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Abstract
The paper is devoted to the studies of viscous flows caused by a vibrating boundary.

The fluid domain is a half space, its boundary is a non-deformable plane that exhibits
purely tangential vibrations. Such a simple geometrical setting allows us to study gen-
eral boundary velocity fields and to obtain general results. From a practical viewpoint
such boundary conditions may be seen as the tangential vibrations of the material
points of a plane stretchable membrane. In contrast to the classical boundary layer
theory we aim to build a global solution. In order to achieve this goal we employ the
Vishik-Lyusternik approach combined with two-timing and averaging methods. Our
main result is: we obtain a uniformly valid in the whole fluid domain approximation
to the global solutions. This solution corresponds to general boundary conditions and
to three different settings of the main small parameter. Our solution always include
the ‘inner’ part and ‘outer’ part that contain both oscillating and non-oscillating com-
ponents. It is shown that the non-oscillating ‘outer’ part of the solution is governed
by the either full Navier-Stokes equations or the Stokes equations (both with the unit
viscosity) and can be interpreted as a steady or unsteady streaming. In contrast to
the existing theories of a steady streaming our solutions do not contain any secular
(infinitely growing with the inner normal coordinate) terms. The examples of the spa-
tially periodic vibrations of the boundary and the angular torsional vibrations of an
infinite rigid disc are considered. These examples are still brief and illustrative, while
the core of the paper is devoted to the adapting of the Vishik-Lyusternik method to
the development of the general theory of vibrational boundary layers.
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1 Introduction

The classical boundary layer theory is aimed to describe the viscous flows in the vicinity

of boundaries. At the same time it is well known that flows caused by an oscillating rigid
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boundary are not concentrated near the boundary: in addition to the vibrational boundary

layers the celebrated phenomenon of a steady streaming takes place [1, 2]. The steady

streaming in a viscous incompressible fluid is the subject of the large number of papers.

There are different geometrical settings, including the steady streaming due to an oscillating

solid in the fluid unbounded at infinity, the steady streaming in channels caused by oscillating

walls, etc. Excellent reviews on the subject can be found in [3, 4, 5]. The adaptation of

the classical boundary layer theory for the building of a steady streaming solution contains

a number of theoretical difficulties that include the unbounded linear growth of the normal

velocity component (a secular term) in a normal to the vibrating surface inner coordinate

(see e.g. [3, 2]). Therefore it would be a valuable improvement to construct the global

asymptotic solution valid in the whole flow region and does not contain any secular terms. It

is especially interesting to build such solutions corresponding to the most general oscillating

boundary conditions and to describe them analytically in order to create a unified viewpoint

for the consideration of various special examples. There are other challenging problems,

such us: to study the different ways of introduction of a small parameter, to understand

how flexible the related scaling is, and to build analytic solutions for different asymptotic

limits in the space of dimensionless parameters. In this paper we have partially met the

above requirements by the employment of the Vishik-Lyusternik (V-L) asymptotic method

that was originally used by von Karman [6] for the considering of the Blasius problem in

fluid dynamics and then introduced and actively developed in the mathematical asymptotic

theory and in the elasticity theory [7, 8, 9, 10, 11]. In fluid mechanics its usage is still rather

restricted3: one can find its first applications to the steady boundary layers [6, 12, 13, 14]

and more recently to the hydrodynamic impact theory [15]4. However the V-L method has at

least two clear advantages: (i) it is logically simpler than the classical boundary layer theory

and its extension to the steady streaming theory, and (ii) it is mathematically rigorous and

allows to build a solution that is uniformly valid in the whole flow region5.

We apply the V-L method to the three-dimensional viscous incompressible fluid flows in

a half space z > 0 with the plane undeformed boundary z = 0. The flows are caused by the

given tangential oscillations (vibrations) of the material points of this plane. The motions

of the boundary has the representative scales of time T∗, velocity U∗, length L∗, and the

frequency ω; together with the constant viscosity coefficient ν they form three independent

3The observed delay in the use of this method in fluid dynamics may be partially explained by the fact
that there are no streaming flows in the already available applications [6, 12, 13, 14, 15], hence the absence
of the global solution can be tolerated and the use of the classical boundary layer theory is quite sufficient
for practical purposes.

4It is in current use by K.I.Ilin and M.A.Sadiq for the description of the steady streaming caused by a
vibrating cylinder or sphere (private communications).

5The simplicity of the method (in comparison with the Prandtl boundary layer theory) was emphasised
by von Karman, who wrote about it: ‘we carried through this calculation in the manner of the calculus of
perturbations’ [6]. However, the further developments of the method have been mainly on the mathematical
side, e.g. there are theorems within this method, that assess the degree of proximity of asymptotic and exact
solutions for important classes of ODEs and PDEs [7, 8, 9].
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dimensionless scaling parameters. We express them in terms of the only small parameter

ε2 = ν/(ωL2
∗) in such a way that the viscous term in the Navier-Stokes equations is always

proportional to ε2, while the dimensionless coefficient at the nonlinear term is taken as εα,

with three different options α = 1, 2, 3. To treat the arising asymptotic problems we use the

general two-timing framework with two mutually dependent time variables t and τ = ωt,

which we justify a posteriori by proving that it leads to the asymptotic solutions of the

original governing equations. In order to split up the solution into its oscillating and non-

oscillating component we also use the operation of τ -averaging that is purely mathematical

and does not require any justification. All our asymptotic solutions are uniformly (in ε) valid

in the whole domain z > 0 and do not contain any secular terms. In every case (α = 1, 2, 3)

the calculations of successive approximations are continued until the leading non-oscillating

terms (we also call them ‘slow motion’ or ‘streaming’) appear. It is shown that the slow

motion is described by the full Navies-Stokes equations for α = 1 and by the unsteady Stokes

equations for α = 2, 3. In both cases the effective viscosity is equal to the unity and the

effective ‘slow’ boundary conditions have been precisely derived. It is remarkable that the

general mathematical expression for these effective boundary conditions related to the slow

part of velocity is the same for all α’s. Its structure reveals a sharp qualitative difference

between the divergence-free boundary conditions (when the two-dimensional tangent diver-

gence of velocity at the boundary plane is vanishing) and the other boundary conditions with

the non-vanishing tangential divergence. Physically, the appearance of such a distinction is

quite natural: the presence of a nonzero boundary divergence causes collisions between the

different parts of the boundary layer, while the divergence-free boundary conditions corre-

spond to the layers without collisions. The main difference between the solutions for these

two cases is the presence (or the absence) of an oscillating peaks of pressure and correspon-

dent potential terms in the velocity fields that are decaying inside a fluid domain with a

characteristic length scale L∗ related to the inhomogeneity of the boundary conditions (not

with the viscous length scale).

As instructive brief examples we consider the wave-like motions of the material points of

the boundary in the form of either a standing wave or a travelling wave6, and the torsional

vibrations of an infinite rigid disc, considered by different methods earlier in [19, 20, 21]. For

these examples we discuss both cases of steady and unsteady streaming. For the oscillated

disc we show that the streaming flow is the same as one caused by a stretching plate [22, 23,

24, 25]. The exploring of interesting examples can be easily continued, however we restrict

ourselves only with these few representative flows, emphasising the ways of their obtaining

from the general global solution.

6The case of a travelling wave can be considered as a high Reynolds model of a ‘flying carpet’ [16, 17] or
a self-swimming sheet [18]
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2 Formulation of the Problem

A viscous incompressible fluid fills the upper half of the three-dimensional space (z > 0)

with Cartesian coordinates x = (x, y, z). The Navier-Stokes equations and the boundary

conditions are

v∗t + (v∗∇)v∗ = −∇p∗ + ν∆v∗, div v∗ = 0 for z > 0, (2.1)

v∗ = (ã, b̃, 0) = (ã, 0) at z = 0 (2.2)

v∗ → 0, p∗ → 0 as z →∞ (2.3)

∇ ≡
(

∂
∂x

, ∂
∂y

, ∂
∂z

)
, ∆ ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

where t is time; the subscripts of independent variables denote partial derivatives; v∗(x, t)

and p∗(x, t) are the fields of velocity and pressure; ν – constant viscosity; the density of fluid

is equal to unity and suppressed that changes the dimension of pressure; two-dimensional

‘vector’-field ã = (ã, b̃) has only (x, y)- components

ã = ã(x, y, t, τ), b̃ = b̃(x, y, t, τ) (2.4)

that are given functions of x, y, t and τ ≡ ωt; ω is a constant frequency parameter. The

dependence of ã on τ is 2π-periodic. The notations with ‘tilde’ f̃ = f̃(x, t, τ) have been

adapted throughout this paper for the 2π-periodic in τ functions with zero τ -average 〈f̃〉 ≡ 0,

while the τ -average of any function f = f(x, t, τ) is defined as the ‘partial’ integral7

〈f〉 ≡ 1

2π

∫ 2π

0

f(x, t, τ)dτ (2.5)

As one can see τ is a dimensionless variable with the characteristic scale of order unity.

