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Abstract
In this work, quantum control of nanoparticles will be

considered at low temperature. It would be quite in-
teresting for scientists and researchers to take the well
known nanoparticles at the scale of 10−9m(=1nm) as
they are at proper low temperature. It is desired to cre-
ate Bose-Einstein-Condensates (BEC) with the nanopar-
ticles. In our former study (cf. [Wang, 2016]) of con-
trolling nanoparticle, the density function theory (DFT)
described by time-dependent Schrödinger equation had
been utilized to apply control theory to nanoparticles
at matter surface. In the framework of Thomas-Fermi
(TF) model, nanoparticles governed quantum system
had been considered in the complex Hilbert spaces. In
this investigation, the factor of temperature will be taken
account into time dependent Schrödinger equation. First,
physically, a lot of questions will be arising in here for
the control purpose of BEC phenomena of low tem-
perature. Such as, whether BEC can be created using
nanoparticles? what can the nanoparticles do at low tem-
perature? which differences have for the nanoparticles
BEC than other size particles? how control would be
proceeded for nanoparticles at magnetic-electric field?
Second, theoretically, how to apply of quantum control
theory to nanoparticles BEC in the framework of varia-
tional theory? Then, how to get the first hand theoretic
results to do nanoparticles control at low temperature.
Review current contributed work and literatures, the sur-
vey of control Bose-Einstein-Condenstates had been oc-
curred at amount of areas and had obtained significant
milestone results as atomic particles (e.g. 87Rb, 7Li,
23Na,52Cr, 39K) cooling to temperature below of BEC
thresholds. Indeed, the behavior of nanoparticles at the
room temperature had also been considered, and had al-
ready been created to Carbon (C) nanotube, nanowire,
nanomotor, nanorod as advanced materials. Particularly,
the focus point is nanoparticles at low temperature, what
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is happened? the exciting and attractive conclusion will
be hoped in this paper. As a kind of prediction, this the-
oretical research for control of nanoparticles would be
fairly interesting, the control theory could be applied to
these sort of nanoparticles perfectly. Without lost of gen-
erality, the nanoparticles composed BEC will be much
more useful and can be quickly utilized to real society
in the world. It is good to connect these researches to
chemical and physical laboratory, and to do further in-
terdisciplinary work concerning the control of quantum
system.
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1 Introduction of Basic Idea
For a long time, people knew the nanoparticles and

Bose-Einstein-Condensates separately in each subject or
research field (cf. [Bose, 1924], [Einstein, 1924]). Two
most interesting phenomenas had been frequently con-
sidered at amount of areas for various purposes. Such
as one can make the nano-tube, nano-motor, nano-chip,
nano-rod, and so forth. Based on those frontier re-
sults, the advance materials had been developed and
even used in our usual life (nanocrystal ceramic are al-
ready in use by US Navy). Meanwhile, Bose-Einstein-
Condensates (BEC) had been created at low temperature
using molecules and atom since the middle and later of
last century. The curious question is how to create a
nanoparticles based BEC? That is, using 10−9m (i.e 1∼
several nm) sized particles to create a condensate as they
are under ultra-cold temperature condition. Definitely,
there are many questions will be arising in here.

i). whether BEC can be created using nanoparticles?
ii). what can nanoparticles do at low temperature?



CYBERNETICS AND PHYSICS, VOL. 11, NO. 1, 2022 38

iii). which differences have for nanoparticles BEC than
other size particles?

iv). how control will be proceeded for nanoparticles at
magnetic-electric field?

v). what is the connection between nanoparticles and
BEC?

vi). what is usefulness of nanoparticles based BEC?

For such proposed problems, it is possible to consider in
the following points:

Firstly, it needs to do theoretic prediction for nanopar-
ticles based Bose-Einstein-Condensates. If such a
BEC can be created using nano-particles at low tem-
perature (i.e. near zero temperature -273K), then it
can be called as nano-BEC or nano condensate. Al-
though it is unknown for us whether such a nano-
BEC will be certainly possess good properties, it is
rather to believe that it must be a difference than a
general condensate. The evidence at published pa-
per “Bose-Einstein condensation in a plasmonic lat-
tice” (Nature Physics 14, p. 739) to know that “the
new condensate can produce light pulses that are ex-
tremely short and so may offer faster speed for infor-
mation processing and imaging application”. Quote
that “Such device should be much faster and use less
energy than their electronic counterparts”.

Secondly, numerical approach can be proceed for the
simulation of such a particular nano-BEC. It desired
that a completely different results can be obtained
in the direction of nano science research and con-
densed matter physics.

Thirdly, theoretical control can be considered, and can
be applied optimal control theory to nonlinear cubic
time-depended Schödinger equation, namely Gross-
Pitaevskii (G-P) equation with the condition of low
temperature for nanoparticles.

For the restrict of physical experiments, in the viewpoint
of control field, mathematically, third problem will be
taken account into our target in this paper.

