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Abstract
History matching is the process of integrating dynamic

production data in the reservoir model. It consists in
estimation of uncertain model parameters such that oil
or water production data from flow simulation become
close to observed dynamic data. Various optimization
methods can be used to estimate the model parameters.

Simultaneous perturbation stochastic approximation
(SPSA) is one of the stochastic approximation algo-
rithms. It requires only two objective function measure-
ments for gradient approximation per iteration. Also pa-
rameters estimated by this algorithm might converge to
their true values under arbitrary bounded additive noise,
while many other optimization algorithms require the
noise to have zero mean.

SPSA algorithm has not been well explored for history
matching problems and has been applied only to simple
Gaussian models.

In this paper, we applied SPSA to history matching
of binary channelized reservoir models. We also used
SPSA in combination with parameterization method
CNN-PCA. And we considered the case of complex
noise in observed production data and with objective
function that does not require assumptions of normality
of the observations, which is common in history match-
ing literature. We experimentally showed that SPSA
method can be successfully used for history matching
of non-Gaussian geological models with different types
of noise in observations and outperforms Particle Swarm
Optimization by convergence speed.

Key words
Randomized algorithms, SPSA, Machine learning,

Adaptive systems, Geological Modelling

1 Introduction
Geological models are used in many tasks related to the

development of mineral deposits. They allow assessing
the cost and potential success of such activities as seis-
mic exploration, placement of new wells and forecasting
of oil production. In order to make a geological model
useful in making the right decisions in such activities, it
is necessary that the model has high accuracy and uses
the maximum amount of observed data.

The data that are used at the initial stages of building
a geological model may include such characteristics as
the geological concept of the formation, measurements
at the drilling sites, and geophysical measurements.

In addition to this data, usually we have dynamic data
that constantly arrives during the operation of the field,
such as historical data of oil and liquid production. And
it is possible to continuously update the model with this
data. The process of updating the geological model us-
ing dynamic data is called history matching.

History matching of geological models consists in es-
timation of uncertain model parameters such that oil
or water production data from flow simulation become
close to observed data. It is an ill-posed inverse prob-
lem that has a lot of unknown geological parameters, but
only a few measurements are available.

An important stage of history matching process is pa-
rameterization of geological models, because they may
contain a huge number of parameters (typically over
4000) such as permeability values for each cell of a dis-
cretized reservoir space. And it requires to reduce a large
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dimension of geological models by describing them with
low-dimensional vector of parameters.

After parameterization, we can match geological
model to observed data by minimizing deviation of the
observed data from the simulated data predicted by the
current model. A lot of optimization methods can be
used on this stage, including gradient-based methods.
But gradient-free methods are used more often, because
most complex flow simulators do not provide the ability
to obtain a gradient by parameters.

There are many methods for parameterization of ge-
ological models. The principal component analysis
(PCA) is often used [Reynolds et al., 1996; Sarma et al.,
2008], which is based on the singular decomposition of
a matrix obtained from a set of geological realizations.
The disadvantage of PCA is that it uses only the corre-
lations between two points of the space, and therefore
is not applicable for non-Gaussian geological models.
To eliminate this disadvantage, methods based on dis-
crete wavelet transform (DWT) [Jafarpour et al., 2010]
and discrete cosine transform (DCT) [Lu and Horne,
2000] have been developed. Recently, methods based on
generative neural networks have been gaining popularity
[Laloy et al., 2018; Liu et al., 2019]. They show a sig-
nificant improvement in the quality of parametrization
compared to DWT, DCT methods. Therefore, a method
CNN-PCA (Convolutional Neural Network with Princi-
pal Component Analysis) [Liu et al., 2019] based on a
generative neural network was used in this work.

Sparsity-promoting methods are applied for history
matching problem [Khaninezhad and Mohammadreza,
2013; Elsheikh et al., 2013]. They utilize the sparse
structure of geological models to restrict the solution
space. Sparse solution corresponds to minimal number
of nonzero entries of solution’s vector (ℓ0 norm regular-
ization), but ℓ0 minimization leads to intractable com-
binatorial optimization problem. Therefore, various it-
erative methods are used, most of which are based on
solving the ill-posed problem by constraining ℓ1 norm
of solutions. Similar ℓ1 regularization-based algorithms
such as in [Ivanov et al., 2022] can also be used for
closed-loop reservoir management problem — i.e., his-
tory matching combined with reservoir production opti-
mization.

Particle Swarm Optimization (PSO) method [Liu et al.,
2019; Mohamed et al., 2011; Lee and Stephen, 2019] is
widely used for history matching problems. It is a ge-
netic algorithm, which can find global optimal reservoir
parameters with a high probability. The main drawback
of this algorithm is the slow rate of convergence, and it
needs a large number of reservoir simulations to achieve
desired accuracy of data assimilation.