Physically, the boundary condition (2.2)8 gives the no-slip on the plane boundary where

material particles are moving with velocity ã = ã(x, y, t, ωt). The setting of the initial data

at t = 0 for (2.1)-(2.3) depends on the particular problem; it will be addressed later.

The time variable t is involved into the functional form of the boundary functions (2.4)

via two mutually dependent variables t and τ ≡ ωt. It leads us to the classical ‘two-timing’

setting: in order to exploit it systematically we accept that solutions to (2.1)-(2.4) depend

on x, t, and τ , where the dependence on τ is 2π-periodic:

v∗(x, t) ≡ v̂(x, t, τ), p∗(x, t) ≡ ωp̂(x, t, τ) (2.6)

7The integral (2.5) performs the average over τ while t = const. This operation may look controversial
from the physical viewpoint, however it is completely rigorous: for any function f(t, τ) that is defined in a
vicinity of the straight line τ = ωt in the plane (t, τ) one can consider partial derivatives and partial integrals
without reference to the mutual dependence or independence of the variables t and τ . The existence of such
a vicinity is a standard hidden assumption in any multi-scale method.

8There is an incompleteness of the boundary conditions at infinity: condition (2.3) at z → 0 is not
sufficient and must be complemented by the appropriate restrictions at x → ∞, y → ∞ that appear
differently for the different problem settings (such as decreasing, increasing or periodic in variables x, y

function ã). We imply that such conditions are implicitly formulated and we shall address this issue later.
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In our notations all ‘hat’ functions are 2π-periodic in τ : f̂(x, t, τ) = f̂(x, t, τ + 2π); they

generally have nonzero τ -averages 〈f̂〉 6= 0 and can be decomposed into their ‘tilde’ and ‘bar’

parts,

f̂ = f̃ + f, with f = 〈f̂〉 (2.7)

where all ‘bar’ functions f do not depend on τ . For the solutions (2.6) we replace the partial

t-derivative in (2.1) by ∂/∂t → ∂/∂t + ω∂/∂τ , following to the chain rule.

Let the dimensional constants of time T∗, velocity U∗, and length L∗ be the representative

(characteristic) scales involved in ã (2.4) 9. Then the governing equations (2.1)-(2.3) in their

dimensionless form can be rewritten as

v̂τ +∇p̂ = −S(1)(v̂∇)v̂ + R∆v̂ − S(2)v̂t, div v̂ = 0 for z > 0 (2.8)

v̂ = (ã, 0) at z = 0 (2.9)

v̂ → 0, p̂ → 0 as z →∞ (2.10)

R = ν
ωL2∗

, S(1) = U∗
ωL∗

, S(2) = 1
ωT∗

(2.11)

where τ ≡ ωt and for brevity we use the same notations for the dimensionless functions and

independent variables as for their dimensional counterparts:

v̂/U∗ → v̂, p̂/(L∗U∗) → p̂, ã/U∗ → ã, x/L∗ → x, t/T ∗ → t (2.12)

We are faced with the dimensionless problem (2.8)-(2.10) in the space of three independent

dimensionless scaling parameters (two Strouhal numbers S(1), S(2) and the inverse Reynolds

number R)10. In order to use a rigorous asymptotic procedure we choose in this space

one-parametric pathes

S(1)(ε) = εα, S(2)(ε) = λεβ, R(ε) = κε2 with α = 1, 2, 3; β = 2 (2.13)

with constants κ ∼ 1, λ ∼ 1 and a single parameter ε. Below we take λ = 1, since it can be

always adsorbed into the definition of the slow time t. Similarly, we can take κ = 1, however

we retain κ in our formulas for the tracing of viscous terms. The choice β = 2 (2.13) is aimed

to balance the terms with ∂/∂t and ∆ in the final ‘slow equations’11. The use of (2.13) will

allow us to build the asymptotic solutions for tree different limits ε → 0 for α = 1, 2, 3

that correspond to three particular pathes ε → 0 in the space of independent parameters

(2.11),(2.13). In order to reflect the ratio between nonlinear and viscous terms in (2.8) we

9These scales can be either mutually dependent or independent.
10Our dimensionless equations use v̂τ as the ‘reference term’ of order unity. Therefore this terminology is

not conventional. For example, using the analogy with rotating fluids, R and S(1) can be called the Eckman
number and the Rossby number [26].

11It is not crucial and can be relaxed by allowing any β > 2 (see Section 6). The case of the steady
streaming corresponds to the pure oscillatory boundary condition where T∗ is absent (β →∞ or S(2) = 0).
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call the cases of α = 1, 2, 3 the strong, moderate, and weak nonlinearity correspondingly12.

Hence the system (2.8)-(2.10) takes the form

v̂τ +∇p̂ = −εα(v̂∇)v̂ + ε2(κ∆v̂ − v̂t), div v̂ = 0 for z > 0 (2.14)

v̂ = (ã, 0) at z = 0 (2.15)

v̂ → 0, p̂ → 0 as z →∞ (2.16)

In (2.14)-(2.16) we assume that all involved functions and their derivatives are of order

unity, and the only available small parameter ε is given explicitly. As the next step in our

asymptotic procedure we temporary consider the originally dependent variables t and τ in

(2.14)-(2.16) as being independent. This is a standard auxiliary step for the two-timing

method, it will be a posteriori mathematically justified.

Following the general procedure of the V-L method we look for a solution to (2.14)-(2.16)

in the form13

v̂ = (U + u, V + v,W + εw), p̂ = P + p for z > 0 and s > 0 (2.17)

where V ≡ (U, V, W ) and P are functions of x, y, z, t, τ , while v ≡ (u, v, w) and p are

functions of x, y, s, t, τ with a ‘stretched’ vertical variable s ≡ z/ε. All functions involved

are 2π-periodic in τ , however to simplify the notations we suppress the ‘hats’ in the right

hand sides of (2.17) and everywhere below.

According to its traditional meaning V , P give the ‘external solution’ outside the bound-

ary layer, while v, p represent the ‘inner part’ of the solution14 in the boundary layer itself

and must rapidly decrease v → 0, p → 0 (along with their derivatives) when s → ∞. For

convenience, the small parameter ε is introduced as the multiplier to w in (2.17); if we do not

do it, then the term of zero order (ε0 = 1) in w always vanishes in all asymptotic procedures

below.

The next key assumption is: the ‘external’ solution V , P satisfies the exact governing

equations (2.14):

V τ −∇P = −εα(V ∇)V + ε2(κ∆V − V t), div V = 0 for z > 0 (2.18)

12One can also recall that in the general asymptotic procedure all parameters L∗, U∗, T∗, ω, ν in (2.13) can
be considered as arbitrary functions of ε (as ε → 0), provided that we stay on the chosen path (2.13). A
simple example L∗ ∼ const, T∗ ∼ const, ν ∼ const, ω ∼ ε−2 corresponds to U∗ ∼ εα−2, hence the case
α = 2 looks the most ‘natural’ physically; however other cases can have their own areas of applicability.
As a well known example of an ‘unusual’ dependence of physical parameters on ε one can mention that the
rigorous asymptotic procedure for the ‘inverted pendulum’ is based on the vibrations of a pivot with the
spatial amplitude ∼ ε−1; another example is the Stokes drift where the amplitude of the oscillating velocity
∼ √

ε [27, 28].
13Notice, that we use the notations u, v, w for the components of the partial (artificially defined) field v,

NOT for the physical velocities v∗ or v̂.
14In the mathematical papers on asymptotic methods the standard terminology is the opposite, e.g.

the ‘inner solution’ corresponds to the exterior of the boundary layer. We avoid the use of the purely
mathematical terminology; the reader can find this terminology along with the rigorous exposition of the
method in [7, 8, 9].
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Then the substitution of (2.17) into (2.14) with taking (2.18) into account and replacing z

with s ≡ z/ε produces the equations for the ‘inner’ part of the solution:

uτ − κuss +∇yp = −ε2(ut − κ∆yu)− εα−1Wus − for s > 0 (2.19)