2 Theoretical Control of Nano-BEC
Before the mathematical symbolic calculation, there are
many kind of thoughts swarmed at the topic of BEC cre-
ated by nanoparticles. A lot of predictions or guesses
can be considered in this direction. Suppose nano-BEC
had both chemical and physical properties of nano mate-
rials and condensates, in other word, it should be possess
both of them. Then, not only at the materials science, but
also at the condensates physics, such sorts of nano-BEC
could attract a great deal attention that not limited to
academic level, it would be a huge extension to realistic
world. In practice, it just like the human can not reach
to a very high temperature except self body temperature
35◦C∼37◦C, it is also difficult for live species to reach
low temperature at all. If the material of nano-BEC can
be created at ultra-cold external condition, it can be used

to replace human for working at low temperature of hard
environment. It means that, some day, people may have
nano-tube, nano-motor, nano-rod and nano-chip at low
temperature. If such a dramatic material could be cre-
ated, it would bring revolutionary change in industrial,
engineering, aerospace, medical therapy as well as out-
spaces (such as moon), and spread to other fields.
Now, let us introduce the physical model posed for the
nanoparticles based Bose-Einstein-Condensates. Two
difference points should be focused:

1). particles size: 10−9m nanoparticle.
2). temperature: ultra-cooling technique created low

temperature.
By reviewing current literatures and contributed pa-
pers as the reference and citation, there are a lot of
cooling technique used in the lab: laser cooling tech-
nique; electronic-magnetic cooling technique; optical
cooling technique (cf. [Rice and Zhao, 2000]). For
create N number bosonic atoms based Bose-Einstein-
Condensates in lab experiments, usually take atomic par-
ticles such as: 23Na, 87Rb, 133Cs. For example,

- Temperature of creating Bose-Einstein Condensate:

Tb =
h2

2πmk
(

N

2.612V
)2/3.

- The number of atoms in a BEC:
N(T ) = N{1− (T/Tb)

3/2}.

- Thermal de-Broglie wave length: λ =
h√

3mkT
.

Here h is Planck constant, Tb is the below threshold of
temperature. m is the mass of same particles. If an
ultra-cold vapor of bosonic atoms are trapped in mag-
netic well, pure condensates will be created as they are
cooled to a temperature below the BEC threshold. After
that creation, these BEC are located into a optical lattice
potential.

More precisely in physics, Bose Einstein Condensates
is an state of matter in which bosons collectively occupy
the energetic ground state of a quantum system.
If changing the boson atoms into a 10−9m sized
nanoparticles, whether above phenomena could be ap-
peared? That is, whether the Bose-Einstein-like conden-
sates can be created at what kind of low temperature with
cooling technology? In fact, in our nanoparticles con-
densate, the physical approach is used to make metallic
and metal oxide ceramic nanoparticles. it involved evap-
oration of a solid metal followed by rapid condensation
to form nanosized clusters that settle in the form of a
powder. Currently, various vaporizing metal can be used
and variation of the medium into which the vapor is re-
leased affects the nature and size of the particles.
Our idea is that, if create Bose-Einstein-Condensates it-
self using nanoparticle, it might not be worked. But if us-
ing nanoparticles to create condensates which like BEC
should be existed!

Fortunately, after submission of the abstract of poster
“Quantum control of nanoparticle at low temperature” to
the American Chemical Society National Meeting 2018
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(PHYS Poster Session, Control ID: 2953973) at Jan-
uary 24, 2018. The new condensate had been created
with gold nanoparticles, see paper “Bose-Einstein con-
densation in a plasmonic lattice”, April 16, 2018, Nature
Physics 14. Thanks to the team of Aalto University.

Thus, overcome the physical possibility, it is realis-
tic to directly create condensate BEC with nanoparticles
(e.g. Au). In our physical model, two factors needed to
be involved at the system. T and Tb represent the tem-
perature and its below threshold. The size of nanoparti-
cle could be 1nm or few nanometer.

Suppose N number of nanoparticles are used to cre-
ate a condensate, and n = 1, 2, 3, ...N . Then, as the
vacuum chamber cooling to untra low temperature, the
velocity of nanoparticles are slow, just like atomic and
molecule particles, nanoparticles is easily to be probed
and measured (at the condensed moment, the slow mo-
tion of particles is described by Langevin equation for
the calculation of their movement, it’s exclusive at this
paper).

At first, introduce quantum system of nanoparticles for
x = (x1, x2, x3) ∈ R3, the Gross-Pisaevskii (G-P)
equation (cf. [Pitaevskii and Stringari, 2003]) governed
Bose-Einstein-Condensates take the form of

i~
∂ψn
∂t

= − ~2

2m
∆ψn

+(V 1(x) + V 2(x) + V 3(x))ψn +Nν|ψn|2ψn, (1)

for n = 1, 2, · · · , N . In here, ~ is Planck constant, m is
a nanoparticle mass, ψn(x, t) is condensate wave func-
tion of n-th particle at BEC, N is the total number of
condensed nanoparticles, and ν = 4π~2as/m is inter-
acting constant of ground state of nanoparticle, where
as ∈ R is s wave characteristic scattering length. i is
unit of imaginary part at complex space. Usually, given
the initial function ψn(x, 0) = ψ0

n(x) for x ∈ R3.
Next, our task in the rest of this section is to discuss the

expression of V 1, V 2, V 3 for the nanoparticle setting in
quantum system (1).
In quantum system (1), it needs to set potential terms in
the cooling temperature. For unified to set V(x, t) =
V 1(x, t)+V 2(x, t)+V 3(x, t). To be difference, denote
M as the total mass of N nanoparticles.

V 1: The external potential V 1(x) is electro-magnetic
field for creating BEC of N nanoparticle, without
lost of generality, for instance, usually set V 1(x) =

Mσ2
0

|x|2

2
, trapped frequency σ0 = 2π|x0|2 ∈ R3.

Harmonic oscillator is configured as example

V 1 =
M

2
(ω2
x1
x2

1 + ω2
x2
x2

2 + ω2
x3
x2

3) .
This setting is depending on the physics structure of
experiments used of creation.

V 2: In real lab, optical potential for nanoparticle can be
configured as

V 2(x) = µ

3∑
k=1

~2x2

M
sin2(xkxk), xk ∈

R3,

and µ > 0 is a dimensionless parameter for rep-
resenting the depth of optical lattice. The trapped
field can adjust the optical frequencies along the
directions of x1, x2, x3 axis. Other kind of opti-
cal apparatus can be also confining, e.g. V 2 =

~
Ω(t)

2∆
(1 + cos(2kLx− δLt)), where kL wave vec-

tor; δL is difference of two beam; Ω is single photon
Rabi frequency; ∆ detuning. It rely on the structure
of optical lattice.

