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Abstract: A problem of controlling a noisy oscillatory system so as to prevent it from leaving a 
prescribed domain covers a wide range of applications. In this paper, in contrast to the great majority of 
control approaches, we suggest a control strategy aimed at building a system in which the escape rate 
and/or escape probability are independent of noise (in the small noise limit). An explicit formula for 
feedback control is derived. Our results exploit the properties of the Euler-Lagrange equations of motion. 
We demonstrate that for Lagrangian systems, in contrast to the great majority of nonlinear problems, one 
can construct a closed-form asymptotic solution to the first exit time problem. An explicit formula allows 
choosing the parameters of a regulator guaranteeing weak dependence of the escape rate on noise 
strength. An application of this result to the problem of trapping a particle in the betatron accelerator 
illustrates the theory. 
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1. INTRODUCTION 

The problem of controlling a stochastic system so as to 
prevent it from leaving a prescribed domain G covers a large 
number of applications. There are two criteria commonly 
associated with control against escape: the probability of 
escape over a specified time interval [0; T] and the rate of 
escape. Problems for which escape time criteria are 
appropriate fit into one of two categories. In the first 
category, exit from the region of the desired operation is in 
certain sense catastrophic, and avoiding such an event is a 
high priority. An example in this category is the failure of a 
nuclear power engine. In the second category, exit from the 
admissible domain is not fatal but it is still an event to be 
avoided because of a drastic decline in performance when a 
system is outside the good region. Examples in this category 
are control of plasma and particles, control of nano- and 
microstructures, etc. The mean time the system spends in the 
safe region is interpreted as the lifetime of the system.  

In the context of optimal control, the lifetime must be 
maximized. We recall that the solution of the optimal control 
problem is sensitive to the properties of the perturbation. This 
paper discusses an alternative approach to escape control. In 
practice, limitations imposed on the system are defined by the 
task to be performed under a broad range of excitations. This 
implies a control strategy aimed at building a system in 
which performance costs are insensitive or, at least, weakly 
sensitive to noise.  

We suggest a convenient control strategy for a class of 
systems described by the Lagrangian equations with small 
noise. The term “small noise” essentially means that escape 
from an admissible domain is a relatively rare event. Note 

that a large number of physical and engineering problems fall 
into the ''small noise'' category. Given that the technical 
requirements are quite strict, a system in which escape is 
common might not be worth considering. A number of 
relevant examples are discussed, e.g., in (Meerkov and 
Runolfsson, 1988; Dupuis and McEneaney, 1997). 

Throughout the paper, strength of noise is characterized by a 
small parameter ε. We denote by τε the first moment at which 
the weakly perturbed system leaves G. We recall that the 
probability PT

ε of rare escape from G over a fixed time 
interval [0; T] is approximated by the Poisson law (Gardiner, 
2004) 

PT
ε ≈ 1 − exp(−λεT).                                                              (1) 

This implies that the criterion of interest in the small noise 
model is the mean escape time Eτε or rate λε = 1/Eτε.  

For the sake of simplicity, we consider in details a system 
with white noise perturbation. Note that the diffusion model 
can be interpreted as an approximation of more complicated 
phenomena described by systems with wide-band ergodic or 
fast noise, see e.g., (Kushner, 1984; Gulinskii and Liptser, 
2000; Liptser, Spokoiny and Veretennikov, 2002; Kovaleva, 
2006; Kovaleva and Akulenko,  2007).   

The direct calculation of Eτε for a degenerate small noise 
diffusion requires considering the Dirichlet problem for a 
singular Fokker-Plank equation. Both analytic and numerical 
solutions to this equation are prohibitively difficult but 
asymptotic approaches might be of help. In this paper, we 
employ the large deviation theory as an appropriate vehicle 
for estimating statistical quantities in weakly perturbed 
systems.  

     



 
 

 

We use the main results of the theory in the form presented 
by Kushner (1984) and Freidlin and Wentzell (1998). Recent 
advances in theory and applications are discussed, among 
others, by Olivieri and Vares (2005) and Feng and Kurtz 
(2006). Despite the well-developed theory, most of the 
existing solutions are related to one-dimensional systems; 
there are only few explicit solutions for multidimensional 
systems. Comprehensive results have been obtained for 
multidimensional linear systems (Meerkov and Runolfsson, 
1988; Freidlin and Wentzell, 1998). The large deviations 
principle for Hamiltonian-type systems was derived by Wu 
(2001) but no closed-form solutions have been constructed. 