Ensemble Kalman filter is also a popular gradient-
free method for history matching problems [Emerick
and Reynolds, 2011; Jo et al., 2017]. It is a sequen-
tial method that has two alternating steps. This method
starts from an ensemble of geological realizations. Then
a forecast step is performed for updating parameters vec-

tor and assimilation of observed data. And an analysis
step is used for updating the current set of ensembles.
The main drawback of EnKF is that it is not applicable
to non-Gaussian reservoir models, such as binary chan-
nelized models.

SPSA [Spall, 1992; Granichin et al., 2015] method
computes an estimate of the minimum at each iteration
in a randomly chosen direction by the difference of two
function values, without requiring computation of the
function gradient. It was firstly used for history match-
ing by Gao et al. [Gao et al., 2007]. The second or-
der SPSA algorithm [Zhu and Spall, 2002] was used that
is based on a simple method for estimating the Hessian
matrix at each iteration. Results showed that SPSA per-
formed almost as well as the steepest descent method
on PUNQ-S3 benchmark model. In [Li and Reynolds,
2011], SPSA algorithm is modified to obtain a stochastic
Gaussian search direction method for history matching
of Gaussian geological models. This method is success-
fully evaluated on the same PUNQ-S3 model as in [Gao
et al., 2007].

In total, SPSA algorithm has not been well explored for
history matching problems and has been applied only to
simple low-dimensional Gaussian models. In [Granichin
and Amelina, 2015] authors suggest to use SPSA-like
algorithm with non-decreasing to zero step-size for the
case when unknown parameters of the system changes
with time. For linear case the similar algorithm was con-
sidered in [Granichin et al., 2010]. In this paper we ap-
plied SPSA to history matching of a binary channelized
reservoir model that is much more complex than PUNQ-
S3. We also used SPSA in combination with parameter-
ization method CNN-PCA. And we considered the case
of unknown but bounded noise in observed production
data and with objective function that does not require
assumptions of normality of the observations, which is
common in history matching literature. We experimen-
tally showed that SPSA method can be successfully used
for history matching of non-Gaussian geological models
with different types of noise in observations (including
gaussian noise) and outperforms Particle Swarm Opti-
mization by convergence speed.

2 Background
2.1 Spatial modeling techniques

Geological models can be deterministic or stochastic.
For stochastic models, the parameters of the model at
each point of the space are given by a random distri-
bution: the model can be considered as a random field.
With stochastic modeling, we have a family of different
models and we can generate realizations from it.

Geostatistical methods are used for stochastic model-
ing. The approaches of sequential indicator modeling,
object modeling and methods of multipoint statistics are
widely used. Sequential indicator modeling uses semi-
variograms (correlations between two points in the envi-
ronment) to model spatial correlation of model space. In
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object modeling, a geological model is obtained by ran-
domly generating objects according to specified rules,
such as tortuosity and channel thickness. The multipoint
statistics (MPS) methods are based on the generation of
geological models from a given training image, which is
a way to take into account prior information about the
reservoir. Training image is a conceptual image of the
natural structure of the simulated reservoir. For instance,
it includes such important structures as twisted channels
of a certain orientation, and their thickness.

2.2 CNN-PCA
We used CNN-PCA [Liu et al., 2019] algorithm for

geological models parameterization. The first step of the
algorithm is to generate NR realizations using a geosta-
tistical algorithm. After that, the building of the PCA
model mpca(ξ) is carried out using the SVD decomposi-
tion of data matrix Y , constructed by the generated real-
izations:

UΣV T = Y,

mpca(ξ) = m̂+ UlΣlξl,

where UΣV T is SVD decomposition, m̂ is row wise
mean vector of Y , Ul and Σl is matrix that contains l
first rows from U , Σ.

Next, using PCA model, Nt random PCA-
parameterized models are generated with ξ sampled
from standard normal distribution. Generated PCA real-
izations are used for image transform network training.
A loss function for training this model consists of style
loss Ls and content loss Lc terms, based on neural style
transfer ideas from [Johnson J, 2016]. The main idea
of the CNN-PCA is to transfer the style of the training
image to realizations parameterized by the PCA, making
them more precise and similar to a training image.

The content loss has the following form:

LC(x,mpca(ξ)) = |F4(m)− F4(mpca(ξ))|2Fr, (1)

where F4(m) is a feature extraction function based on
four layer of VGG-16 neural network [Johnson J, 2016].

The style loss has the following form:

Gk(m) =
1

Nc,kNz,k
Fk(m)Fk(m)T ,

LS(x,Mref ) =
∑
k

1

N2
z,k

∥Gk(x)−Gk(Mref )∥2Fr,

(2)
where Nz,k is number of the output features at layer k of
VGG-16 network, k = {2, 4, 7, 10}.