−εα[(U∇y)u + (u∇y)U + (u∇y + w∇s)u]− εα+1U zw,

ps = −ε2(wτ − κwss)− εα+1[(u∇y)W + Wws]−
−εα+2[(U + u)∇yw + w(Wz + ws)]− ε4(wt − κ∆yw),

ws = −∇yu

where we have introduced several auxiliary two-dimensional ‘vectors’ with (x, y)-components

only: y ≡ (x, y), u ≡ (u, v), U ≡ (U, V ), ∇y ≡ (∂/∂x, ∂/∂y), as well as ∆y ≡ ∂2/∂x2 +

∂2/∂y2. We also use ∇z ≡ ∂/∂z and ∇s ≡ ∂/∂s. Equations (2.19) are expressed in the

spatial variables y, s; hence in the functions V = (U, V, W ) one must replace z with εs and

use the Taylor series

V (εs) = V (0) +
∞∑
1

εn

n!
(∇n

z V )z=0s
n for s > 0 (2.20)

where the variables y, t, τ have been suppressed. The substitution of (2.20) into (2.19) reveals

the complete dependence of the ‘inner’ equations on ε. For brevity we will use in all ‘inner’

equations below the notations V , ∇n
z V , etc., omitting the reference that they all are taken

at z = 0.

Equations (2.18)-(2.20) represent the system of equations we have to solve. It has to be

complemented by the boundary conditions (2.15), (2.16) that take form:

U + u = ã, W + εw = 0, at z = s = 0 (2.21)

V → 0, P → 0 as z →∞ (2.22)

v → 0, p → 0 as s →∞ (2.23)

We look for the solution U, V, W, P , and u, v, w, p (all together eight unknown functions that

satisfy (2.18)-(2.23)) in the form of regular series in ε such as

f = f0 + εf1 + ε2f2 + . . . where f = U, V, W, P, u, v, w, p (2.24)

where all terms in the series are 2π-periodic in τ .

For the further use we introduce the following shorthands:

• Operator D[φ, q] (‘Diffusion operator’) for the solution of 1+1 diffusion problem

f = D[φ, q] : fτ − κfss = q for s > 0, f = φ at s = 0, f → 0 as s →∞ (2.25)

where an unknown function is f = f(y, t, s, τ), the boundary datum and the source

terms are φ = φ(y, t, τ) and q = q(y, t, s, τ); the variables y, t play part of parameters15.

In the special case of the homogeneous equation q ≡ 0 we adapt a reduced notation

D[φ, 0] ≡ D[φ] for s > 0 (2.26)

15The initial data at τ = 0 are not relevant, since we work within the class of 2π-periodic in τ functions.
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• Operator A[g] (‘s-averaging operator’) for the averaging over s < ξ < ∞:

A[g] ≡
∫ ∞

s

g(y, ξ, t, τ)dξ for s > 0 (2.27)

We will also use

A∗[g] ≡
∫ s

0

g(y, ξ, t, τ)dξ; A2[g] =

∫ ∞

s

(∫ ∞

ξ

g(y, η, t, τ)dη

)
dξ, etc. (2.28)

One can see that An[g] → 0 when s →∞ for any integer n.

• Operator P[ψ] (‘Potential operator’) for the solution of Neumann’s problem for Laplace’s

equation16

Φ = P[ψ] : ∆Φ = 0 for z > 0; Φz = ψ at z = 0, ∇Φ → 0 as z →∞ (2.29)

where Φ = Φ(y, z, t, τ) and ψ = ψ(y, t, τ).

All three introduced operators (or functionals D,A, P) are linear, they provide the

uniqueness of the solutions, and are equal to zero on the zero functions D[0, 0] = D[0] =

P[0] = A[0] = 0. Their commuting rules (between themselves as well as with ∇y) are ap-

parent. Below the functions φ and ψ (that play a part of the initial data at s = 0 or z = 0

in operators D or P) can also depend on s or z. In this case in the arguments of φ or ψ

one must put s = 0 or z = 0. For example, the sequence of operators PA[g] means that

the previous to P operation A (averaging over s (2.27)) is automatically taken from 0 to ∞.

The explicit analytical forms of operators D (2.25), (2.26) and P (2.29) (e.g. in terms of

Green’s functions) are standard in mathematical physics [29].

3 The Strong Nonlinearity α = 1

3.1 The zeroth approximation for α = 1

The terms of order ε0 = 1 in (2.18)-(2.24) are:

V 0τ = −∇P0, div V 0 = 0 for z > 0 (3.1)

u0τ − κu0ss +∇yp0 = −W0u0s, p0s = 0, w0s = −∇yu0 for s > 0 (3.2)

U 0 + u0 = ã, W0 = 0, at z = s = 0 (3.3)

V 0 → 0, P0 → 0 as z →∞ (3.4)

v0 → 0, p0 → 0 as s →∞ (3.5)

It is convenient to describe its’ solution as a sequence of steps.

16Again, we imply that the boundary conditions at infinity in (2.29) are complemented by the appropriate
restrictions in the variables y = (x, y); it will be discussed later.
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Step 1: The integration of the equation p0s = 0 (3.2) over s gives p0 = p0(y, t, τ) that

after the use of a zero limit for p0 in (3.5) yields p0 ≡ 0 (which implies both p0 ≡ 0 and

p̃0 ≡ 0). Also in the equation for u0 (3.2) the function W0 = W0(y, 0, t, τ) ≡ 0 as it is stated

as the boundary condition for W0 (3.3).

Step 2: We use the fact that all considered functions are 2π-periodic in τ (2.6): hence

they can be split into the ‘bar’ (independent of τ) and ‘tilde’ parts (2.7). The ‘bar’ part17

of (3.1)-(3.5) is:

0 = −∇P 0, div V 0 = 0 for z > 0 (3.6)

κu0ss = 0, w0s = −∇yu0 for s > 0 (3.7)

U 0 + u0 = 0, W 0 = 0, at z = s = 0 (3.8)

V 0 → 0, P 0 → 0 as z →∞ (3.9)

v0 → 0 as s →∞ (3.10)

The integration of ∇P 0 = 0 (3.6) over x, y, z and the use of (3.9) yield P 0 ≡ 0. Similarly, the

integration of u0ss = 0 (3.7) gives u0 as a linear function of s, hence the decay of u0 at s →∞
(3.10) means that u0 ≡ 0. Then the latter equation (3.7) is w0s = 0 that together with the

condition at infinity for w0 (3.10) produces w0 ≡ 0. The result is v0 = (u0, v0, w0) ≡ 0

for s > 0. The use of u0 = 0 in the boundary conditions (3.8) gives V 0 = 0 at z = 0.

Summarizing all ‘bar’ results we write:

P 0 ≡ 0, div V 0 = 0 for z > 0

V 0 = 0 at z = 0

v0 ≡ 0 for s > 0

Step 3: The ‘tilde’ part of (3.1)-(3.5) is:

Ṽ 0τ = −∇P̃0, div Ṽ 0 = 0 for z > 0 (3.11)

ũ0τ = κũ0ss, w̃0s = −∇yũ0 for s > 0 (3.12)

Ũ 0 + ũ0 = ã, W̃0 = 0, at z = s = 0 (3.13)

Ṽ 0 → 0, P̃0 → 0 as z →∞ (3.14)

ṽ0 → 0, p̃0 → 0 as s →∞ (3.15)

Equations (3.11), the latter one in (3.13), and (3.14) form a self-contained system

Ṽ 0τ = −∇P̃0, div Ṽ 0 = 0 for z > 0

W̃0 = 0 at z = 0,

Ṽ 0 → 0, P̃0 → 0 as z →∞
17It mathematically appears as the result of the τ -averaging (2.5) of (3.1)-(3.5).
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which describes a potential motion18 Ṽ 0 = ∇Φ̃0, Φ̃0τ = −P̃0 with zero boundary conditions

for the normal velocity and with decay at infinity:

∆Φ̃0 = 0 for z > 0

Φ̃0z = 0 at z = 0

∇Φ̃0 → 0 as z →∞

By the uniqueness of Neumann’s problem (P[0] = 0 (2.29)) we get Ṽ 0 ≡ 0. Then the

remaining equations (3.11)-(3.15) give us a sequence of two problems. The first one

ũ0τ = κũ0ss, for s > 0

ũ0 = ã at s = 0

ũ0 → 0 as s →∞

can be solved according to (2.25), (2.26) as:

ũ0 = D[ã] for s > 0 (3.16)

The second problem is

w̃0s = −∇y · ũ0 for s > 0

w̃0 → 0 as s →∞

with the solution presented as

w̃0 = ∇y

∫ ∞

s

ũ0(y, η, t, τ)dη ≡ ∇yA[ũ0] = ∇yAD[ã] = AD[∇yã] for s > 0 (3.17)

where the operator A is given in (2.27).

