
For r ∈ (π, β), where β =

√
π2 + 2 ≈ 3.445229,

there are two asymptotically stable solutions with pe-
riod 2 which satisfy the relation

σ(t + 1) = σ(t)± π.

From here it follows that

π = r sin(σ(t)).

Then, the first periodic solution of period 2 for r ∈
(π, β) has the properties

σ(2j) = σ(0), ∀j ∈ Z,

σ(2j + 1) = σ(0)− π, ∀j ∈ Z,

where the initial conditions of σ(0) satisfy the equality

sin(σ(0)) =
π

r
. (7)

The second periodic solution of period 2 for r ∈ (π, β)
has the properties

σ(2j) = σ(0), ∀j ∈ Z,

σ(2j + 1) = σ(0) + π, ∀j ∈ Z,

where the initial conditions of σ(0) satisfy the equality

sin(σ(0)) = −π

r
. (8)

Equations (7), (8) have on [−π, π] two roots for all
r > 2.
According to analytical investigations described

above, the following is known:
For r = r1 = 2, the first bifurcation occurs. The

global asymptotic stability of the stationary set van-
ishes, and a globally asymptotically stable cycle of pe-
riod 2 appears.
The second bifurcation value r = r2 = π value cor-

responds to bifurcation of splitting: the globally sta-
ble cycle of period 2 loses its stability, and two lo-
cally stable cycles of period 2 appear. Note that for the
first time, this phenomena was described in [Leonov
& Seledzhi, 2002]: a cycle of some period T loses its
stability, and two cycles of the same period T appear.



For r = r3 =
√

π2 + 2 ≈ 3.4452, the third bifurca-
tion occurs: two cycles of period 2 lose stability, and
two 4-periodical cycles appear.
In Fig. 3, we show an enlarged domain of the bifur-

cation tree where the second and third bifurcations are
clearly seen.

Figure 3. Seledzhi’s bifurcation tree. Enlarged domains.

Further transition to chaos through a cascade of
period-doubling bifurcations takes place.
Note that the phenomenon of transition to chaos

through a cascade of period- doubling bifurcations is
well studied for the whole class of maps of an interval
into itself. In 1975 M. Feigenbaum noticed that for the
equation

xn+1 = λx(1− x),

the following is observed: if

λn − λn−1

λn+1 − λn
= δn,

then

lim
n→∞

δn = 4.6692...,

where λn−1, λn, λn+1 are consecutive bifurcation val-
ues.

Figure 4. Plot of the function f(x) = λx(1−x), λ = 3.7.

He performed similar calculations with another logis-
tical map, and found a geometric progression with the
same denominator. After that, the hypothesis that δ
does not depend on the type of a specific map was born.
It was found that the convergence is universal for one-

dimensional one-parameter families of maps of an in-
terval into itself [Campanin & Epstain, 1981; Ostlund
et al., 1983; Lanford, 1982; Hu & Rudnick, 1982].
The value δ = 4.6692... is the famous Feigenbaum’s
constant. The Renorm-group Theory explains this phe-
nomenon for the class of unimodal maps (continuous
map an interval into itself which has a unique critical
point in the interval and is strictly monotonous on either
side of extremum (Fig. 4)) and for some special cases
[Feigenbaum, 1980; Vul, Sinai & Khanin, 1984; Cvi-
tanovich, 1989; Bensimon, Jensen & Kadanoff, 1986;
Kuznetsov, 2001; Shirkov, Kazakov & Vladimirov,
1988].

Figure 5. Plot of the function f(x) = x− rsin(x), r = 2.5.

Figure 6. Plot of the function f(f(x)) = f(x) −
rsin(f(x)), r = 2.5.

The calculations obtained in the present work allow us
to show that, for system (5), the effect of convergence
similar to Feigenbaum’s effect is observed.
Note that for the function f(x) = x− rsin(x), which

has two critical points (x1, f(x1)) and (x2, f(x2))



in the interval [−π, π] (Fig. 5), and for the function
f(f(x)) = f(x) − rsin(f(x)) (Fig. 6) we have for
r > 2:

f(x1) 6= x1, f(x1) 6= x2,

f(f(x1)) 6= x1, f(f(x1)) 6= x2.