In this way, LS takes into account the average similar-
ity of the x realization with the training image Mref at
different levels of image detalization. The different lev-
els of detalization are determined by the features Fk(m)
of the neural network VGG-16 at different layers.

The architecture of the image transform neural net-
work that was used for parameterization is described in
[Johnson J, 2016].

3 History matching
3.1 Objective function

In this work, history matching process consists in min-
imizing the following objective function by ξ:

ft(ξ) =
||dfopr(m)− dtobs ||2

max(dtobs)
+

∑
i

||di(m)− dtobsi ||2
max(dtobsi )

+
||ξ − ξ0||2
max(ξ0)

, (3)

dtobs in the first term of this function is field observed
data that we have at the time t, such as field oil and water
production rates. dfopr(m) is simulated data, obtained
by predicting oil and water production rates using a flow
simulator with permeability values m as variable param-
eters. These parameters are obtained by ξ using trained
CNN-PCA model transform net followed by mapping
parameterized realization to physical values of perme-
ability.

The second term is the difference between simulated
di(ξ) and observed dtobsi production rates, which is
given separately for each well i.

The third term is regularization that constrains ξ to be
close to prior parameters ξ0. It is required because CNN-
PCA was trained using ξ sampled from this distribution.

Each term is normalized to the maximum of the corre-
sponding observation. Due to this, data from the entire
field and from each well have equal weight regardless of
the absolute values of observations.

3.2 SPSA
Stochastic approximation algorithms can be applied to

solve optimization problems if the objective function is
noisy or unavailable for calculation. Such algorithms
have the following general form:

x̂n+1 = x̂n − αnĝn(xn),

where x̂n is a sequence of parameter estimates, ĝn(xn)
is a pseudogradient whose expected value is equal to the
real gradient , and αn is convergence rate parameter.

SPSA [Spall, 1992] is one of the stochastic approxima-
tion algorithms. It requires only two objective function
measurements for gradient approximation per iteration.
Also, parameters estimated by this algorithm might con-
verge to their true values under arbitrary bounded ad-
ditive noise, while many other optimization algorithms
require the noise to have zero mean. If α is constant and
sufficiently small step-size, SPSA guarantees the mean-
square convergence of the estimates to a changing small
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bounded area around the changing true value of the pa-
rameter [Granichin and Amelina, 2015; Zhu and Spall,
2016].

Consider the observation model for the moment, when
we have historical production data at the time t ∈ R:

yt = ft(xt) + νt, (4)

where νt is an additive noise caused by inaccuracies in
parameterization and acquisition of production measure-
ments.

Let Ft−1 be the σ-algebra of all probabilistic events
which happened up to time instant t, where EFt−1

is a
symbol of the conditional mathematical expectation with
respect to the σ-algebra Ft−1.

Using the observations y1, y2, ..., yt, we need to build
an estimate ξ̂ of unknown vector of parameters ξ that
minimizing mean-risk functional Ft:

Ft(ξ) = EFft(xt)

These estimations can be built by SPSA algorithm.
The input parameters of SPSA algorithm are sequences

of positive numbers αn, βn, which tend to zero, and ini-
tial solution ξ̂(0). The next formulas can be used to esti-
mate ξ [Granichin and Amelina, 2015]:


u2n = ξ̂(n− 1) + βn∆n,

u2n−1 = ξ̂(n− 1)− βn∆n,

ξ̂(n) = ξ̂(n− 1)− αn

2βn
∆n(y2n − y2n−1).

,

where y is a noisy measurements (4) of objective
function, ∆n is an observed sequence of independent
Bernoulli random vectors from Rd with each component
independently assuming values ± 1√

(d)
.

Let next assumptions from [Granichin and Amelina,
2015] hold:

1. The successive differences v̂t = vt − vt−1 of obser-
vation noise are bounded: |v̂t| ≤ cv < ∞

2. The drift is bounded: ||ξt − ξt−1|| ≤ δθ < ∞
3. The rate of drift is bounded in a such way that for

any arbitrary point x: ||EFt−1∇ϕt(x)|| ≤ a1||x −
ξt−1|| + a0, ||EFt−1ϕ

2
t (x) ≤ a2||x − ξt−1||2 + a3,

where ϕt(x) = ft(x)− ft−1(x)
4. Functions Ft have unique minimum points and θt

and ⟨x − θt,EFt−1
∇ft(x)⟩ ≥ µ||x − ξt||2 for any

x and constant µ > 0.
5. The gradient ∇ft is uniformly bounded in the

mean-squared sense at the minimum points ξt :
Eft(ξt)||2 ≤ g = 0, ⟨Eft(ξt),Eft−1(ξt−1)⟩ ≤ g =
0

6. The gradient of ft(x) satisfies Lipsitz condition
with a constant M ≥ µ.

Assuming that the observation noise is bounded,
we can formulate following theorem according to
[Granichin and Amelina, 2015]:

Theorem 1. If we choose sufficiently small α and β
then the mean squared error of sequence of estimations ξ̂
generated by SPSA algorithm is asymptotically bounded
by sufficiently small constant L [Granichin and Amelina,
2015]:

E||ξ̂n − ξ||2 < L.