Step 4: Putting all results of the zero approximation together we write that

P 0 ≡ 0, P̃0 ≡ 0, Ṽ 0 ≡ 0 for z > 0 (3.18)

p0 ≡ 0, p̃0 ≡ 0, v0 ≡ 0, ũ0 = D[ã], w̃0 = AD[∇yã] for s > 0 (3.19)

while for the function V 0 we obtained only the constraints

div V 0 = 0 for z > 0 (3.20)

V 0 = 0 at z = 0, V 0 → 0 as z →∞
18The potential Φ̃0 is completely determined via pressure P̃0 by the equation Φ̃0τ = −P̃0, since an arbitrary

function of x, t that appears after the integration over τ vanishes due to the constraints of τ -periodicity and
zero τ -average of both functions.
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3.2 The first approximation for α = 1

The terms of order ε1 = ε in (2.18)-(2.24) are:

V 1τ = −∇P1 − (V 0∇)V 0, div V 1 = 0 for z > 0 (3.21)

u1τ − κu1ss +∇yp1 = −W0u1s − (W1 + sW0z)u0s− for s > 0 (3.22)

−(U 0∇y)u0 − (u0∇y)U 0 − (u0 · ∇y + w0∇s)u0

p1s = 0, w1s = −∇y · u1 for s > 0 (3.23)

U 1 + u1 = 0, W1 + w0 = 0, at z = s = 0 (3.24)

V 1 → 0, P1 → 0 as z →∞ (3.25)

v1 → 0, p1 → 0 as s →∞ (3.26)

Again, we solve this problem as a sequence of steps.

Step 1: The ‘bar’ part of the former equation in (3.21) with taking into account Ṽ 0 ≡ 0

(3.18) gives:

(V 0 · ∇)V 0 = −∇P 1, for z > 0

The combining of this equation with (3.20) produces the full problem for steady Euler’s

equation with zero boundary conditions for all components of V 0: the only solution available

is V 0 ≡ 0. Combining it with Ṽ 0 ≡ 0 (3.18) we get

V 0 = V 0 = Ṽ 0 ≡ 0 for z > 0 (3.27)

and the finding of all functions (3.18)-(3.20) involved into the zero approximation is com-

pleted.

Step 2: The integration of the equation p1s = 0 (3.23) gives p1 = p1(y, t, τ), which

together with the condition for pressure in (3.26) yields p1 ≡ 0.

Step 3: Using V 0 ≡ 0 and p1 ≡ 0 we write the remaining unsolved part of (3.21)-(3.26)

as

V 1τ = −∇P1, div V 1 = 0 for z > 0 (3.28)

u1τ − κu1ss = −q1 for s > 0 (3.29)

w1s = −∇yu1 for s > 0 (3.30)

U 1 + u1 = 0, W1 = −w0 at z = s = 0 (3.31)

V 1 → 0, P1 → 0 as z →∞ (3.32)

v1 → 0 as s →∞ (3.33)

Combining v0 ≡ 0 from (3.19) with W 1 = 0, W̃1 = −w̃0 at z = 0 (that both follow from the

latter equality in (3.31)) one can get

q1 ≡ {(u0∇y) + (W1 + w0)∇s}u0 = Q, (3.34)

Q ≡ {ũ0∇y + (W̃1 + w̃0)∇s}ũ0 = {ũ0∇y − (A∗∇y · ũ0)∇s}ũ0 (3.35)
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where A∗ is defined in (2.28). The introduced value Q plays a key part in all our results

below; by virtue of (3.16),(3.19) it can be explicitly expressed as:

Q = {D[ã]∇y − (A∗D[∇yã])∇s}D[ã] for s > 0 (3.36)

Step 4: The ‘bar’ part of (3.28)-(3.33) can be written as:

P 1 ≡ 0, div V 1 = 0 for z > 0 (3.37)

κu1ss = q1 for s > 0 (3.38)

w1s = −∇yu1 for s > 0 (3.39)

U 1 + u1 = 0, W 1 = 0 at z = s = 0 (3.40)

V 1 → 0, P 1 → 0 as z →∞ (3.41)

v1 → 0 as s →∞ (3.42)

Now q1 = Q (3.34) is known, hence the integrations of (3.38),(3.39) with the use of (3.42)

gives v1 as

u1 =
1

κ

∫ ∞

s

(∫ ∞

ξ

Q(y, η, t)dη

)
dξ =

1

κ
A2Q for s > 0 (3.43)

w1 = ∇y

∫ ∞

s

u1(y, ξ, t)dξ = ∇yAu1 =
1

κ
∇yA3Q

with the operator An defined in (2.28).

Step 5: The ‘tilde’ part of (3.28)-(3.33) is:

Ṽ 1τ = −∇P̃1, div Ṽ 1 = 0 for z > 0 (3.44)

ũ1τ − κũ1ss = −Q̃ for s > 0 (3.45)

w̃1s = −∇yũ1 for s > 0 (3.46)

Ũ 1 + ũ1 = 0, W̃1 = −w̃0 at z = s = 0 (3.47)

Ṽ 1 → 0, P̃1 → 0 as z →∞ (3.48)

ṽ1 → 0 as s →∞ (3.49)

First we consider its subsystem

Ṽ 1τ = −∇P̃1, div Ṽ 1 = 0 for z > 0

W̃1 = −AD[∇yã] at z = s = 0

Ṽ 1 → 0, P̃1 → 0 as z →∞
where the expression for w̃0 at s = 0 is taken from (3.19) and the s-averaging A is taken

over (0,∞). It can be rewritten as Neumann’s problem for the potential19 Φ̃1(x, t, τ)

∆Φ̃1 = 0 for z > 0

Φ̃1z = −AD[∇yã] at z = 0

∇Φ̃1 → 0 as z →∞
19Again, the potential Φ̃1 is uniquely determined via pressure P̃1 due to the constraints of τ -periodicity

and zero τ -average.
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such that:

Ṽ 1 = ∇Φ̃1, Φ̃1τ = P̃1 (3.50)

According to (2.29) its solution is

Φ̃1(x, t, τ) = −PAD[∇yã] for z > 0 (3.51)

Next we can consider the remaining part of the system (3.44)-(3.49):

ũ1τ − κũ1ss = −q̃1 for s > 0

w̃1s = −∇yũ1 for s > 0

ũ1 = ∇yPAD[∇yã] at s = 0

ṽ1 → 0 as s →∞

with Ũ 1 = ∇yΦ̃1 taken from (3.51). It gives us an inhomogeneous 1+1 diffusion problem

for ũ1. According to (2.25),(3.34) its solution is:

ũ1 = D[∇yPAD[∇yã],−Q̃] for s > 0 (3.52)

Step 6: At this stage we have found all unknown functions of the first approximation

except V 1. In order to find V 1 we have to consider the original V -equation (2.18) for the

next two approximations:

V 2τ = −∇P2 + κ∆V 0 − V 0t − (V 0∇)V 1 − (V 1∇)V 0

V 3τ = −∇P3 + κ∆V 1 − V 1t − (V 0∇)V 2 − (V 2∇)V 0 − (V 1∇)V 1,

With V 0 ≡ 0 (3.27) these equations are reduced to

V 2τ = −∇P2, V 3τ = −∇P3 + κ∆V 1 − V 1t − (V 1∇)V 1

The former equation allows us to find V 2 that is out of the scope of our calculations. Taking

the ‘bar’ part of the latter equation yields

V 1t + (V 1∇)V 1 + 〈(Ṽ 1∇)Ṽ 1〉 = −∇P 3 + κ∆V 1

that with the use of (3.37),(3.40),(3.41),(3.50) can be transformed into the exact Navier-

Stokes system in the slow time variable t:

V 1t + (V 1∇)V 1 = −∇Π1 + κ∆V 1, div V 1 = 0 for z > 0 (3.53)

U 1 = −u1, W 1 = 0 at z = 0

V 1 → 0, as z →∞

with Π1 ≡ P 3 + 〈(∇Φ̃1)
2/2〉. We denote its solution as the action of the Navier-Stokes

operator N on the tangential velocity U 1 = −u1 at z = 0

V 1 = N[−u1] = N[−1

κ
A2Q] for z > 0 (3.54)
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where u1 is taken from (3.43). For simplicity we choose that for an unsteady streaming

V 1 ≡ 0 at t = 0; if it happens to be not true, then the initial data should be addition-

ally incorporated into the definition of N. For the t-independent solutions (for the steady

streaming) the initial data at t = 0 is irrelevant.