Kovaleva (2005, 2006) and Kovaleva and Akulenko (2007) 
have derived a closed-form asymptotic estimate of ln(Eτε) for 
Lagrangian systems with linear dissipation and additive 
noise. In this paper we obtain an explicit asymptotics of 
ln(Eτε) for a class of Lagrangian systems with nonlinear 
dissipation and state-dependent noise.  

The idea of applying the large deviations approach to 
minimize escape probability has been advocated, for the first 
time in a control framework, by Dupuis and Kushner (1989). 
A powerful development of this idea has been achieved in the 
theory of risk-sensitive escape control (Dupuis and 
McEneaney, 1997; Boue and Dupuis, 2001). However, 
optimal values of the risk-sensitive criteria directly depend on 
the noise strength. 

This paper is organized as follows. Section 2 is devoted to the 
asymptotic analysis of the problem and includes main results. 
Section 3 illustrates the theory. 

2. BASIC METHODOLOGY 

In this Section we recall the main issues of the large 
deviations theory requisite for the further analysis. A few 
brief comments will be made on the derivation of the large 
deviation principle. For details, see (Kushner, 1984; Freidlin 
and Wentzell, 1998).  

2.1  The Lagrangian model 

For the sake of simplicity, consider a system with mass 
matrix M = In, where In is the n-dimensional identity matrix. 
An extension to the case of M(q) is given at the end of this 
section.  

The kinetic energy of the system with mass matrix M = In is 
written as T( ) = ( q , q )/2; the potential energy is denoted 
by U(q); the total energy H(q, ) = T( ) + U(q); the 
Lagrangian of the system L(q, ) = T( ) − U(q); q ∈ Rn is 
the vector of generalized configuration coordinates. All 
vectors defined in the paper are column vectors.  

q
q q

q q

The Euler-Lagrange equation of the controlled system has the 
form 

),()(),( qqutwqq
q
Uq +=

∂
∂

+ εσ , q,  ∈ G,                          (2) q

where u ∈ Rn is the vector of control forces acting on the 
system; w(t) is standard Wiener process in Rm; σ(q, ) is a 
non-degenerate n×m-matrix. The control u is chosen in the 
form 

q

u(q, ) = − kA(q, q ) q ,                                                          (

whe

q 3) 

re A = σσ′,  the gain k > 0 ensures the desired escape rate. 

ted open bounded set 

0, U(q) > 0 in⎯G if 

q,  is a positive definite symmetric matrix in⎯G. 

. 

n ie d

 Principle with the 

The prime denotes the transpose matrix or vector.  

Throughout this paper, we assume that  

A.1. The reference domain G is a connec
in R2n with smooth boundary ∂G and compact⎯G (closure of 
G); the origin O:{q = 0, q  = 0}∈ intG.  

A.2. U(q) has a minimum at q = 0; U(0) = 
q ≠ 0. 

A.3. A( q )

A.4. A (q, ) and H(q, q ) are analytic functions of q, q  in⎯Gq

Assumptio s A.3 impl s that the functions A(q,p) an  H(q,p) 
are sufficiently smooth to ensure the requisite trans-
formations and uniqueness of the solution. 

In view of A.1 - A.4, the LaSalle Invariance
Lyapunov function V(q, q ) = T( q ) + U(q) can be invoked to 
prove that point O is an asymp otically stable state of the 
system 

t

qqqkA
q
Uq ∂

+ ),(−=
∂

.                                                           (4) 

In addition, we assume that 

 asymptotically stable point O in 

 A.5 implies that no escapes can occur from G in 

B. The large deviations principle 

 principle provides a cost 

ncept, we construct a variational 

A.5. System (4) has a unique
G, and all trajectories of (4) originating in⎯G tend to O not 
leaving G.  

Assumption
the absence of noise. However, noise, however small it might 
be, induces escape from any bounded domain with a non-zero 
escape rate λε. Our goal is to show that, in the small noise 
limit, the logarithmic escape rate lnλε in system (2) is 
independent of noise provided the control u is chosen in the 
form (3). The definition of the noise-independent limit will 
be given below. 

We recall that the large deviations
(action) functional that must be minimized by the “most 
likely” exit path. The solution of the minimization problem 
determines the limiting values of ln(Eτε) and related 
quantities as ε → 0.  