V 3: The varying size of nanoparticles, or distance be-
tween each nanoparticles can be formed as V 3 =
N∑
i=1

Viψi, where Vi are constant coefficients of i-th

nanoparticle. i = 1, 2, ..., N .

Additionally, as in scattering coefficients ν need have
adjustment and confinement at the physical lab. In par-
ticular, V 3 represented all nanoparticles size potential, it
can vary at the nano scale (unit 1nm=10−9m). For quan-
tum materials, V 3 can take qubits as calculation in recent
papers.

3 Control Theory of Nano-BEC
For three dimension Gross-Pitaevskii equation (1), set
ψ = (ψ1, ψ2, · · · , ψN ). Denote complex scalar func-
tion ψn(x, t) and operator ψ̂n(x, t), then ψn(x, t) =

〈ψ̂n(x, t)〉.
Hamiltonian:

H =

∫
Ω

ψ̂
∗
(x)[− ~2

2M
∆ + Ṽ(x)]ψ̂(x)dx

+N
4π~2as

2M

∫
Ω

∫
Ω

ψ̂
∗
(x)ψ̂

∗
(y)ψ̂(x)ψ̂(y)dxdy.

ψ̂
∗

is conjecture (field) operator of ψ̂, and in here ψ̂ or
ψ̂
∗

is annihilate or create operator of nanoparticle.
[ψ̂(x), ψ̂

∗
(y)] = δ(x− y), [ψ̂

∗
(x), ψ̂

∗
(y)] = 0.

Lagrangian:

L =
1

2
i~
[∂ψ∗(x, t)

∂t
ψ(x, t)−ψ∗(x, t)∂ψ(x, t)

∂t

]
+

~2

2M
|∇ψ(x, t)|2+V(x, t)|ψ(x, t)|2 +

1

2
Nν|ψ(x, t)|4.

More precisely, for discrete nanoparticles size potential,
denote matrix Ṽ 3 = diag{V 31, V 32, · · · , V 3N},

Ṽ(x) = Mσ2
0

|x|2

2
+ µ

3∑
k=1

~2x2

M
sin2(xkxk) + Ṽ 3.

Therefore, Ṽ(x) is N ×N matrix function.

Two focus comments:
(A). Nanoparticles Size Potential: Ṽ3 is roughly in the
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form of matrix. Theoretically, it is not in details and rig-
orously any more, owing no specified experiments and
particles in this paper.

(a) Non-interacting particles: If involved nanoparticle
is non-interacting single particles, clearly, the for-
mulation in Hamiltonian and Lagrangian become:
V 31 = V 32 = · · · = V 3N ≡ V 0, then for N × N
unit matrix I

ψ̂
∗
(x)Ṽ 3ψ̂(x) = ψ̂

∗
(x)V0Iψ̂(x) = V0ψ̂

∗
(x)ψ̂(x),

where V0 is a constant.
(b) Interacting particles: If particles in the creation of

condensate is interacting with other type particles,
then matrix Ṽ ij 6= I, i.e. each element of the diag-
onal matrix is a non-zero constant, which represent-
ing the coupling coefficients between different parti-
cles. At that time, the Gross-Pitaeskii equation cou-
pled with bose condensed regime to compose a si-
multaneously system equations. Such as interacting
condensate 87Rb ∼41K, or 87Rb ∼85Rb mixtures.

(B). Condensed Temperature:

a). The critical (below) temperature as Tb.
b). Temperature T at thermal de-Broglie wave length

λ which formed in lot of expression. Such as λT =√
2π~2/(mkBT ) ' 10µm for gold nanoparticles

(size 3∼14 nm), where kB is Bolztmann constant,
~ is reduced Planck constant, and m is involved
nanoparticles mass. Usual it depended on lab ex-
perimental setting and particles type.

Most of the published papers considered zero tempera-
ture, and finite temperature condensate. The dependence
of temperature for the creation of condensates had been
well investigated at chemical physics field. The last one
is easily to understand, there is a finite threshold Tb 6= 0
for temperature to create a condensate (0 ≤ T ≤ Tb,
Tb ≈ 5K for Au nanoparticle ∼ 1.4 nm). The first
one zero temperature, it means Tb = 0 (-273K) abso-
lute zero degree temperature. It indicated, the creation
of a type particles at certain temperature (neglected at
calculation), it can be differed with creation at any tem-
perature (room temperature T=300K or other finite tem-
perature). Usually, scaled temperature T/Tb used in cal-
culation (e.g. 0.1 ≤ T/Tb ≤ 1.4)
To a nanoparticles based BEC or BEC composed
nanoparticles, the influence of temperature yet become
a central problem.

3.1 Mathematical Formulation
In this subsection, at the framework of variational

method to do mathematical setting (cf. [Dautray and
Lions, 1992], [Lions, 1971], [Pitaevskii and Stringari,
2003]). Let Ω be an open bounded set of R3 and
Q = (0, T ) × Ω for T > 0, set x = (x1, x2, x3),
and (t,x) ∈ Q. Assume that the external potential term
V(x, t) is total control input, which can be a variable for
representing the forces acting at BEC system (1). For

selected nano particles type, V 3 is depended only on the
spatial variable x. The electron-magnetic field V 1(x, t)
and optical field V 2(x, t) depended both spatial x and
time variable t, and take the same formulation for all
nanoparticles (cf. [Rice and Zhao, 2000]).