Step 7: The final form of solution. At this stage we have determined all unknown

functions of the first two approximations. Now we gather all results of this section together

and present the solution of (2.14)-(2.16) for α = 1 as an approximation with an error O(ε2)

û = ũ0 + ε(U 1 + Ũ 1 + u1 + ũ1) + O(ε2) for z > 0 (3.55)

ŵ = ε(w̃0 + W 1 + W̃1) + O(ε2)

p̂ = εP̃1 + O(ε2)

where ũ0, w̃0 are given by (3.19); U 1, W 1 by (3.54); Ũ 1, W̃1, and P̃1 by (3.50),(3.51); u1 by

(3.43),(3.36); and ũ1 by (3.52),(3.36). One can see that non-oscillating (streaming) ‘outer’

fields U 1,W 1 appear already in the first approximation, hence we stop our calculations

here20. It must be emphasised that in (3.55) we replace s → z/ε, τ → ωt, so the whole

expression appears as a function of x, y, z, t.

Step 8: The justification of the two-timing method. Now we can perform the following

key operation. After replacements s → z/ε, τ → ωt in (3.55) we substitute it into (2.1)-(2.3),

(2.6). Then one can see that the use of the chain rule of the differentiation leads to the recon-

sidering of the whole above procedure. Hence the original governing equations are satisfied

with the error (reminder) O(ε2)21. It serves as a posteriori mathematical justification of the

two-timing method. It is also worth to state that as soon as the analytical solution (3.55)

has been explicitly written and its mathematical justification is performed, one can use it

without any reference to the method of its deriving.

4 The Moderate α = 2 and Weak α = 3 Nonlinearities

Solving the cases α = 2 and α = 3 are somewhat similar to α = 1. However in order to reach

the first streaming terms we have to make extra steps in the successive approximations: one

extra step for α = 2 and two steps for α = 3. Below we present these results briefly, avoiding

all comments that have been already made. In this section we give the sequence of steps

describing the solution for α = 2 and by the end we present only one selected result for

α = 3.

20The entire next approximation (proportional to ε2) has been also found by a similar procedure that is
not presented here. Some parts of this higher approximation have already been calculated: for example w̃1

(3.43). Looking at the whole problem one can notice that the mathematical structure of the problems for
the successive approximations indicates that any required (n-th) approximation can be found.

21The terms U1, W 1 from (3.55) are not fully required to satisfy the equations with this error (actually
they fully appear only in the equations of order ε3). Therefore two problems: (i) to calculate an approximate
solution with a given order of the remainder O(εn); and (ii) to satisfy the governing equations with the error
of the same order O(εn), are different. Clearly the first task requires more information than the second one.
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4.1 The zero approximation for α = 2

The terms of order ε0 = 1 in (2.18)-(2.24) are:

V 0τ = −∇P0, div V 0 = 0 for z > 0 (4.1)

u0τ − κu0ss +∇yp0 = 0, p0s = 0, w0s = −∇yu0 for s > 0 (4.2)

U 0 + u0 = ã, W0 = 0, at z = s = 0 (4.3)

V 0 → 0, P0 → 0 as z →∞ (4.4)

v0 → 0, p0 → 0 as s →∞ (4.5)

The only difference with (3.1)-(3.5) is: the term−W0u0s that appears in the right hand side of

the first equation (3.2) for α = 1, in its α = 2 counterpart (4.2) does not appear from the very

beginning. However this term vanishes in (3.2) due to the boundary condition W0 = 0 (3.3).

Therefore the system of equations (3.1)-(3.5) and (4.1)-(4.5) are mathematically identical.

Hence the results for (4.1)-(4.5) are the same as (3.18)-(3.20):

P 0 ≡ 0, P̃0 ≡ 0, Ṽ 0 ≡ 0 for z > 0 (4.6)

p0 ≡ 0, p̃0 ≡ 0, v0 ≡ 0, ũ0 = D[ã], w̃0 = AD[∇yã] for s > 0 (4.7)

div V 0 = 0 for z > 0, V 0 = 0 at z = 0, V 0 → 0 as z →∞ (4.8)

4.2 The first approximation for α = 2

The terms of order ε1 = ε in (2.18)-(2.24) are:

V 1τ = −∇P1, div V 1 = 0 for z > 0 (4.9)

u1τ − κu1ss +∇yp1 = −W0u0s for s > 0 (4.10)

p1s = 0, w1s = −∇y · u1 for s > 0 (4.11)

U 1 + u1 = 0, W1 + w0 = 0, at z = s = 0 (4.12)

V 1 → 0, P1 → 0 as z →∞ (4.13)

v1 → 0, p1 → 0 as s →∞ (4.14)

Step 1: The integration of the equation p1s = 0 (4.11) gives p1 = p1(y, t, τ) which along

with the condition for pressure in (4.14) yields p1 ≡ 0. Also W0 = 0 in (4.10) by virtue of

the latter condition (4.3).

Step 2: The ‘bar’ part of the remaining unsolved part of the system (4.9)-(4.14) is:

0 = −∇P 1, div V 1 = 0 for z > 0

u1ss = 0 w1s = −∇y · u1 for s > 0

U 1 + u1 = 0, W 1 + w0 = 0, at z = s = 0

V 1 → 0, P 1 → 0 as z →∞
v1 → 0, as s →∞
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The consideration similar to (3.6)-(3.10) (with the use of v0 ≡ 0 (4.7)) yields:

P 1 ≡ 0, div V 1 = 0 for z > 0 (4.15)

V 1 = 0 at z = 0 (4.16)

v1 ≡ 0 for s > 0 (4.17)

Step 3: The ‘tilde’ part of (4.9)-(4.14) is:

Ṽ 1τ = −∇P̃1, div Ṽ 1 = 0 for z > 0 (4.18)

ũ1τ − κũ1ss = 0 for s > 0 (4.19)

w̃1s = −∇yũ1 for s > 0 (4.20)

Ũ 1 + ũ1 = 0, W̃1 = −w̃0 at z = s = 0 (4.21)

Ṽ 1 → 0, P̃1 → 0 as z →∞ (4.22)

ṽ1 → 0 as s →∞ (4.23)

It coincides with (3.44)-(3.49) where we have to take Q̃ ≡ 0. Therefore we can rewrite the

results as

Φ̃1(x, t, τ) = −PAD[∇yã], Ṽ 1 = ∇Φ̃1, Φ̃1τ = P̃1 for z > 0 (4.24)

that coincides with (3.50), (3.51) and

ũ1 = DPAD[∇y(∇yã)], w̃1 = A∇yũ1 = ADPAD[∇2
y(∇yã)] for s > 0 (4.25)

that coincides (3.52) with additional simplification Q̃ ≡ 0. Here we have also used the fact

that the operator ∇y commutes with any other operators involved into (4.25).

4.3 The second approximation for α = 2

The terms of order ε2 in (2.18)-(2.24) are:

V 2τ = −∇P2 − {V 0t + (V 0 · ∇)V 0 − κ∆V 0}, div V 2 = 0 for z > 0 (4.26)

u2τ − κu2ss +∇yp2 = −W0u1s − (W1 + sW0z)u0s− for s > 0 (4.27)

−(U 0∇y)u0 − (u0∇y)U 0 − (u0 · ∇y + w0∇s)u0 −
−(u0t − κ∆yu0)

p2s = −w0τ + κw0ss, w2s = −∇y · u2 for s > 0 (4.28)

U 2 + u2 = 0, W2 + w1 = 0, at z = s = 0(4.29)

V 2 → 0, P2 → 0 as z →∞ (4.30)

v2 → 0, p2 → 0 as s →∞ (4.31)

Step 1: In the former equation (4.28) p2s = −w0τ + κw0ss the value w0 ≡ 0 by (4.7).

Hence with the use of (4.31) we derive p2 ≡ 0. Next, the direct calculations based on the
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solution w̃0 = AD[∇yã] (4.7) show that w̃0τ − κw̃0ss ≡ 0. Hence from the former equation

(4.28) we also derive that p̃2 ≡ 0, so the full function p2 ≡ 0 for s > 0.