Omitting a general co
problem associated with the calculation of the mean exit time 
in system (2). We note that, by assumption A.4, the functions 

     



 
 

 

H(q, q ) and σ(q, q ) are sufficiently smooth to ensure the 
requi ite transform tions and uniqueness of the solution.  

Introducing the momentum p = ∂L(q, q )/∂ q  = q , we rewrite 

s a

(2) as 

p
H∂q

∂
=   

q
Hp

∂
∂

−=  − kA(q,p)
p
H

∂
∂  + εσ(q, p ,                           (5) 

where H(q, p) = T(p) + U(q). It is obvious that H(0,0) = 0; 

4), the action functional for system 

Sτ(Q,P) = 

) )(tw

otherwise H(q, p) > 0.  

Following (Kushner, 198
(5) has the form  

2
1 ∫ −

0

1 ),( dtFAF
τ

P
HQ

∂
∂

=,                                   (6) 

if Q(t), P(t) are absolutely continuous, and Sτ(Q, P) = ∞ if 

F(Q,P) =

Q(t), P(t) are not absolutely continuous. Here we denote  

P + 
Q
H

∂
∂ + kA(Q,P)

P
H

∂
∂   

Let S(q, p) be a lower bound of (6) calculated along an 

 Q(τ) = q, P(τ) = p}.                       (7) 

Note t men

relation derived in (Kushner, 1984) is  

0                 (8) 

where τ  is the first moment the orbit Q(t), P(t) reaches the 
ry ∂G.  

ns between variational problems and 

extremal forwarded from the initial point O to the terminal 
point Q(τ) = q, P(τ) = p: 

S(q, p) = inf{Sτ(Q, P):  

Q(0) = 0,P(0) = 0;

hat the terminal mo t τ is not fixed but must be 
identified as a solution of the variational problem given 
below.  

The key 

0→ε
lim ε2(lnEτε) = inf S(q, p) = S ,                          

G∂
 

ε

bounda

Hence, (7) is the variational problem to be solved. Using the 
well-known relatio
Hamilton-Jacobi equations, (e.g., Gelfand and Fomin, 2000), 
we calculate S(q, p) as a solution of the Hamilton-Jacobi 
equation 

( ,
q
S

∂
∂

p
H

∂
∂ ) – (

p
S∂

∂
,

q
H∂

∂
) − (

p
S∂

∂
, kA(q, p)

p
H∂

∂
)  

+
2
1 (

p
S

∂
∂ , A  p)(q,

p
S∂  0, S ∈ G      

∂
) = ,                     (9) 

with initial condit ) = 

05, 2006; Kovaleva and 
tion of (9) in the form 

n of the noise-independent 
ε 2
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d the 

 o(1)),                                           (11)   

d

x M = M(q), the equation of motion 

ion S(0,0 0.  

Arguing as in (Kovaleva, 20
Akulenko, 2007), we find the solu

S(q, p) = 2kH(q, p).                                                             (10) 

The uniqueness of the smooth solution is discussed in 
Kovaleva and Akulenko (2007). 

We now introduce the definitio
limit. It follows from (8) that Eτ ~ exp(S0/ε ) if ε is 
sufficiently small. Therefore, for any σ  we have Eτε → ∞ and 
λε → 0 as  ε → 0. In order to obtain a well-defined limit, it is 
worth considering the logarithmic asymptotics ( ). Since 
|lnλε| = lnEτε, the logarithmic escape rate is independent of 
noise (as ε → 0) if the right-hand side of (8) is independent of 
σ. It is obvious that function (10) and, therefore, the limit (8) 
are independent of σ under any conditions on ∂G. It follows 
from (9) – (11) that the noise-independent asymptotics is due 
to a proper choice of velocity feedback u1 = − kA(q, q ) q . 

Finally, we note that a sharp asymptotic analysis yiel s 
estimate (Kamin, 1978) 

Eτε = C(ε)exp(S0/ε2)(1 +

where ε2C(ε) → 0 as ε → 0 and, in general, C(ε) depends on 
σ. A close -form expression for C(ε) is available only in 
some low-dimensional cases. In Section 3 we give an 
example of numerical simulation demonstrating weak 
dependence of Eτε on σ.  

