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Abstract 
In this paper a novel methodology for modeling and 

control of a class of nonlinear systems is proposed. 

The non-linear system is modeled by the so-called 

fuzzy Hammerstein model, and the control strategy 

based on generalized predictive control (GPC) 

algorithm is applied. Simulation of a modified DC 

motor with a nonlinear block demonstrates 

effectiveness of the proposed approach. The proposed 

control is compared with other predictive control 

approaches based on artificial neural network models. 

Obtained results confirm that the proposed 

methodology can be used for modeling and control of 

different types of nonlinear processes in industry 

applications. 
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1 Introduction 

The automatic control (AC) field is more than eighty 

years old. Development of the field has been very 

dynamic; AC principles pervaded such diverse fields 

as biology, medicine, banking, economics etc., and 

their applications can be encountered practically 

everywhere in our daily life, e.g. in home devices, 

communication systems, modern types of vehicles, in 

banking, health care services, etc. Conventional 

standard control strategies have been widely used in 

industries for several decades. A vast majority of 

automatic control loops in the process industries 

(90%) still rely on various forms of the ubiquitous 

PID controller commercially available for over 

seventy years [Kozák, 2002]. However, common 

control methods of are not available for highly non-

linear processes. In the last years, research activity has 

been oriented to solving modeling and control tasks 

for non-linear systems using computing intelligence 

methods.  

Fuzzy sets fall into effective methods of computing 

intelligence where it is possible to improve expert 

methods to modeling of non-linear processes. 

Artificial neural networks (ANNs), genetic algorithms 

(GA), fuzzy logic, hybrid and adaptive soft methods 

allow transforming experience of an expert into a 

control algorithm design [Hypiusová and Kajan, 

2013]. 

The Hammerstein model is one of the simplest and 

most popular members of the general family of block-

oriented non-linear dynamic models constructed from 

series and/or parallel combinations of linear dynamic 

models and static non-linearities [Narendra and 

Gallman, 1966]. More specifically, the Hammerstein 

model structure consists of a single static non-linearity 

f(.), connected in cascade with a single linear dynamic 

model defined by the transfer function G(z
-1

) [Doyle et 

al., 2002]. Block scheme of a discrete fuzzy 

Hammerstein (FH) model is shown in Fig. 1. FIS 

block represents fuzzy static non-linearity and A(z
-1

), 

B(z
-1

) are nominator and denominator polynomials, 

respectively, of the process transfer function G(z
-1

). 

 
Figure 1. Block scheme of a fuzzy Hammerstein 

model with fuzzy static non-linearity (FIS) and linear 

dynamic model 

2  Identification Problem Formulation 

Consider discrete representation of the fuzzy 

Hammerstein (FH) model 
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The weight 1),(0  yuj is the overall truth value of 

the j-th rule and is computed as 
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where 
),( uiuA , 

),( yiyA  are iu-th and iy-th Gaussian 

functions of the input u and input y, respectively; NR = 

Mu.My denotes the number of fuzzy model rules, Mu 

and My are numbers of fuzzy sets of input u and input 

y, iu = 1, 2, ..., Mu and iy = 1, 2, ..., My, respectively; na 

, nb  are orders of the denominator and numerator, 

respectively of the ARX (autoregressive with 

exogenous terms) model, nd is the discrete time delay; 

ai, bi are nominator and denominator coefficients of 

the transfer function G(z
1
) of the linear dynamic 

model, dj are output coefficients of the fuzzy static 

non-linearity [Abonyi et al. 2000]. 

In the sequel, coefficients ai and bi, of the linear 

dynamic model will be denoted „linear parameters”, 

while coefficients dj belonging to the fuzzy model will 

be called “non-linear parameters“. 

In this paper a one-step iterative FH model 

identification is proposed. The class of one-step 

iterative solutions includes techniques that alternately 

refine estimates of the linear dynamics and the static 

non-linearity [Doyle et al. 2002]. Only dynamic data 

are used for identification. This method is 

a modification of the algorithm proposed by Narendra 

and Gallman [1966] for identification of Hammerstein 

models with a polynomial static non-linearity. In this 

case, model parameters are obtained by separating the 

estimation of the linear dynamics from the static non-

linear part. As none of these parts is known 

beforehand it results in an iterative identification 

algorithm. For the sake of simplicity it is assumed that 

the antecedent part of the fuzzy model (the fuzzy sets) 

is designed manually based on a priori knowledge. For 

this task one could also employ numerical 

optimization techniques such as fuzzy clustering. The 

identification algorithm then determines the 

consequent parameters ai, bi and dj. This is a 

clearly non-linear optimization problem. Two 

approaches can be used: on-line or off-line 

identification. For simplicity, an iterative off-line 

procedure is used in the sequel.  