Step 2: With the use of Ṽ 0 ≡ 0 (4.6) the bar part of the former equation (4.26) combined

with (4.8) gives a system

V 0t + (V 0 · ∇)V 0 − κ∆V 0 = −∇P 2 div V 0 = 0 for z > 0 (4.32)

V 0 = 0 at z = 0, V 0 → 0 as z →∞
that represents the exact Navier-Stokes equations with zero boundary conditions. The only

available solution is V 0 ≡ 0, P 2 ≡ 0. Combining is with Ṽ 0 ≡ 0 (4.6) we conclude that

V 0 ≡ 0 for z > 0 (4.33)

Step 3: After taking into account p2 ≡ 0, V 0 ≡ 0 the system (4.26)-(4.31) simplifies to:

V 2τ = −∇P2, div V 2 = 0 for z > 0 (4.34)

u2τ − κu2ss = −q2, w2s = −∇y · u2 for s > 0 (4.35)

q2 = Q + u0t − κ∆yu0 (4.36)

U 2 + u2 = 0, W2 + w1 = 0, at z = s = 0 (4.37)

V 2 → 0, P2 → 0 as z →∞ (4.38)

v2 → 0 as s →∞ (4.39)

where Q is given in (3.35),(3.36); in the transformations of q2 into the form (4.36) we used

u0 ≡ 0 (4.7) as well as W 1 = 0 and W̃1 = −w̃0 at z = 0 (4.16), (4.21).

Step 4: The ‘bar’ part of (4.34)-(4.39) is:

P 2 ≡ 0, div V 2 = 0 for z > 0 (4.40)

κu2ss = q2 for s > 0 (4.41)

w2s = −∇yu2 for s > 0 (4.42)

U 2 + u2 = 0, W 2 + w1 = 0 at z = s = 0 (4.43)

V 2 → 0, P 2 → 0 as z →∞ (4.44)

v2 → 0 as s →∞ (4.45)

It follows from (4.36) and u0 ≡ 0(4.7) that q2 = Q. Then the integration of (4.41),(4.42),(4.45)

gives v2 as

u2 =
1

κ
A2Q, w2 =

1

κ
∇yA3Q for s > 0 (4.46)

that coincides with (3.43), except it is valid in the second approximation.

Step 5: The ‘tilde’ part of a subsystem from (4.34)-(4.39) is:

Ṽ 2τ = −∇P̃2, div Ṽ 2 = 0 for z > 0

W̃2 = −w̃1 = −ADPAD[∇2
y(∇yã)] at z = s = 0

Ṽ 2 → 0 as z →∞
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where w̃1 is taken from (4.25). This system (in agreement with (2.29))immediately produces

the potential solution:

Φ̃2 = −(PAD)2[∇2
y(∇yã)], Ṽ 2 = −∇Φ̃2, P̃2 = −Φ̃2τ for z > 0 (4.47)

The ‘tilde’ part of another subsystem from (4.34)-(4.39) is:

ũ2τ − κũ2ss = −q̃2, q̃2 = Q̃ + ũ0t − κ∆yũ0 for s > 0 (4.48)

ũ2 = −Ũ 2 at z = s = 0, ũ2 → 0 as s →∞

With the use of (2.25) its solution is presented as

ũ2 = −D[Ũ 2, q̃2] for s > 0 (4.49)

with Ũ 2, q̃2 taken from (4.47),(4.48),(3.36),(3.16).

Step 6: At this stage we have found all unknown functions of the first and second

approximations except V 1 and V 2 . In order to find them we consider the V -equation

(2.18) for the next two approximations:

V 3τ = −∇P3 − {V 1t − κ∆V 1 + (V 0∇)V 1 + (V 1∇)V 0} (4.50)

V 4τ = −∇P4 − {V 2t − κ∆V 2 + (V 0∇)V 2 + (V 2∇)V 0 + (V 1∇)V 1} (4.51)

With V 0 ≡ 0 (4.33) these equations are reduced to:

V 3τ = −∇P3 − V 1t + κ∆V 1, V 4τ = −∇P4 − V 2t + κ∆V 2 − (V 1∇)V 1 (4.52)

The ‘bar’ part of the former equation together with (4.15),(4.16),(4.22) gives us the following

system of equation for V 1

V 1t − κ∆V 1 = −∇P 3, div V 1 = 0 for z > 0 (4.53)

V 1 = 0 at z = 0, V 1 → 0 as z →∞

that represents the unsteady Stokes equations with zero boundary conditions. Due to the

uniqueness its solution is:

V 1 ≡ 0 P 3 ≡ 0 for z > 0 (4.54)

The ‘bar’ part of the latter equation (4.52) together with (4.54),(4.40),(4.43),(4.44),(4.17)

gives us the following system of equation for V 2

V 2t − κ∆V 2 = −∇Π2, div V 2 = 0 for z > 0 (4.55)

U 2 = −u2, W 2 = 0 at z = 0

V 2 → 0, as z →∞
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where Π2 ≡ P 4 + 〈(∇Φ1)
2〉/2. One can see that it represents the unsteady Stokes equations

with the well defined by (4.46) boundary conditions. We denote its solution as the action of

the Stokes operator S on the tangential velocity U 2 = −u2 (4.46) at the plane z = 0

V 2 = −S[u2] = −1

κ
S[A2Q] for z > 0 (4.56)

Similar to (3.54) for simplicity we choose that for an unsteady streaming V 2 ≡ 0 at t = 0; if

it happens to be not true, then the initial data should be additionally incorporated into the

definition of S. For the t-independent solutions (for the steady streaming) the initial data

at t = 0 is irrelevant.

Step 7: The final form of solution. At this stage we have determined all unknown

functions of the first three approximations. Now we gather all results of this section together

and present the solution of (2.14)-(2.16) for α = 2 as an approximation with an error of order

O(ε3):

û = ũ0 + ε(Ũ 1 + ũ1) + ε2(U 2 + Ũ 2 + u2 + ũ2) + O(ε3) (4.57)

ŵ = ε(w̃0 + W̃1) + ε2(w̃1 + W 2 + W̃2) + O(ε3)

p̂ = εP̃1 + ε2P̃2 + O(ε3)

where ũ0, w̃0 are given by (4.7); Ũ 1, W̃1, and P̃1 by (4.24); ũ1, w̃1 by (4.25), U 2, W 2 by

(4.56); P̃2, Ũ 2, W̃2 by (4.47); u2 by (4.46),(3.36); and ũ2 by (4.49),(3.36). One can see that

non-oscillating (streaming) ‘outer’ fields U 2,W 2 appear in the second approximation, hence

we stop our calculations here.

Step 8: The justification of the two-timing method. In the right hand sides of (4.57) one

should take τ = ωt, s = z/ε. Then similar to the case α = 1 it can be shown that (4.57)

satisfies the original equations (2.1)-(2.3), (2.6) with the error (reminder) O(ε3).

4.4 The Weak Nonlinearity: α = 3

The case of α = 3 requires more cumbersome calculations that should be carried forward

considering the terms up to ε3, so that the remainders in the final expressions similar to

(3.55), (4.57) are of order O(ε4). For brevity we do not present these calculations here, since

further we need only the equations for V 3, that appears identical to (4.55),(4.56), except

that all subscripts ‘2’ must be changed to ‘3’. Correspondingly, the final answer for V 3 is

similar to (4.56):

V 3 = −S[u3] = −1

κ
S[A2Q] for z > 0 (4.58)

5 Brief Examples

The most striking result of the above considerations is the deriving of the exact Navier-Stokes

equations (3.53) or unsteady Stokes equations (4.55) (both with the unit viscosity coefficients
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κ = 1) along with precisely defined boundary conditions for the streaming velocity fields V 1

(3.54), V 2 (4.56), and V 3 (4.58). For the universality in notations we denote these streaming

fields as V (α) with α = 1, 2, 3, where the subscript is taken into the parentheses in order to

emphasise that it simultaneously represents the value of α identifying one of tree considered

problems and (according to our solutions) the order of the first non-oscillating (streaming)

terms. It is remarkable and surprising that the the boundary conditions at z = 0 are the

same for all three fields V (α); they are given by the expression:

V (α) = (U (α),W (α)) where U (α) = −A2Q/κ, W (α) = 0 (5.1)

Such a coincidence between the effective boundary conditions demonstrates a strong ten-

dency of the streaming velocity field to the universality22. In the special case of the t-

independent boundary conditions (ãt = 0 in (2.2),(2.4)) functions V (α)(x, t) describe a

steady streaming, otherwise they will give us an unsteady streaming. In particular, one can

consider the time-dependent establishing of a steady streaming: a ‘start-up’ problem with

initially zero velocity of the fluid and the boundary with a slow increasing of the boundary

velocities up to a purely oscillating field.

