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Abstract
A new semilagrangian method is presented for the

numerical solution of the BGK model of the Boltz-
mann equation in a domain with moving boundary.
The method is based on discretization of the equation
on a fixed grid in space and velocity. The equation
is discretized in characteristic form, and the distribu-
tion function is reconstructed at the foot of the char-
acteristics by a third order piecewise Hermite interpo-
lation. Reflecting moving boundary at the piston are
suitably described by assigning the value of the distri-
bution function at ghost cells. A comparison with Eu-
ler equation of gas dynamics for the piston problem has
been performed in the case of small Knudsen number.
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1 Introduction
This work is motivated by the computation of rarefiled

flow in MEMS (Micro Electro Mechanical Systems)
[5]. The size of such devices is small enough that gas
flow requires a kinetic treatment even at normal pres-
sure and temperature conditions. Micro accelerators
are often composed of several elements, each of which
consists of a moving part, the shuttle, which is free to
oscillate inside a fixed part, the stator. Although un-
der certain conditions one can obtain an accurate de-
scription of the flow by quasi-static approximation [4],
more general flow conditions inside the element require
the treatment of a domain whose boundaries are not
fixed. As a warm up problem, we consider the evolu-
tion of a gas in a one dimensional piston. Since we
are interested in description of the moving boundary,
we choose the simple BGK model to describe the gas
[1], which is a simple relaxation approximation of the
Boltzmann equation of rarefied gas dynamics. The nu-
merical method that we use is a deterministic semila-

grangian method on a fixed grid in space and velocity.
Such a method is illustrated in detail in paper [7].

2 Description of the method
First let us assume that the integration domain in space

is [0, L], with a fixed L. The initial-boundary problem
can be written as

∂f

∂t
+ v

∂f

∂x
=

1
τ

(M [f ]− f), (1)

f(t, x, v) = f0(x, v)

where v ∈ R, x ∈ [0, L], and t > 0, and M [f ] repre-
sents the local Maxwellian that has the same conserva-
tive moments of f .
Suppose we want to integrate the equation up to a

fixed time t = tf . For simplicity we assume constant
time step ∆t = tf/Nt and uniform grid in physical and
velocity space, with mesh spacing ∆x and ∆v, respec-
tively, and denote the grid points by tn = n∆t, xi =
i∆x, i = 0, . . . , Nx, vj = j∆v, j = −Nv, . . . , Nv ,
whereNx+1 and 2Nv +1 are the number of grid nodes
in space and velocity, respectively. We assume that the
distribution function is negligible for |v| > vmax =
Nv∆v.
Let fn

ij denote the approximation of the solution
f(tn, xi, vj) of the problem (1) at time tn in each spa-
tial and velocity node, and assume that it is given.
Integration of Eq. (1) along the characteritsics by im-

plicit Euler scheme gives

fn+1
ij = f̃n

ij +
∆t
τ

(Mn+1
ij − fn+1

ij ), (2)

xi = x̃ij + vj∆t, i = 0, . . . , Nx,

j = −Nv, . . . , Nv.

The value of the function f̃n
ij is reconstructed at posi-

tion x̃ij = xi − vj∆t by a suitable high order recon-
struction. In particular, here we use a piecewise cubic



polynomial, which is obtained by Hermite interpola-
tion in each interval [xi, xi+1]. The first derivatives of
the function at location xi, (∂fj/∂x)xi

, are computed
by second order central difference. The reconstruc-
tion is linear, without limiters. This guarantees that the
scheme is conservative [3].

2.1 Implicit calculation
The implicit term can be explicitly computed by mul-

tiplying Eq. (2) by 1, v, |v|2 and summing over the ve-
locities. This procedure allows the computation of the
moments, because Mn+1

i,· and fn+1
i,· have the same mo-

ments. Therefore one obtains

ρn+1
i =

∑
j

f̃n
ij , (ρu)n+1

i =
∑

j

vj f̃
n
ij ,

En+1
i =

1
2

∑
j

|vj |2f̃n
ij .

(3)

Once the moments have been computed, the
Maxwellian can be calculated from the moments,
and the density function can be explicitly computed as

fn+1
ij =

τ f̃n
ij + ∆tMn+1

ij

τ + ∆t
. (4)

Notice that as τ → 0 the distribution function fn+1
ij

is projected onto the Maxwellian. Furthermore, in this
limit the whole scheme becomes a relaxation scheme
for the Euler equations. We say that the scheme is
Asymptotic Preserving [6].