Remark. If the mass matri
is written as  

),()(),(),( qqLd
−

∂ qqutwqq
q
L

qdt
+=

∂
∂

∂
εσ , 

where the Lagrangian L(q = T(q, − U(q), the kinetic 

  

ling a particle in the 

lled oscillations in the presence of 
noise take the form (Blaquiere, 1966) 

, q ) 
)/

a

q ) 
ucenergy T(q, q ) = (M(q) q , q 2. Introd ing the momentum p 

= ∂L(q, q )/∂ q  = M(q)  nd using the function H(q, p) =  
T(q, q (p  + U(q, q (p , we can reproduce the above 
transformations and obtain the solution in the form (10). 

3. EXAMPLE 

q
))))  

We consider the problem of control
betatron accelerator. The betatron is essentially a transformer 
with a torus-shaped vacuum tube of elliptic cross section 
(Fig. 1). Alternating current accelerates electrons in the 
vacuum around a circular axis of the torus but small 
imperfections result in deviations from this axis and generate 
oscillations in the cross section. The safe operation is 
associated with circular motion within the tube; as soon as a 
particle reaches the internal surface of the tube, the system 
becomes unstable. The control tusk is thus to secure the 
particle within the tube. 

The equations of contro

x 1 + Ω1
2x1 = − 2

α (x1
2 – x2

2) + Δ1 w 1(t) + f1 

α +                       (12) 

w c
circular axis; x1, x2 are, respectively, the radial and vertical 

x 2 + Ω2
2x2 = −  x1x2 + Δ2 w 2(t)  f2,          

here t is the azimuthal oordinate calculated along the 

     



 
 

 

deviations from the circular axis in the cross section of the 
torus (Fig. 1).  

                                                         x2    

                                                                                                

Circular orbit                                                                  Cross-section  

                                                                                           x1 

 
Fig. 1. Model of a vacuum tube 
 

tation is a constant equal to 
e electric field frequency, the phase t can be interpreted as 

= 1,

a /Ω2 and denote u  = 

e ns, we rewrite (12) in the form 

Since the velocity of circular ro
th
the dimensionless time variable of the system. By Ω1 and Ω2 
we denote the frequencies of linear oscillations near the 
equilibrium state x1 = x2 = 0; the factor α is due to the 
interplay of the radial and vertical oscillations; Δi )(twi are the 
projections of planar excitation onto the axes xi; fi are the 
projections of the counteracting control force; i  2. For 
brevity, we take Ω1 = Ω2, Δ1 = Δ2 = Δ. 

In order to reduce system (12) to the dimensionless form, we 
introduce the new v riables q  = αxi i i

αfi/Ω2, εσ = αΔ/Ω2. Now, by (3), we find  

ui = − b q i, b = kσ2.  

Using th new notatio

iq  + 
iq

U
∂
∂  = εσi )(twi  − b q i, i = 1, 2,                                  (13) 

wh   ere

U(q) = 2
1 (q1

2 + q2
2 + 2q1

2q2 − 3
2 q2

3)                                    (14) 

s es
Tabor, 1989); q is the vector with entries q , q . The small 
is the tandard Hénon-Heil  potential (Blaquiere, 1966; 

1 2

parameter ε is identified below. The total energy of the 
system is 

H(q, p) = 2
1 ||p||2 + U(q),                                                     (15) 

where p is the vector with entries pi = q i and norm ||p|| = (p1
2 

+ p1 ) . 

The direc
potential with

2 1/2

t calculation shows that (14) is a two-dimensional 
 the minimum U(0) = 0; the equality U(q) = U* 

 

= 1/6 determines the potential barrier (Blaquiere, 1966, 
Tabor, 1989, and references therein). Once U(q) = U* = 1/6, 
the particle reaches the internal surface of the tube with the 
resulting loss of stability. Hence, the admissible domain of 
variation for the variable q is 

Gq: {U (q) < U* = 1/6}, ∂ Gq: {U (q) = U* =1/6}               (16) 

Formally, no constraints are imposed on the variable p. 
However, as shown in (Blaquiere, 1966, Tabor, 1989), the 
conservative system 

iq  + 
iq

U
∂
∂  = 0                                                                      

has (non-asymptotically) stable periodic solutions in the 
domain (16); additional dissipation makes the system  

iq  + 
iq

U
∂
∂  =  − b i, i = 1, 2,         q                                       

asymptotically stable, with an attracting point O: (q = 0, p = 
0). This implies that assumption A.5 holds and the 
momentum p is bounded if q ∈ Gq. This can be formalized as 
p ∈ Gp, where Gp is an open bounded set in R2 with boundary 
∂Gp. The total reference domain can thus be described as G: 
Gq × Gp; ∂G: ∂Gq × ∂Gp.  

