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Abstract  
 In this work dynamics of a rigid body (bush) with 
viscous-elastic constraints and subject to impact and 
friction actions is studied. The body is in dynamical 
contact with another moving body (rotated with 
constant velocity thermo-elastic shaft), and friction 
generated heat and wear (on the contact surface) are 
taken into account. The problem is solved 
analytically and the obtained prediction is verified 
numerically showing surprisingly good agreement. 
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1  Introduction 
  Simple model of a contact bush-shaft system with 
heat and wear generated by friction and/or impacts is 
proposed and studied. The bush motion is bounded 
by rigid barriers and it takes place within the 
introduced clearance. The bush is considered as a 
rigid body being fixed to a foundation via mass-less 
springs and dampers, and it is mounted on the 
rotating with constant angular velocity thermo-elastic 
shaft. The so far stated problem is reduced to analysis 
of the equations governing bush dynamics taking into 
account impacts and nonlinear friction. The latter one 
is a product of time depended contact pressure and 
relative velocity of the shaft and the bush. The 
contact pressure value is estimated by a second order 
Volterra-type equation. In the case of a small slope of 
the kinematical friction coefficient, the restitution 
coefficients required to realize the system periodic 
impact motion either with one or two impacts are 
estimated analytically. 
  Analytically predicted vibro-impact stick-slip and 
slip-slip dynamics has been also verified numerically. 

2 The system under analysis 
  We are focused on modeling of non-linear dynamics 
of two bodies consisting of a stiff bush 2 with 
clearance  (see Figure 1) and solid isotropic 
circular shaft 1 of radius . The bush external 
radius , whereas internal bush radius is 
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( 110 <<RU ), and  corresponds to initial shaft 
compression. The bush is linked with housing by 
springs with stiffness  and the damper with 
viscous coefficient , and is mounted on the rotating 
thermo-elastic shaft 1. 
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  The following assumptions are taken [Awrejcewicz, 
Pyryev, 2002]: 
(i) The external excitation of the system allows 
neglecting of the inertial term  in the Lamé equation; 
(ii) The vector components related to displacement as 
well as the shaft temperature  depend only on 
a radius coordinate  and time 

),( tRT
R t ; 

(iii) The following friction model is introduced 
between shaft and bush: 
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where: )(2 10 tPRF π  is static friction force,  is the 
contact pressure,

)(tP
)0(0 += fF ,  is the kinetic 

friction coefficient depending on relative velocity of 
the contact bodies 
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angle of bush deviation; 
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Figure 1  The analyzed system 

 
(iv) Approximating curve  has the following 
form 
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where , ,  are constant coefficients; 0F κ minV
(v) Heat flows  and  are generated on the 
contact surface  and governed by the equation 

, where  deno-
tes the heat energy part, which is dissipated by wear. 
Both flows  and  go into shaft and bush, 
respectively: 
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where  is the thermal conductivity,  is the heat 
transfer coefficient between the shaft and the bush, 

 is the temperature of the bush. Furthermore, we 
assume that bush transforms heat ideally and 
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(vi) Velocity of the bush wear is proportional to a 
certain power of friction force. We assume Archard’s 
law of wear [Awrejcewicz, Pyryev, 2002] of the form 
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where the coefficient wK  is usually identified 
experimentally. 

3  Mathematical formulation of the problem 
  The dimensionless equations governing dynamics of 
the analyzed system have the form  
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( ) is the bush velocity just before (after) impact, 
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In order to solve the motion equations (5) one needs 
to know contact pressure  and wear  [1]: )(τp )(τwu
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Then the problem is reduced to consideration of 
equations (5) and (10), which yield both dimension-
less pressure  and velocity . The tempera-
ture is defined by the following formula 
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0)()( 10 =µµ−µ JBiJ . 