3 The piston problem
The system consists in a gas inside a one dimensional

slab, which is driven by a moving piston (see Figure 1).
On the left boundary of the domain there is a fixed wall
(the origin of our coordinate system), at the right end
there is a piston, whose position is an assigned function
of time xp : t ∈ R → xp(t) ∈ [0, L]. We assume that
the gas inside the slab is governed by the BGK equa-
tion. The system is discretized on a uniform grid in
the computational domain [0, L] by Nx + 1 grid points
of coordinates xi = ih, i = 0, . . . , Nx, h = L/Nx.
As the piston moves, the domain occupied by the gas
changes, while the position of the grid points remains
fixed. As a consequence, only a certain number Nx(t)
of grid points is actually used (active points) while
other points lie outside of the domain (ghost points).
The number of equations to be solved changes with

time. We choose the time step in such a way that the
piston can move by at most one grid point in one step,
and denote by up(t) ≡ ẋp(t) the assigned piston veloc-
ity.
Different boundary conditions may be assigned to the

boundary. Here we consider the case of specular reflec-
tion.

3.1 Specular reflection
At the wall, at each time t, the distribution function,

for positive velocities, is given by

f(t, 0, v) = f(t, 0,−v),

which is discretized as

fn
−i,j = fn

i,−j , i ≤ 0, j > 0,

keeping in mind that vj = j∆v.
A similar condition can be used to treat reflecting

boundary conditions near the piston:

f(t, xp, v) = f(t, xp, v
∗), v∗ = 2up − v.

We convert the condition into an initial value for the
ghost point using the following argument. We approx-
imate the motion of the piston by a piecewise linear
function of time, i.e. we assume that in time interval
[tn, tn+1] the velocity of the piston is unchanged. Then
the value of the density function f(tn, x̃ij , vj), at the
foot of the characteristics corresponding to the veloc-
ity vj < up, is set to fn(x∗, v∗), where xij + x∗ =
2xp(tn) and vj + v∗ = 2up(tn) (see Figure 2).
The simplest way to implement such condition is to

precompute the values of the distribution function at
ghost points xi > xp(tn), for vj < up, as fn(xi, vj) =
fn(x∗, v∗), with xi + x∗ = 2xp(tn) and vj + v∗ =
2up(tn), and then use the standard piecewise Hermite
interpolation from grid points (active or ghost) at time
level tn. In general point (x∗, v∗) is not on a grid in
phase space, therefore interpolation in x and v has to
be used. In some cases, point (x∗, v∗) is in a cell whose
values of the function is known at the vertices, and bi-
linear interpolation can be used. In other cases, the
function at the vertices is itself not known, and an it-
erative procedure has to be used.

Figure 1. Setup of the piston problem. The equations are solved
for the values of the distribution function in the active grid points.
The values outside of the computational domain (ghost points)
are computed by making use of the boundary conditions



Figure 2. Definition of the specular boundary conditions at the wall
(left) and at the piston (right)

4 Numerical tests
As numerical test we solve the BGK equation with

Maxwellian initial condition, and reflecting boundary
conditions at the wall and at the piston. We impose
the motion of the piston with a given velocity up(t) =
0.25 sin(t). The piston induces waves that move back
and forth into the slab. For small Knudsen number the
behavior of the gas should be well described by the Eu-
ler equations of gas dynamics. To validate this expecta-
tion, a comparison is performed between solution of the
BGK equation and the solution of the Euler equations
of gas dynamics. The latter is obtained by writing the
equations in Lagrangian form, so that the domain in La-
grangian coordinates becomes fixed, and then applying
a finite volume central scheme to solve the equations
numerically (see [2] for details).
The pressure at the piston and at the wall for the BGK

model and for the Euler equations are shown in Figure
3. During the talk, the time evolution of the distribution
function f(x, v, t) is shown.
Implementation of Maxwell boundary conditions and

extension to two space dimensions will allow a realistic
simulation of the oscillation of the shuttle in MEMS.
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Figure 3. τ = 10−3 : the pressure at the boundary x = xp(t)
(top) and x = L (bottom) obtained by the semi-Lagrangian method
for BGK equations and a Lagrangian scheme for Euler equations.
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