Although the domain G and boundary ∂G cannot be explicitly 
defined, inf H(q,p) on ∂G can be found. Since the first term in 
(15) is a positive definite quadratic form, and, by A.1, A.5, the 
point O:{q = 0, p = 0}∈ G, the lower bound of H(q, p) is 
achieved at p = 0 for any U(q). Hence,  

G∂
inf H(q,p)  =   = 1/6                                             (17) )(inf qU

qG∂

Now, using (8), (10), (17), we obtain the main term of the 
logarithmic asymptotics 

3ln(Eτε) = k/ε2.                                                                    (18) 

If the mean escape time Eτε is known, then, using (18), we 
can calculate a relevant gain k.  

For example, let the control task be to ensures the safe 
operation over the time interval [0; T] with probability Ps > 
Pε = 1 − ε2, ε << 1. We first analyze the case Ps = Pε. 

Invoking the escape probability PT
ε = 1 − Pε = ε2, using the 

Poisson law (1), and skipping negligible terms, we obtain the 
mean exit time 

EτP
ε = T/ε2.                                                                          (19) 

It now follows from (18), (19) that k = 3ε2ln(T/ε2). Recalling 
that b = (k/ε2)(εσ)2 and εσ = αΔ/Ω2, we obtain b = 
3ln(T/ε2)(Ω2Δ/α)2. It is easy to see that the gain b depends on 
the pregiven time T and escape probability PT

ε = ε2. If we 
take ε1 < ε, then the required gain b1 > b. In the converse 
case, if we implement the regulator with the gain b1> b, we 
obtain ε1 < ε  and, therefore, Ps = 1 − ε1

2 > Pε. 

Numerical experiments were carried out to compare the 
logarithmic escape rate |lnλε| = lnEτε in system (13) with the 
predicted value lnEτP

ε. We chose T = 104, Pε = 0.99, ε = 0.1. 
This yielded EτP

ε = 106, k/ε2 = 41.4, b = 0.414σ2. The 
averaged results of simulations obtained in series of 30 
experiments are depicted in Fig. 2. As seen in Fig. 2, the 
discrepancy is about ± 6%.  

 

     



 
 

     

 

     l  
     
   1 

       0          1            2            3            σ 

       
 - 1  

Gulinskii, O.V.  and Liptser, R.S. (2000). Example of large 
deviations for stationary processes. Theory of Probability 
and its Applications, 44, 201-217. 

Kamin, S. (1978). Elliptic perturbations of a first order 
operator with a singular point of attracting type. Indiana 
Univ. Math. J., 27, 935-952.  

Kovaleva, A. (2005). Large deviations estimates of escape 
time for Lagrangian systems. In: Proc. Int. Control and 
Decision Conf., Seville, Spain. 

Kovaleva, A. (2006). Solution of the exit time problem for 
mechanical systems with fast noise. Prob. Eng. Mechs,, 
21, 300-304. 

Fig. 2. Simulation with b = 0.414σ2; l = 10ln(Eτε/EτP
ε) 

Formula (11) can be used to explain the discrepancy between 
the predicted and experimental values. It follows from (11), 
(17) that Eτε/EτP

ε = C(ε)(1 + o(1)) if ε is small enough. Now, 
if we recall that a rough approximation for the rate of escape 
from a one-dimensional potential well yields the estimate 
C(ε) ~ b (Gardiner, 2004) and presume a similar dependence 
for system (13), we conclude that C(ε) < 1 and, hence, 
ln(Eτε/EτP

ε) < 0 if b is sufficiently small, and C(ε) > 1, 
ln(Eτε/EτP

ε) > 0 if b is not very small. This explains the 
shape of the curve in Fig. 2.  
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4. CONCLUSIONS 

In this paper we have suggested a regulator for a weakly 
perturbed Lagrangian system. The resulting control law 
ensures that the lifetime of the controlled system is 
independent of noise in small noise limit. The simplicity of 
this controller, which results from the physical structure of 
the system, may constitute an interesting alternative to 
optimal regulators. 
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