Suppose that the parameters ai, bi of the linear 

dynamic model are known. Then, parameters 

],,[ 1 RNddd 
T
 of the nonlinear part can be 

estimated by solving the regression problem using 

following equation. 

  dy dd
, (3) 

where   denotes the zero-mean, normally-distributed 

modeling error. For N measured data pairs, the 
dy  

vector and the 
d  matrix are given by: 
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The least-squares estimate of coefficients in (5) is 

d
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Parameters of the linear dynamic model  
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solving the following regression problem 
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The least-squares estimate of the linear parameters can 

be computed by 

l

T
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Finally, the nonlinear parameters d  are estimated 

again by using (6) and the whole procedure is 

iteratively repeated according to the desired accuracy. 

As the static gain of the FH model is determined by 

both static non-linearity and gain of the linear part, the 

nonlinear model is redundant. The unity gain of the 

identified linear model will be ensured by using 

constrained quadratic programming (QP) instead of 

(10). 
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with l

T

lH 2  and l

T
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The constraint on l  can be expressed as  
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The iterative algorithm is stopped when convergence 

in both l  and d  occurs; here, the term 

“convergence“ means that the infinity norm of the 

difference in the parameters between two successive 

iterations is smaller than a predefined threshold. Note 

that the above algorithm is computationally expensive 

because it requires solving one least-squares problem 

and one quadratic program in each iteration. Moreover 

since it is an off-line algorithm, if new input-output 

data become available the whole algorithm has to be 

restarted.  

3 Non-linear system control using the fuzzy 

Hammerstein model and the GPC algorithm 

To control a nonlinear system, its FH model in 

combination with the generalized predictive control 

(GPC) algorithm have been used. As the GPC 

algorithm uses the ARX model of the plant, it is 

necessary to recast the FH model of the system 

to ARX model in each computation of control action. 

FH model linearized in the operating point is used. By 

its linearization we obtained a discrete-time model in 

the form 
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In the operating point (x, y(x)) = ((u(k), y(k)), y(k+1, 

u(k), y(k))) it becomes a linear equation standing for 

the ARX model 
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Mu and My represent numbers of fuzzy sets for inputs 

u(k) and y(k),  and 
uuic , 

uuisig , 
yyic  and 

yyisig  denote 

parameters of particular fuzzy sets. 

Next we proceed according to the common GPC 

algorithm. [Kozák, 2006] 

4  Case Study:  DC Motor Control 

4.1 Process Description 

The controlled plant is a laboratory DC motor (Fig. 2). 

Controlled variable is the angular velocity which is 

manipulated by the input voltage within 0-10V; it is 

sensed by optical electronics which gives the output 

voltage in the range 0-10V. 

 
Figure 2. Laboratory DC motor 

The laboratory DC motor with nonlinearity was 

simulated in Matlab-Simulink (Fig. 3). The whole 

system can be divided into the linear part of DC motor 

system (LS) and a nonlinear block (NB) in the 

feedback part which simulates system behavior with a 

load p and nonlinearity (Fig. 4). 

 
Figure 3. Simulation block scheme of a DC motor 

with nonlinearity (input u, output y and load p) 

 
Figure 4. Block scheme of the linear DC motor (LS) 

with the nonlinear feedback block (NB) 



 

 

According to the Fig. 4 the output value y and the load 

p enter to the nonlinear block; its output is connected 

with the linear part of the DC motor via feedback loop 

[Hypiusová and Kajan, 2013]. In this paper, we 

consider a constant load p = 1V. 

Input-output characteristics of the DC motor with load 

p=1V is depicted in Fig. 5 with 3 operating points 

marked: OP1 (0.5 V, 2.0828 V), OP2 (1.5 V, 4.7972 

V) and OP3 (6.0 V, 8.2342 V). For these 3 operating 

points output variable time responses Uout for 0.5V 

step changes in input variable Uin are depicted in Fig. 

6. As it can be seen from the pictures, the nonlinearity 

is static (Fig. 5) and also dynamic (Fig. 6).  