Using the integration by parts one can represent u(α) (3.43),(4.46),(3.36) as

u(α) =
1

κ
A2Q =

1

κ
(A2R + AS) for s > 0 (5.2)

R ≡ (ũ0∇y)ũ0 + ũ0(∇yũ0), S ≡ ũ0

∫ s

0

(∇yũ0)ds′ = ũ0A
∗[(∇yũ0)]

where ũ0 = D[ã] (4.7),(3.16),(2.26). In order to study an example of the steady or unsteady

streaming one should choose a particular boundary velocity ã (2.2),(2.4)), calculate ũ0 =

D[ã], then calculate u(α) in (5.1) (5.2), and finally solve the Navier-Stokes or Stokes equations

(3.54),(4.56),(4.58) for z > 0:

V 1 = N[−1

κ
A2Q] for α = 1, V 2,V 3 = −1

κ
S[A2Q] for α = 2, 3 (5.3)

There are some examples below.

5.1 The harmonic oscillations of the boundary

A General Wave: Let us take

ã = ã(y, t, τ) = A(y, t) sin τ + B(y, t) cos τ (5.4)

that represents a sum of two standing (in the ‘fast time’ τ) harmonic waves with the given

amplitude functions A and B. The correspondent expression for ũ0 = D[ã] is well known

as the solution of the Stokes’ second problem [30, 2, 1]:

ũ0 = Ae−γs sin(τ − γs) + Be−γs cos(τ − γs), γ ≡ 1/
√

2κ

22In contrast, one can see that the oscillating parts of velocity fields for different α are different
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Calculations of (5.2) at s = 0 yield

u(α) =
1

4
{(A∇y)A + (B∇y)B + 2A(∇yA) + 2B(∇yB) + (5.5)

+B(∇yA)−A(∇yB)}
where the parameter κ has been eliminated during the transformations. Expression (5.5)

does not represent a divergent form in variables (x, y), therefore even the spatially periodic

in these variables A and B produce the nonzero averaged (over (x, y)) boundary value for

U (α). For a single harmonic B = 0 it simplifies to

u(α) =
1

4
{(A∇y)A + 2A(∇yA)} (5.6)

A Standing Wave: The simplest harmonic standing wave boundary conditions A = iA(t) sin kx

gives

U (α) = −i
3kA2

8
sin 2kx, W (α) = 0 at z = 0 (5.7)

where A(t) is a scalar function and i is the unit vector in the x-direction. For the steady

Stokes equation A = const corresponding to α = 2, 3 the steady streaming flows coincide with

the creeping ones and satisfy to the bi-harmonic equation ∇4Ψ(α) = 0 for the streamfunction

Ψ(α)(x, z) [2, 38, 45]. The explicit and exact solution is:

Ψ(α) = −3kA2

8
ze−2kz sin 2kx, U (α) =

∂Ψ(α)

∂z
, W (α) = −∂Ψ(α)

∂x
(5.8)

For α = 1 the correspondent steady exact solution of the Navier-Stokes equations (the former

case in (5.3)) can be calculated as a series in the powers of small amplitude A, where the

zero approximation is given by (5.8). We do not present this solution here.

A Travelling Wave: As the next example we consider a travelling wave

ã = iA(t) cos(kx− τ) (5.9)

It corresponds to the field (5.4) with A = iA cos kx, B = iA sin kx. Their substitution into

(5.5) gives the boundary conditions

U (α) = −i
kA2(t)

4
, W (α) = 0 at z = 0 (5.10)

that correspond to the constant effective motion of the boundary in the direction opposite

to the propagation of the wave (5.9)23. For any function A(t) these boundary conditions

produce the same unsteady unidirectional exact solutions (satisfying the 1+1 dimensional

diffusion equation) for all three cases α = 1, 2, 3. These solutions are well known, therefore

they are also not presented here24. At the same time all such steady solutions (for A = const)

correspond to the motion of all media with the same velocity (5.10)25.

23It is interesting to see that in a similar problem for the Stokes flows (modelling a self-swimming of a
‘plane microorganism’ [18]) the direction of the streaming is also opposite to the velocity of wave propagation.

24The exact analytical solution of this problem in the most general case can be found in [29].
25The required changing of the boundary conditions at infinity does not create any difficulties here; this

question will be addressed later.

21



5.2 Divergence-free motions of the boundary. An oscillating disc.

All previous results can be greatly simplified when ∇yã = 0. This restriction leads to the

vanishing of all oscillating fields (except ũ0) preceding to the first non-oscillating (streaming)

terms as well as the ‘outer’ oscillating term Ṽ (α) of the same order as the streaming one. For

example, for α = 1 it is easy to check that in (3.55) the oscillating terms w̃0 ≡ 0, Ũ 1 ≡ 0,

W̃1 ≡ 0, and P̃1 ≡ 0, so the solution takes form

û = ũ0 + ε(U 1 + u1 + ũ1) + O(ε2) (5.11)

ŵ = εW 1 + O(ε2)

p̂ = O(ε2)

where the expression for ũ0 stays the same (3.16), (2.25), while V 1, u1, and ũ1 are

V 1 = N[−1

κ
A2Q], ũ1 = −D[0, Q̃], u1 =

1

κ
A2Q, (5.12)

where the expression for Q is also much simpler then (3.36):

Q ≡ (ũ0∇y)ũ0 = (D[ã]∇y)D[ã] for s > 0 (5.13)

The solutions for α = 2, 3 take similar to (5.11) forms:

û = ũ0 + εα(U (α) + u(α) + ũ(α)) + O(εα+1) (5.14)

ŵ = εW (α) + O(εα+1)

p̂ = O(εα+1)

where the expression for u(α) is the same as for u1 in (5.12), while ũ(α) = D[0,−ũ0 +

κ∆yũ0 − Q̃], and in V (α) the Navier-Stokes operator is replaced with the Stokes one (5.3).

For the general wave boundary condition (5.4) expression (5.5) simplifies to

u(α) =
1

4
{(A∇y)A + (B∇y)B} (5.15)

which shows that these two harmonics are almost independent (they still interact for α = 1,

since the Navier-Stokes equations are nonlinear).

Expressions (5.11)-(5.15) allow us to build many interesting solutions. We restrict our-

selves only with the torsional oscillations of an infinite rigid disc with the boundary condition:

ã = Ω(−y, x) cos τ = Ω(−y, x) cos ωt (5.16)

There is a possibility to consider an arbitrary function Ω = Ω(t), but we take only Ω = const.

In this case we have a degeneration in the list of parameters (2.11)-(2.13) since the set of

U∗, L∗, T ∗, ω, and ν is replaced with Ω, ω, and ν. It means that the introduction of the

dimensionless variables should be performed independently. In all cases α = 1, 2, 3 one can

take

T ∗ = 1/Ω, L∗ =
√

ν/Ω, U∗ =
√

νΩεα−2 (5.17)

22



If one accepts (5.17) then it follows that Ω/ω = ε2 and the dependencies of the scaling

parameters S(1), S(2) and R on ε are the same as in (2.13). Therefore all three considered

cases are applicable to the flows driven by an oscillating disc.

The substitution of (5.16) into (5.15) with B = 0 produces the boundary conditions:

U (α) = −1

4
(A∇y)A = ky = k(x, y); k ≡ 1

4
Ω2 (5.18)

that is easy to derive since (A∇y)A here represents the classical centrifugal acceleration

for a ‘velocity field’ A(y) = Ω(−y, x) of the rigid-body rotation. One can see that (5.18)

gives the linear stretching of the wall z = 0. The corresponding solutions are well known

[5, 23, 24, 25]. They have the form

U (α) = kxfη(η, t), V (α) = kyfη(η, t), W (α) = −2
√

κkf(η, t); η ≡
√

k/κz (5.19)

with an unknown function f(η, t). The arising problem for the Navier-Stokes equations

(α = 1) is:

1

κ
ftη + f 2

η − 2ffηη − fηηη = 0 (5.20)

f(0, t) = 0, fη(0, t) = 1, fη(η, t) → 0 as η →∞ (5.21)

f(η, 0) = 0 (5.22)

The last condition in (5.21) shows that we require only the vanishing of U (α) and V (α) at

z → ∞ but leave W (α) free to make the problem solvable. This change of the boundary

condition is justified at the end of this subsection.