For a clear picture to prove the existence theorem of
weak solution. Set nonlinear term f1 = V(x, t)ψn and
f2 = Nν|ψn|2ψn to get a free G-P system of (1) as

i~
∂ψn
∂t

=
~2

2m
∆ψn + f1 + f2, (2)

where ~ is Planck constant, m is a nanoparticle mass,
ψn(x, t) is condensate wave function of n-th particle at
BEC,N is the total number of condensed nano-particles.
Initial function ψn(x, 0) = ψ0

n(x) for x ∈ Ω ⊂ R3. Set
f = f1 + f2 if needed.
Introduce two Hilbert space H = L2(Ω) and V =
H1

0 (Ω), and define their norm and inner product as usual.
For complex-valued function ψn, define the complex
space L2(Ω) and H1

0(Ω) corresponding to L2(Ω) and
H1

0 (Ω), use the notations H = L2(Ω),V = H1
0(Ω) for

complex Hilbert spaces (cf. [Dautray and Lions, 1992],
[Lions, 1971]). Furthermore, V′ denote complex con-
jugate space of V. Then, (V,H) is a complex Gelfand
triple spaces V ↪→ H ↪→ V′, in which the embed-
dings are continuous, dense and compact. To differ the
function at complex space, denote ψ,φ as notation of
wave functions. For ψn = ψ1

n + iψ2
n ∈ L2(Ω), where

ψ1
n, ψ

2
n ∈ L2(Ω), to define the norm of ψn in complex

space L2(Ω) as

‖ψn‖L2(Ω) = (‖ψ1
n‖2L2(Ω) + ‖ψ2

n‖2L2(Ω))
1
2 .

If ψn = ψ1
n + iψ2

n ∈ L2(Ω) and φn = φ1
n + iφ2

n ∈
L2(Ω), then inner product of ψn and φn in complex
space L2(Ω) is defined by

(ψn,φn)L2(Ω) = ((ψ1
n, φ

1
n)L2(Ω) + (ψ2

n, φ
2
n))L2(Ω))

+i((ψ2
n, φ

1
n)L2(Ω) − (ψ1

n, φ
2
n)L2(Ω)).

For ψn ∈ H1
0(Ω), the norm of ψn in complex space

H1
0(Ω) is

‖ψn‖H1
0(Ω) = (‖ψ1

n‖2H1
0 (Ω) + ‖ψ2

n‖2H1
0 (Ω))

1
2 .

If ψn,φn ∈ H1
0(Ω), then inner product of ψn and φn in

complex space H1
0(Ω) is defined as

〈ψn,φn〉H1
0(Ω) = 〈ψ1

n, φ
1
n〉H1

0 (Ω) + 〈ψ2
n, φ

2
n〉H1

0 (Ω).

Denote ψ = (ψ1,ψ2, · · · ,ψN ), and V = VN ,H =
HN if needed. Using the vectors and matrics notation to
rewrite the free G-P system (2) as i~

∂ψ

∂t
=

~2

2m
∆ψ + f1 + f2 in Q,

ψ(x, 0) = ψ0(x) on Ω,
(3)
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where f1 =
(
V(x, t)ψ1,V(x, t)ψ2, · · · ,V(x, t)ψN

)
,

f2 =
(
Nν|ψ1|2ψ1, Nν|ψ2|2ψ2, · · · , Nν|ψN |2ψN

)
.

Denote f = f1 + f2. Clearly, by the configuration in
section 2, nonlinear term f can be taken easily as f ∈
L2(0, T ;V ′) or f ∈ L2(0, T ;H). Assume that f(t) ∈
V ′ in here.
DEFINITION 1 (Solution space) Complex space
W (0, T ) is called a solution space ofψ for free G-P sys-
tem (3), if defined by

W (0, T ) = {ψ| ψ ∈ L2(0, T ;V),ψ′ ∈ L2(0, T ;V ′)}.

Its norm can be defined by

‖ψ‖W (0,T ) =
(
‖ψ‖2L2(0,T ;V) + ‖ψ′‖2L2(0,T ;V′)

) 1
2

.

For ψ,φ ∈W (0, T ), define inner product as

〈ψ,φ〉W (0,T ) = 〈ψ,φ〉V + 〈ψ′,φ′〉V′ .

Hence, W (0, T ) is a complex Hilbert space equipped by
above norm and inner product.

DEFINITION 2 (Weak solution) A functionψ is said
as weak solution of BEC system described by free G-P
equation (3) for N nanoparticles, if ψ ∈ W (0, T ) and
satisfy weak form∫ T

0

∫
Ω

i~
∂ψ

∂t
ηdxdt =

~2

2M

∫ T

0

∫
Ω

∇ψ∇ηdxdt

+

∫ T

0

∫
Ω

Vψηdxdt+Nν

∫ T

0

∫
Ω

|ψ|2ψηdxdt, (4)

where η is a arbitrary function by the means of distri-
bution in space D′(0, T )N , η ∈ C1(0, T ;V) and take
η(T ) = 0.

3.2 Existence of Weak Solution

Cite the results for BEC in papers (cf. [Wang and
Belavkin, 2009], [Wang and Belavkin, 2012], [Wang,
2018]), it is easy to obtain the proof of existence theo-
rem of weak solution for nanoparticles at system (2).