  In the above the following dimensionless 
parameters are introduced: 
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)(2 tcRFd ϕ′=  is the damping force related to the 
bush, 222 RkFs ϕ=  is springs force related to the 
bush,  is the moment of inertia of the bush,  is 
friction force between the bush and the shaft, and 

, , ,  are the quantities measured per 
length unit bush. 
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4  Analysis in the case of lack of tribological 
processes 
  First the case of bush vibrations without tribological 
processes is studied ( 01 =γ , ). For this case 
we have 

0=wk
)()( τ=τ Hp  ( , ,1)( =τH 0>τ ,0)( =τH  

0≤τ ). Our system governed by equations (6) may 
exhibit four different periodic motions. Namely: (i) 
periodic orbit with one impact, where a stick does not 
appear (Figure 2, curve 1); (ii) periodic orbit with 
two impacts, where a slip of the contacting bodies 
occurs (Figure 2, curve 2); (iii) periodic orbit with 
one impact, where a stick-slip occurs (Figure 2, curve 
3); (iv) periodic orbit with two impacts, where a 
stick-slip appears (Figure 2, curve 4). 



                                                    

  In what follows we assume that , , 
 and 

1<<ε 12
0 <<ω

12 <<h 10 −≤η . It means that the system 
dynamics is exhibited in the interval ( min00 VV << ), 
where a decreasing slope of the kinetic friction 
coefficient is observed. 
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Figure 2  Periodic bush phase orbit 
 

  The reported below results are yielded by a standard 
perturbation approach. It allows us to give formulas 
for the coefficient of restitution  ),( 1ωxk
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and dimensionless period  for various cases 
of the system periodic dynamics 
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A detailed analysis shows that the function ),( 1ωxk  
possesses the following values 20,1),( 111 <ω<=ωxk  

∞<ω<=ω 112 2,1),(xk ,  at the boundaries, 
whereas inside the considered interval it has the 
minima, which can be presented in the form 
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  Note that for an arbitrary  there are two 
values of , . Let us introduce the following 
intervals 
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  It is not difficult to check that the periodic orbit 
associated with  (decreasing part of the coefficient 

) is stable, whereas the periodic orbit associated 

with  (increasing part of the coefficient ) is 
unstable. 

∗
1x

)(xk
∗
2x )(xk

5  Numerical analysis 
  Periodic orbits of bush motion are presented in 
Figure 3 for various values of the coefficient 1γ  
responsible for the heat transfer processes occurred 
on the contact surface due to friction ( 1.0=ε , 

967.0=k , , 4.02
0 =ω 20 −=η , 5.0=χ , 10=Bi , 

1.0~ =ω , ). 0=wk
 Curve 1 corresponds to the case when 01 =γ  (lack 
of heat extension) and it crosses point 1−=x . 
Increase of the parameter 1γ  yields decrease of the 
vibration period. 



                                                    

  Curves 2 (3) correspond to the case, where the shaft 
heat expansion is taken into account 3.01 =γ  

( 5.01 =γ ), but the bush wear is neglected ( ). 
Observe that 

0=wk

1γ  increase introduces changes of 
amplitude of the contact pressure and amplitude of 
the contact temperature.  
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6  Conclusion 
  Mathematical model of periodic bush impact-type 
vibrations of the bush-shaft system taking into 
account tribological processes is derived. We have 
also address an analytical approach to the stated 
problem by introduction a perturbation parameter 
associated with the friction cinematic slope. The 
latter technique allowed us to derive the appropriate 
restitution coefficients responsible for realization of 
impact periodic vibration of stick-slip and/or slip 
types and either with one or with two impacts during 
the motion period. The period is analytically 
estimated, and the predicted analytically results have 
been compared with numerical ones showing very 
good agreement. Observe that this approach extends 
our earlier studies. Namely, dynamics of the 
mentioned bush-shaft system without impacts is 
studied in references [Awrejcewicz, Pyryev, 2002, 
2004, 2005], whereas influence of the introduced gap 
between both bodies on their non-linear dynamics is 
reported in [Balandin, 1993]. 

Figure 3  Phase trajectory of the bush movement for 
different values of 1γ : curve 1 – 01 =γ ; curve 2 – 

3.01 =γ ; curve 3 – 5.01 =γ  
  Time histories of contact pressure, temperature on 
surface contact are reported in Figure 4.  
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