For the steady solution of (5.20)-(5.22) ft ≡ 0 and the initial data (5.22) should be

abolished; the exact solution of this problem in a closed analytical form is given in [24]26.

For α = 2, 3 the similar problem for the Stokes equation is:

ftη − κfηηη = 0 (5.23)

f(0, t) = 0, fη(0, t) = 1, fη(η, t) → 0 as η →∞ (5.24)

f(η, 0) = 0 (5.25)

This system can be solved by the integration of (5.23) once over η

ft − κfηη = Ft(t) (5.26)

where Ft(t) is an arbitrary function of integration. Then without the introducing of any

additional restrictions we accept that

f(η, t) → F (t) as η →∞, F (0) = 0 (5.27)

26This solution is too cumbersome to quote here.
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where the former condition is the same as fηη → 0 as η → ∞. Then the introduction of a

new function g ≡ f − F transforms (5.23)-(5.27) into the system

gt − κgηη = 0 (5.28)

gη(0, t) = 1; g(η, t) → 0, as η →∞ (5.29)

g(η, 0) = 0 (5.30)

with the additional conditions

g(0, t) = −F (t), gη(η, t) → 0, as η →∞ (5.31)

The solution of (5.28)-(5.30) coincides with one for the unidirectional flow driven by the

constant surface stress applied at z = 0 [31]:

g(η, t) = (4κt)1/2[ξerfc{ξ} − π−1/2 exp(−ξ2)], ξ ≡ η/
√

4κt (5.32)

where erfc{ξ} is the complimentary error function. This solution automatically satisfies

the latter condition in (5.31). At the same time the former condition in (5.31) gives F (t) =

−g(0, t) = (4κt/π)1/2 that immediately produces the required function f(η, t) = g(η, t)+F (t)

for (5.19). In particular, the flow at z →∞ is purely vertical and uniform with the velocity

W (α) = −4κk
√

t/π (5.33)

It shows that the vertical velocity is growing in its amplitude W (α) → −∞ as t →∞. This

result can be anticipated, since the governing equation (5.23) for a steady flow degenerates

to fηηη = 0 that has a quadratic polynomial in η as its general solution. Taking into account

only the boundary condition fη(0, t) = 1 (5.24) leaves out of this polynomial only f = η,

that also shows that W (α) → −∞ as z →∞ for the steady problem. Such kind of a secular

behaviour at infinity is typical and well known for the steady Stokes equations [2, 38, 45].

Justification of the Changed Boundary Condition at z → ∞: The accepted boundary

condition at z → ∞ in (5.21),(5.24) differs from the considered in the bulk of the paper

by the allowing a nonzero limit for W (α). Here we state that all considered in this paper

problems allow the introduction of that kind of change. It is easy to show by inspection of our

asymptotic solutions that: (i) one can keep the requirement that the oscillating parts of both

velocity and pressure are vanishing at infinity, while (ii) the non-oscillating parts V (α) at

infinity can be prescribed arbitrary. Physically, it corresponds to the placing at infinity some

external devices that maintain a non-oscillating streaming flow at infinity. The considered

case, when the vertical non-oscillating velocity at infinity appears as an eigenvalue is a special

case of this statement. The related simplest approach is to keep (in the procedure of the

successive approximations) all boundary conditions at infinity vanishing until it becomes

necessary to abolish a part of these conditions in order to keep the problem solvable.
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6 Discussion

The aim of this paper is to develop a general theory of vibrational boundary layers by the

V-L method. For this reason we have chosen the simplest geometry but studied the most

general oscillating tangential velocity field. Our choice of purely tangential vibrations is not

enforced by any mathematical difficulties or restrictions. If one considers the nonzero normal

vibrations of a plane (deformations of a plane) then the using of the V-L method remains

straightforward and the obtaining of solutions is simpler than the described in this paper.

The simplification reveals itself as the appearance of the streaming flows one step earlier

in the successive approximations. However the systematic comparison of such new results

(obtained by the V-L method, but not presented here) and the old ones (obtained from the

classical boundary layer theory in [32, 33, 34, 18, 16, 5, 35]) requires significant efforts that

are beyond the scope of this paper.

There are at least two papers [19, 20] devoted to a torsionally oscillating infinite rigid disc:

[19] uses the method of matching asymptotic expansions, while [20] gives the global solution.

It is likely that the author of [20] independently discovered a special form of the V-L method.

It is also likely that he considered our case α = 1 and presented similar results in a different

form. At the same time there are some other interesting flows caused by purely tangential

vibrations; these flows can have either zero or nonzero tangential velocity divergence at the

boundary. For example, all papers on the torsional oscillations of axisymmetric solids e.g.

[36] belong to the first class (of zero tangential divergence). As an interesting flow of the

second class (of non-zero tangential divergence) we can mention Batchelor’s flow caused

by a rotating cylinder with a fixed sleeve [37, 38, 39]. There are also potential interesting

problems in biology and medicine where the purely tangential oscillations of boundaries may

have applications [40, 41].

Going back to the introducing of small parameters (2.13) one can check that the accepted

relation 1/ωT∗ = λε2 can be relaxed by allowing 1/ωT∗ ∼ εβ with β > 2 where β = 2.

The straightforward inspection of our solutions shows that the taking of β > 2 causes the

vanishing of the derivatives ∂/∂t in the leading order equations for a streaming. In this

case, instead of the full Navier-Stokes (3.53) or the unsteady Stokes (4.55) equations, the

streaming will be governed by their ‘steady’ versions, while the time t will be allowed to play

a part of a parameter.

One can also consider α > 3; the apparent result will be the ‘moving’ of nonlinear terms

to the higher approximations, in such a way that the number of successive approximations

required to obtain the leading term for the streaming will be equal to α.

In connection to the multiplicity of the asymptotic models (with different α’s and β’s)

one can try to identify the ‘most valuable practically’ or the ‘most important theoretically’

scaling. This interesting question remains open, however the choice of α = 1 and β = 2 likely

gives the ‘strongest nonlinearity’ and the ‘strongest unsteadiness’ of the considered problem

(2.8)-(2.13). Our attempts to lower either or both of these two numbers have resulted in
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the failing to derive self-consistent equations for successive approximations27. However the

case α = 0 (or α = 1 for vibrations with normal component) may require further studies

aimed to discover the phenomena of the ‘high streaming Reynolds number’ and the ‘double

boundary layers’ [3, 5] within the V-L method.

The choosing of the general periodical boundary conditions for velocity (2.2) has one

hidden danger: they can give the Stokes drift [42, 2] of the material points of the boundary

plane itself. We do not discuss this interesting question here; among our examples only the

travelling wave (5.9),(5.10) causes such a drift that can be calculated by the method [28].

However, as it is well known the Stokes drift of the boundary particles is a phenomenon

different from the steady streaming [5]. At the same time it is interesting to see that for the

travelling wave the directions of the the wave propagation (5.9) and the Stokes drift [42, 2]

are always the same, while the calculated streaming (5.10) has the opposite direction.

We deliberately avoided almost all considerations of the stresses and forces exerted on

the boundary. Their studies are certainly important and have numerous applications e.g.

to the streaming flows generated by surface waves [43, 44]. The used technique is certainly

applicable to this case.

The surprising fact that the streaming (the non-oscillating part of a flow) can be governed

by the steady or unsteady versions of Stokes equations with the unit viscosity shows a new

area of using the numerous known results for the creeping flows [38, 45]. The further ex-

ploiting of the Navier-Stokes equations is also likely, since the classes of boundary conditions

that have earlier been considered as being ‘too artificial’ and ‘unrealistic’, now may attract

interest. One actually can consider an ‘inverse problem’ of starting from an arbitrary chosen

boundary data (for the Stokes or Navier-Stokes equations) and obtaining such vibrations of

boundary that produce such boundary data for a streaming flow.

Finally, we emphasise the key items obtained in the paper: (i) all derived solutions are

global (valid in the whole flow domain), uniform (satisfy the governing equations with a given

error), and do not contain any secular terms; (ii) there are many solutions corresponding

to the different ways of the introduction of small parameter; and (iii) the streaming flows

(either steady or unsteady) are described by the Navier-Stokes or by Stokes equations with

unit viscosity and with explicitly defined effective boundary conditions (data); strikingly

these conditions are the same for solutions with different scalings.
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