THEOREM 3 (Existence theorem of weak solution)
For ψ0 ∈ V of N nanoparticles, then there exists a
unique weak solution ψ ∈ W (0, T ) for G-P equation
(1).

proof: As in [Lions, 1971], using Faedo-Galerkin
method to construct an approximate solution for free
nano BEC system (2). From Gelfand triple spaces, the
two embeddings in V ↪→ H ↪→ V′ are dense, con-
tinuous and compact, therefore, their N product spaces
V ↪→ H ↪→ V ′ is also a Gelfand triple spaces, their em-
beddings are also dense, continuous and compact. Then
there exists an orthogonal basis of H, {wj}∞j=1 consist-
ing of eigenfunctions of A = ∆, such that Awj = λjwj

for all j, 0 < λ1 ≤ λ2 ≤, · · · , λj → ∞ as j → ∞. Gi

is the orthogonal projection of H (or V) onto the space
spanned by {w1, · · · , wi}. Let’s use index i to represent
the approximate solution which differed with weak solu-
tion, it is also exactly the dimension of spanned approxi-
mate space. For each n ∈ N , an approximate solution is
defined for G-P equation (1) by

ψin(t) =

i∑
j=1

aijn (t)wj , i = 1, 2, · · · , N,

where aijn (t) is real-valued coefficient function. Set
Ain = [ai1n , a

i2
n , · · · , aiin ],ω = [w1, w2, · · · , wi]T , then

ψin = Ainω. Thus, their vector approximate solution of
ψ is given by

ψi =


ψi1(t)
ψi2(t)

...
ψiN (t)

 =



i∑
j=1

aij1 (t)wj

i∑
j=1

aij2 (t)wj

...
i∑

j=1

aijN (t)wj


. (5)

Notice that, by the embeddings of Gelfand triple spaces,
at weak form for ψin, the conjugate paring of dual space
V, V ′ at nonlinear term can be calculated by inner prod-
uct of space H as 〈·, ·〉V,V ′ = (·, ·)H . Multiply wk to
both sides at detailed weak form (4) for ψin, use inner
product instead of integration, substitute functional ψn
with approximate solution ψin, then ψin(t) satisfy ordi-
nary differential equation (1 ≤ i ≤ N ) as

i~
i∑

j=1

∂aijn (t)

∂t
(wj , wk)

=
~2

2m

i∑
j=1

aijn (t)(∇wj ,∇wk) + f(

i∑
j=1

aijn (t)(wj), wk).

i∑
j=1

aijn (t)(wj , wk)(0) = (ψin0, w
k).

(6)
Then convert system (6) to an ordinary differential equa-
tion of coefficients {aijn (t)} for n = 1, 2, · · · , N and
j = 1, 2, · · · , i.
For simplification, similarly, here is to use the vectors
and matrix formulation, through the notation of inner
product, taking test function η = ω. That is, multiply
ω to both sides of (4), substitute vector functional ψi

defined in (5), for free system (2), then to get i~
∂ψi

∂t
(ω,ω) =

~2

2M
(∇ψi,∇ω) + (f(ψi),ω),

(ψi(0),ω) = (ψi0,ω).
(7)
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By the orthogonal properties (wj , wk) =

{
0 j 6= k
1 j = k.

,

for more detail, denote

a =
(
aijn

)
N×1

, A =
(

(∇wj ,∇wk)
)
N×N

,

F =
(
f(

i∑
j=1

aijn (t)(wj), wk)
)
N×1

,

a(0) =
(
aijn (0)

)
N×1

, a0 =
(

(ψi0, w
k)
)
N×1

.

Then, convert the equations (6), (7) to vectors and matrix
representation as{

da

dt
−Aa = F in [0, T ],

a(0) = a0.
(8)

By Carathéodory theory of ordinary differential equation
(ODE), ensure a unique local solution of {aijn } for ODE
(8). Hence, using the solved coefficients to compose ap-
proximate solution {ψin}, i = 1, 2, · · · , N for free sys-
tem (2) as well as G-P system (1). Consequencely, that
prove the existence of weak solution.

Let’s consider the uniqueness of weak solution. With-
out lost of generality, to controlled system (1), for ψin0,
there exists a ψn0 ∈ V such that

ψin0 → ψn0 strongly in H1
0(Ω).

It means that

ψi0 → ψ0 strongly in H.

Take the analogous argument for {ψin}, there is a func-
tion ψn ∈ V, such that ‖ψin − ψn‖V → 0 as i →
∞. That is, the approximate solution ψin is bounded in
L∞(0, T ;V).
Suppose that {ψin} and {ψkn} are two solutions of G-P
equation (1) for ψin0 and ψkn0. From weak form (4) to
get

i~
2

d

dt
‖ψin − ψkn‖2H +

~2

2m
‖ψin − ψkn‖2V

≤‖Vi(x)(ψin − ψkn)‖2H +Nν
∥∥∥|ψin|2ψin − |ψkn|2ψkn∥∥∥2

H
,

where Vi denote the i-th column element of N × N
matrix V(x). More precisely, for real-valued function
Vi(x), it is easily to estimate the norm of nonlinear term
as

‖Vi(x)(ψin − ψkn)‖2H ≤ ‖Vi‖2L2(Ω)N ‖ψ
i
n − ψkn‖2H.

Further, to estimate the norm of last term as∥∥∥|ψin|2ψin − |ψkn|2ψkn∥∥∥2

H
≤ ‖ψin‖2H

∥∥∥ψin − ψkn∥∥∥2

H

+
∥∥∥|ψin| − |ψkn|∥∥∥2

H

∥∥∥(|ψin|+ |ψkn|)ψkn
∥∥∥2

H
.

In here, if set C(t) = max
{
‖Vi‖2L2(Ω)N , ‖ψ

i
n‖2H +∥∥∥(|ψin|+|ψkn|)ψkn

∥∥∥2

H

}
and Iik(t) = ‖ψin(t)−ψkn(t)‖2H+

‖ψin(t) − ψkn(t)‖2V, set λ = max
{ i~

2
,
~2

2M

}
and

C ′(t) = C(t)/λ, then to get that

d

dt
Iik(t) ≤ C ′(t)Iik(t).