4 Computer modeling
First numerical calculations of bifurcation values of

parameter r for system (5) are presented in [Osborne,
1980; Banerjee & Sarkar, 2006; Leonov & Seledzhi,
2002].
In [Leonov & Seledzhi, 2002; Leonov & Seledzhi,

2005], methods for analysis of behavior of periodic tra-
jectories of the system were developed. They allowed
to justify the using of computational procedures for cal-
culating the following bifurcation values. In present pa-
per with the help of these analytical methods and spe-
cialized mathematical packages, the first 14 bifurcation
values of parameter r were obtained.
The algorithm for computation is based on applica-

tion of the method of multipliers [Vul, Sinai & Khanin,
1984; Kuznetsov, 2001].
The multiplier of a periodic trajectory of period T for

a discrete dynamical system xn+1 = f(xn, r) can be
written as

MT (r) =
T∏

i=1

f ′(xi(r), r),

where xi(r), i = 1, . . . , T , are the points (limit val-
ues) which form a stable periodic trajectory of period
T . The multiplier is responsible for the stability of the
cycle: for r = rT for which MT (rT ) = −1, there
occurs a period-doubling bifurcation at which the pe-
riodic trajectory of period T loses stability and there
appears a periodic trajectory of period 2T .
With a good accuracy, exact values of the first 14 bi-

furcation values of parameter r for initial data σ(0) = 1
for system (5) were obtained. For computation, multi-
pliers of all periods 4, 16, 32, ..., 8192, for each value
of parameter r greater than the analytically obtained r3,
with small step were calculated. This allowed to avoid
admission of bifurcation values.
The values are obtained under the condition of conver-

gence of limiting values up to 15 signs after comma:

|σ(t)− σ(t + T )| < 10−15.

The specified condition demands t = 2×108 iterations.
Table (1) shows the first 14 calculated bifurcation val-

ues of parameter r for system (5).
As was said earlier, the bifurcation parameter r =

r2 = π does not correspond to period-doubling bifur-
cation. There is a bifurcation of splitting of the cycle:
the cycle of period 2 loses its stability, and two locally
stable cycles of period 2 appear.

Bifurcation Feigenbaum’s

j parameter, rj number, δj

1 2

2 π 3.7597337326

3 3.445229223301312 4.4874675842

4 3.512892457411257 4.6240452067

5 3.527525366711579 4.6601478320

6 3.530665376391086 4.6671765089

7 3.531338162105000 4.6687679883

8 3.531482265584890 4.6690746582

9 3.531513128976555 4.6691116965

10 3.531519739097210 4.6690257365

11 3.531521154835959 4.6686408913

12 3.531521458080261 4.6678177276

13 3.531521523045159 4.6657974003

14 3.531521536968802

Table 1. Values of bifurcation parameters and Feigenbaum’s num-
bers for a discrete dynamical system.

Figure 7. Feigenbaum’s numbers

For the calculated bifurcation values of parameters rj

(Table 1), with the help of the relation

δj =
rj − rj−1

rj+1 − rj
,

the values of Feigenbaum’s numbers δj are calculated.
They are presented in the last column of Table 1.
In the Fig. (7) is shown that the obtained Feigen-

baum’s numbers δj have a good convergence to Feigen-
baum’s constant δ = 4.6692016.... Thus, for system
(5) an effect of convergence of bifurcation values of pa-
rameter r similar to Feigenbaum’s effect is observed.



5 Conclusion
Application of qualitative theory of dynamical sys-

tems, special analytical methods and modern mathe-
matical packages has helped to promote considerably
in calculation of bifurcation values of parameter for a
one-dimensional discrete system describing operation
of digital phase-locked loop.
Numerically calculated fourteen bifurcation values of

parameter of the investigated system are presented. It
is shown that for the obtained bifurcation values of
nonunimodal map, an effect of convergence similar to
Feigenbaum’s effect is observed.
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