  
Figure 5. Input-output characteristics of the modified 

DC motor with load p = 1V: OP1 (0.5 V, 2.0828 V), 

OP2 (1.5 V, 4.7972 V) and OP3 (6.0 V, 8.2342 V) 

 
Figure 6. Time responses of output variable Uout to 

0.5V step changes in the input variable Uin in 

individual operating points: OP1 (0.5 V, 2.0828 V), 

OP2 (1.5 V, 4.7972 V) and OP3 (6.0 V, 8.2342 V) 

4.2 Process Modeling 

Training data for the fuzzy Hammerstein model (FH) 

identification are depicted in Fig.7. Sampling period 

Ts = 0.1s was used, and the input variable was 

changing every 5 seconds.  

 
Figure 7. Training data 

For the FH model, a second order ARX model was 

selected. 

Initial ARX model was identified by Matlab function 

arx and fuzzy model by Matlab functions  genfis2 

(with RADII = 0.5) and anfis (with 100 epochs). For 

ending the iteration, threshold was set to 10
-10

 and 

maximum number of iterations to 500. 

Final computed ARX model is: 

  (   )    
(                    )     

                     
 (15) 

And the output fuzzy part of model is: 

 ̅ = [-255.9273  35.1927  753.3018  33.3217  -5.8297  

-48.0981  1725.0176  -145.0510  -8379.8437] 
T
 

Inputs to the fuzzy part of model are depicted in Fig. 8 

and Fig. 9. 

 
Figure 8. Membership functions for the first input: 

input voltage (Uin) to the fuzzy part of FH model 

Comparison of the training and the testing data with 

the FH model output are shown in Fig. 10, Fig. 11 

(training data) and Fig. 12 and Fig. 13 (testing data). 

The proposed FH model is useful for the control under 

the GPC predictive algorithm. The parameters of GPC 



 

 

algorithm are: number of prediction steps N = 10 and 

weighting coefficient  = 0.5 . 

 

Figure 9. Membership functions for the second input: 

output voltage representing angular velocity (Uout) to 

the fuzzy part of FH model. 

 
 Figure 10. Comparison of training data  

with the FH model output 

 
 Figure 11. Comparison of training data 

 with the FH model output – a detail 

 
Figure 12. Comparison of testing data 

with the FH model output 

 
Figure 13. Comparison of testing data 

with the FH model output – a detail 

4.3 Comparison of the Predictive Control 

algorithms based on FH and MLP Models 

In this section, the predictive control algorithms based 

on FH and MLP (multi layer perceptron) models are 

compared.  

In the predictive control algorithm based on FH 

model, the parameters of GPC algorithm are: number 

of prediction steps N = 10 and weighting coefficient  

= 0.5 . 

Predictive control with MLP model is realized using 

artificial neural network as a plant model. The model 

is represented by a three layer ANN with one hidden 

layer of 7 neurons. The inputs to the model are 3 

previous values of Uin and 3 previous values of Uout  

and the output is current value of Uout. 

Fig. 14 and Fig. 15 show time responses of controlled 

output (Uout) and control action (Uin) under predictive 

control based on FH and MLP models to step change 

in reference variable w from ws = 4 V to we = 5V (Fig. 

14) and several different step changes of w within 4 V 

and 8 V (Fig. 15). 



 

 

 
Figure 14. Time responses of the controlled output 

(Uout) and control action (Uin) under predictive control 

based on FH and MLP models to a step change in 

reference variable (from ws = 4 V to we = 5 V) 

Figure 15. Time responses of controlled output (Uout) 

and control action (Uin) under predictive control based 

on FH and MLP models to several different step 

changes in w between 4 V and 8 V 

It can be seen, that both applied control algorithms 

provide stability in the range between 4 V and 7 V.  

5 Conclusion 

The proposed non-linear FH model based predictive 

controller was verified on a laboratory plant - a DC 

motor; the results were generalized for modeling and 

control of a selected class of non-linear systems. The 

designed control algorithm was implemented on the 

DC motor using Matlab-Simulink. From the obtained 

results we can state that the fuzzy Hammerstein model 

is effective mainly for modeling of non-linear plants 

with static non-linearity. 

Developed control algorithms provide high 

performance of time responses to step changes in 

reference variable. The generalized predictive control 

algorithm based on the fuzzy Hammerstein model is 

suitable for the control of uncertain plants showing 

robust properties.  
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