Set Iik(0) = ‖ψin0 − ψkn0‖2H + ‖ψin0 − ψkn0‖2V, from
Gronwall inequality that

Iik(t) ≤ exp
(∫ T

0

C ′(t)dt
)
Iik(0).

It implied ψin − ψkn → 0 as i, k → ∞. Moreover,
above argument is also valid for N particles of system
(7), that is ψi − ψk → 0 as i, k → ∞. It is the
uniqueness of weak solutionψ respect to initial function
ψ0 ∈ V . Thus, by the boundedness of norm of ψi at
spaces L2(0, T ;H), L2(0, T ;V) to know that there exist
ψ(t) such that ψi(t) → ψ(t) at H and V. Furthermore,
the inclusive of spaces CN (0, T ;H) ⊂ W (0, T ) to sure
Theorem 3.

At the weak form (4), f ∈ L2(0, T ;V ′) and η ∈
C1(0, T ;V). Certainly, for nonlinear term f ∈
L2(0, T,H) in the free system (2), much more simpli-
fied proof can be straightforwardly attained.

4 Quantum Control of Nano-BEC

Suppose Q = Ω× [0, T ] and set V = V 1 + V 2 + V 3,
U = L2(Q)N×N is the space of controls V, and Uad is a
admissible set of U . By the virtual of Existence theorem
of weak solution to free system (3), there is a mapping
from control space to solution space V → ψ(V): U →
V , which is continuous.

As is well known that the nanoparticle cooled at an
vacuum chamber, its motion become slow, and can be
measured and probed to do terminal observation by pho-
tograph, scanning electron micrograph, computer moni-
tor at real time duration [0, T ] and final time tf . The cost
function of N nanoparticles for controlled G-P system
(1) can be given in the form of

J(V) = ε1‖ψf (V)−ψtarget(V)‖2H + ε2‖V‖2U . (9)

In criteria function (9), control V ∈ Uad, ψtarget(V) =
(ψtarget

1 (V), · · · , ψtarget
N (V)) is vector target state, and

ψf (V) = (ψf1 (V), · · · , ψfN (V)) is observed final vec-
tor state of N nanoparticles at final time tf . In here
εi, i = 1, 2 are weighted coefficients for balancing the
calculated values of inherent cost and running cost.

Quantum optimal control is to solve two fundamental
problems for nanoparticles system based Bose-Einstein-
Condensate (cf. [Wang, 2021]):
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i). Find an element V∗ in Uad satisfying G-P system
(1) for nanoparticles such that

J(V∗) = inf
V∈ Uad

J(V).

ii). Characterize such a V∗.

For N nanoparticles, V∗ is called as quantum optimal
control for G-P system (1) subject to cost function (9).

THEOREM 4 (Existence of quantum optimal con-
trol) For ψ0 ∈ V of N nanoparticles, if Uad is closed
convex (bounded) admissible subset of U , then there ex-
ists at least one quantum optimal control V∗ of Bose-
Einstein-Condensates system (1) subject to cost function
(9).

Proof. Set J = inf
V∈Uad

J(V), since Uad is non-

empty, there is a sequence {Vk} in Uad such that
inf

V∈ Uad

J(V) = lim
k→∞

J(Vk) = J . Since {J(V)} is

bounded in R+, and Uad is closed and convex (bounded)
subset of U , there exist a subsequence (denoted as same
symbol) of {Vk} can be chosen, and there exist a V∗ ∈
Uad, such that

Vk → V∗ weakly in U as k →∞. (10)

By the Existence Theorem 3 of weak solution to get es-
timate ‖ψ‖2H + ‖ψ‖2V is bounded for ψ of N nanoparti-
cles. For control Vk, by the boundedness of Uad to know
that

ψ(Vk) is bounded in L2(0, T ;H) ∩ L2(0, T ;V).

Set ψ∗ = ψ(V∗), there exist a subsequence (denoted as
same notation) of {ψ(Vk)} and a ψ∗ ∈ W (0, T ) such
that

ψ(Vk)→ ψ∗ weakly in L2(0, T ;H) ∩ L2(0, T ;V).

as k → ∞. Since the embedding V ↪→ H is compact,
from Aubin-Lions-Temam theorem (cf. [Temam, 1997]),
then there is a ψ̄ ∈ H that

ψ(Vk)→ ψ̄ strongly in L2(0, T ;H)

as k → ∞, and the analogical argument for derivatives
of ψ as

∂ψ(Vk)

∂t
→ ∂ψ̄

∂t
weakly in L2(0, T ;V ′), (11)

∇ψ(Vk)→ ∇ψ̄ weakly in L2(0, T ;H), (12)

as k → ∞. Denote ψk = ψ(Vk), therefore, for N
nanoparticles, by the definition of weak form (4) to get∫ T

0

∫
Ω

− i~ψk
∂η

∂t
dxdt =

∫ T

0

∫
Ω

[
− ~2

2M

∂ψk

∂x

∂η

∂x

+Vkψkη +Nν|ψk|2ψkη
]
dxdt.

(13)

Using convergence results (10), (11), (12), and taking
k →∞ in (13) to yield that∫ T

0

∫
Ω

− i~ψ̄
∂η

∂t
dxdt =

∫ T

0

∫
Ω

[
− ~2

2M

∂ψ̄

∂x

∂η

∂x

+V∗ψ̄η +Nν|ψ̄|2ψ̄η
]
dxdt

for all η ∈ C1(0, T ;V). It implies that ψ̄ is a weak so-
lution of (1) in the sense of distribution D′(0, T )N on
(0, T ). By the uniqueness of weak solution for BEC sys-
tem (1) for nanoparticles to find that ψ̄ = ψ(V∗). Then,
by Gelfand triple spaces V ↪→ H ↪→ V ′, for ψ to get

ψ(Vk)→ ψ(V∗) strongly in L2(0, T ;H),

ψf (Vk)→ ψf (V∗) strongly in H

as k → ∞. Since the norm ‖ · ‖L2(Ω)N are lower semi-
continuous in weak topology ofH for N nanoparticles

lim inf
k→∞

‖ψf (Vk)−ψtarget‖2H ≥ ‖ψ
f (V∗)−ψtarget‖2H.

Vice versa, by the weak convergence (10) to
know that lim inf

k→∞
(Vk,Vk)U ≥ (V∗,V∗)U at

the real space L2(Q)N×N . Therefore, for cost
function (9), J = lim inf

k→∞
J(Vk) ≥ J(V∗), and

J(V∗) = inf
V∈Uad

J(V). It means that V∗(x, t) is

quantum optimal control of nanoparticles BEC system
(1) respect to the criteria function (9).

REMARK 5 Not all of the N nanoparticles to be
used in the creation of a condensate, usual there is a loss
for a creation with cooling technique. For instance, if
the condensed rate for example 87%, then the loss rate
is 13%.

REMARK 6 At very high temperature, whether
particles have the phenomena such as condensates or
other extremely physical status?

Remarkable, although use the cubic Schrödinger equa-
tion, G-P system (1), to describe the wave package of
nano BEC, physically, the motion of nanoparticle BEC
is real-valued function. Therefore, necessary optimality
condition of cost function (9) can be given by

J ′(V∗)(V −V∗)

= ε1
(
ψf (V∗)−ψtarget,ψf (V)−ψf (V∗)

)
H

+ε2(V∗,V −V∗)U ≥ 0, ∀V ∈ Uad. (14)

In here, J ′(V∗)(V − V∗) is the Gâteaux derivative of
cost function J(V) at V∗ in the direction of V −V∗.

The proof of following Theorem can be found at
[Wang and Belavkin, 2009], [Wang and Belavkin, 2012],
[Wang, 2018] for nanoparticles immediately.
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THEOREM 7 (Optimality system) For ψ0 ∈ V , and
control problem for G-P system (1) to cost function (9),
if Uad is closed convex (bounded) admissible subset of
U , then quantum optimal control V∗ is characterized by
optimal (Euler-Lagrange) system as i~

∂ψ

∂t
=

~2

2M
∆ψ+V∗ψ+Nν|ψ|2ψ in Q,

ψ(0) = ψ0 on Ω.
(15)


i~
∂p

∂t

=
~2

2M
∆p+ V∗p +2Nν|ψ|ψp+Nν|ψ|2p in Q,

ip(T ) = ψf (V∗)−ψtarget on Ω.

(16)

ε1
∫ T

0

∫
Ω

ψ∗p(V∗)(V−V∗)dxdt+ ε2(V∗,V−V∗)U ≥ 0

∀V ∈ Uad. (17)

In here, p ∈ W (0, T ) is weak solution of adjoint sys-
tem (16) corresponding to weak solution ψ of optimal
nanoparticles BEC system (15). The inequality (17) is
necessary optimality condition for quantum optimal con-
trol V∗(x, t) of N nanoparticles. As to the control term
V∗ψ, rewritten as ψV∗, then ψ∗ is the conjugate func-
tional of ψ, which is coefficient operator of the control
function.

Proof. The variational calculation to deduce adjoint sys-
tem (16) can be directly obtained by citing reference
[Wang, 2021] for the nonlinear parabolic system given
by partial differential equation. This is a distributed con-
trol problems for terminal observation with cost function
(9). The conjugate operator for nonlinear term in the G-
P equation (15) can be calculated easily as appeared at
adjoint system. Cite [Wang, 2016] and [Wang, 2018],
take the derivative of f = f1 + f2 respect to variable ψ
in free system (2) to get that

∂f

∂ψ
=
∂(f1 + f2)

∂ψ
= V + 2Nν|ψ|ψ +Nν|ψ|2.

Then, roughly get the right hand of adjoint system as

(V + 2Nν|ψ|ψ +Nν|ψ|2)p.

More precisely, consider the weak solution of state sys-
tem (15), by taking the test function η = p and η(T ) =
p(0) = 0 as∫ T

0

∫
Ω

i~
∂ψ

∂t
pdxdt = − ~2

2M

∫ T

0

∫
Ω

∇ψ∇pdxdt

+

∫ T

0

∫
Ω

V∗ψ pdxdt+Nν

∫ T

0

∫
Ω

(|ψ|2ψ) pdxdt. (18)

Denote ψt =
∂ψ

∂t
, in (18), use the notation of inner

product of L2(Ω) to find that

i~(ψt,p) =− ~2

2M
(∇ψ,∇p)+(V∗ψ, p)+Nν(|ψ|2ψ,p).

That is

i~(ψt,p) =− ~2

2M
(∇ψ,∇p) + (f(ψ),p). (19)

For first term in (19), calculate without considering the
coefficients, then integration by part respect to variable t
to know∫ T

0

∫
Ω

∂ψ

∂t
pdxdt =

∫
Ω

(ψp)
∣∣T
0
dx−

∫
Ω

∫ T

0

ψ
∂p

∂t
dtdx

= (ψf (V∗)−ψtarget,ψ(T ))L2(Ω)

−
∫ T

0

∫
Ω

ψ
∂p

∂t
dxdt. (20)

Namely, use the inner product at space L2(Ω) to get that

(ψt,p) = (ψf (V∗)−ψtarget,ψ(V∗, T ))− (ψ,pt).
(21)

For second term in (19), by the space V = H1
0(Ω) to

know that ψ and p are 0 at the boundary ∂Ω, therefore,
via system (18), it can be calculated as

− ~2

2M

∫
Ω

[∆ψ] p dx = − ~2

2M

∫
Ω

ψ [∆p] dx.

Namely, in the notation of inner product as

(−∆ψ,p) = (ψ,−∆p). (22)

Now, substitute (21) and (22) into (19) to get that

i~(ψ,pt)−
~2

2M
(ψ,∆p)

=i~(ψf (V∗)−ψtarget,ψ(V∗, T ))+(ψ, f∗ψ(ψ)p),(23)

where fψ =
∂f(ψ)

∂ψ
, and f∗ψ is conjugate operator of

fψ . Set ip(T ) = ψf (V∗) − ψtarget, and consider test
function p(0) = 0, by (23), it means that

(ψ, i~pt−
~2

2M
∆p+f∗ψp)=(ψ(T ), ip(T ))−(ψ(0), ip(0)).

Then by the arbitrary of ψ in the L2(Ω) space to get
that, responding to state solution ψ ∈ W (0, T ), adjoint
system for p ∈W (0, T ) can given as

i~
∂p

∂t
− ~2

2M
∆p = (V + 2Nν|ψ|ψ +Nν|ψ|2)p.

with value at T as ip(T ) = ψf (V∗) − ψtarget. Hence,
it is verified adjoint system (16).
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Next is to rewrite the necessary optimal condition (14)
by using adjoint system (16). Denote J(V) = J1(V) +
J2(V), calculate the Gâteaux of J1(V) by definition as

J ′1(V∗)(V −V∗)

= lim
λ→0

2

λ

(
ψf (V∗)−ψtarget,

[ψf (V∗ + λ(V −V∗))−ψf (V∗)]
)
. (24)

Above discussion to V∗ in (18), (20) and (21) are also
valid for control variable V, that is

(ψt,p) =
(
ψf (V)−ψtarget,ψ(T )

)
− (ψ,pt). (25)

By formulate (18) to get that(
ψf (V∗)−ψtarget,ψ(T )

)
L2(Ω)

−
∫ T

0

∫
Ω

ψ[i~
∂p

∂t
− ~2

2M
∆p] dxdt

=

∫ T

0

∫
Ω

V∗ψ pdxdt+Nν

∫ T

0

∫
Ω

|ψ|2ψ pdxdt. (26)

For the weak solution of adjoint system (16), taking test
function η = ψ to get the following formulation∫ T

0

∫
Ω

[i~
∂p

∂t
− ~2

2M
∆p]ψdxdt

=

∫ T

0

∫
Ω

(V∗ + 2Nν|ψ|ψp+Nν|ψ|2p)ψ dxdt. (27)

Compare (26) and (27) to get that

(ψf (V∗)−ψtarget,ψ(T ))H

= 2

∫ T

0

∫
Ω

V∗ψ pdxdt+ 2Nν

∫ T

0

∫
Ω

|ψ|2ψ p dxdt.

+

∫ T

0

∫
Ω

2Nν|ψ|ψp dxdt. (28)

By (25), set ψ(T ) = ψf (V∗ + λ(V−V∗))−ψf (V∗)
in (28) to find that

1

2

(
ψf (V∗)−ψtarget,ψf (V∗+λ(V−V∗))−ψf (V∗)

)
H

=

∫ T

0

∫
Ω

λ(V −V∗)ψ p dxdt. (29)

Indeed, in (24), lim
λ→0

1

λ
[ψf (V∗+λ(V−V∗))−ψf (V∗)]

is the Gâteaux derivative of ψf at V∗ in the direction
of V − V∗. Therefore, substitute (29) into (24), for
∀V ∈ Uad, the necessary optimality condition (14) can
be converted to∫ T

0

∫
Ω

ψ∗p(V∗)(V −V∗)dxdt+ (V∗,V −V∗)U ≥ 0.

It is verified Theorem 7.

The results obtained in Theorem 7 are agree with the
conclusion in physics field [Hohenester, 2007].

In additional, at the physical viewpoint, if select the
specified control space Uad, quantum optimal control
V∗ will have Bang-Bang principle for nano-BEC (cf.
[Wang, 2016]).

5 Discussion
For posed nanoparticles created Bose-Einstein-

Condensates problem, control of such a quantum system
is quite interesting issue and there are many unknown
mysteries need to solve not only at the control theory of
applied mathematics, but also at the chemical physics
field. Indeed, a lot of questions will be also questions
if without collaborating with the area of chemistry and
physics.

The essential task for such a cutting-edge problem ex-
tremely require interdisciplinary work together to ex-
plore.

(i) whether there is nano sized particles (gold nanopar-
ticle, its stability both in size and temperature), we
yet find that can be condensed?

(ii) whether some materials or matter, had already being
a nano-sized condensates?

In the standpoint of mathematics, no answer to response
at present.

Nanoparticles composed advance materials as well as
quantum materials, would be continuously attract our at-
tention for several decades or much long time. It would
be exciting journey for exploring and discovering the re-
search results crossing subjects.

6 Conclusion
In this paper, nanoparticles created condensates had

been considered originally as control objective. It tried
to find the quantum optimal control as the nanoparti-
cle cooling to a low temperature, and condensed. In
fact, currently, it is certainly to know that, to molecules
and atoms, such kind of investigation had been taken,
and a great deal excellent work had been reported in
contributed papers, such as at IPACS (cf. [Romero-
Meléndez and González-Santos, 2017]).

Nano condensates, is a big topic for future research
at theoretical issues, numerical analysis, computational
approach and experimental demonstration and simula-
tion. It is also a promising research direction in further
study and survey. Personally, thanks to the discovery of
the nanoparticles created condensate with gold metal for
making this work meaningful.
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