Note that this theorem guarantees the resistance of the
parameter estimates to an almost arbitrary but bounded
external noise in measurements.

4 Materials and Methods
Geostatistical algorithm snesim [Strebelle, 2002] is ap-

plied to generate 5000 realizations with size 60x60x1.
The training image and conditioning data is used from
[Liu et al., 2019]. CNN-PCA algorithm was imple-
mented in Python using the PyTorch library. The image
transform net was then trained for 16000 iterations, with
a batch size of 32. We used O-PCA transform as a fi-
nal thresholding step with parameter α = 0.7 instead of
hard thresholding. The rest of the CNN-PCA hyperpa-
rameters are the same as in the original work [Liu et al.,
2019].

The reservoir simulator OPM flow [Atgeirr Fl
et al., 2021] is used to obtain simulated data (field
oil and water production rates). Figure 1 shows true
model with conditional data. A constant porosity
value of 0.2 is taken for all 3600 cells. Perme-
ability for each cell specified isotropic with value
20 for mud and 2000 for sand. Four production
wells is placed in (90, 40), (53, 40), (58, 2), (40, 2)
cells, and five injection wells is placed in
(18, 90), (40, 90), (2, 75), (2, 60), (2, 25) cells.

Figure 1. Simulated geological model with conditional data. Blue
and red points depict injection and production wells correspondingly

Observed data include field and well’s oil production
rates over the first 7 years, recorded every 3 months.
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The total number of data points is 140 (28 for each well
and whole field). Figure 2 shows observed data obtained
with true model. The observed data are derived from
simulated true data by adding different types of noise.

Experiments were carried out for the next types of
noise: random gaussian N (0, 0.02m), constant — ν0t =
0.05m, ’plus-minus’ — ν1t = 0.05sign(sin t) ·m and ir-
regular — ν2t = 0.03m(0.1 sin t+2sign(3−t mod 5)),
where t = 1 . . . 28, m — the maximum value of an ob-
servation vector.

Figure 2. Simulated data: oil production curves for each production
well. The red dots represent the observed data

For PSO method, cognitive, social, inertia and swarm
size parameters are taken as c1 = 0.5, c2 = 0.7,
w = 0.9, and s = 50 correspondingly. These values
are selected based on the experiments in [Li-ping et al.,
2005]. We tried other values as well, but it does not sig-
nificantly affect convergence speed.

If the drift rate of the optimal value is not high, then
SPSA algorithm can be used with the step-size decreas-
ing to zero and then it provides the mean-square con-
vergence of the estimates to zero. We chose sequences
αn = α0n

1/5 and βn = β0n
1/10 based on experiments,

according to theorem 1 and results concerning fastest
rate of convergence from [Granichin et al., 2015].

We set α0 = 0.5 at first and use next heuristic algo-
rithm: α0 is decreased in half if the value of the objec-
tive function turns out to be more than three times higher
than the best value throughout the entire process of mini-
mization. After that, the best point is taken as the current
vector of parameters. This procedure is applied to make
the algorithm less dependent on a prior vector of param-
eters.
0.2 is taken as the β0 value. It is found experimen-

tally by doing history matching with different β0 from
interval [0.01, 1] with step 0.1. The influence of this pa-
rameter on the achieved value of the objective function
for a fixed number of iterations is shown in figure 3.

We used 250 iterations of SPSA and 10 iterations for
PSO. In both cases, the same number of calls to the ob-
jective function is performed.

Figure 3. Dependency of minimum value of objective function on
SPSA parameter β0. The red point depicts chosen value

5 Results
The history matching results for observed data with ir-

regular noise is presented on figure 4. Seven posterior
(history matched) realizations were obtained by each al-
gorithm. As we can see on the figure 4, both methods

Figure 4. History matching results with SPSA and PSO methods for
first type of noise. Posterior predictions obtained with SPSA are shown
by orange curves, and predictions obtained with PSO are shown by
green curves. Blue curve is true data. Vertical line indicates end of
history matching period

result in much smaller scatter in production from the
history-matched models relative to the production from
prior models.

Posterior realizations of history matched models are
presented on the figure 5. As it can be seen, they have
some discrepancies with the true model. But many injec-
tion wells were connected by channels to corresponding
producers on posterior models, as well as for the true
model.

As it shown in table 1, SPSA algorithm achieves a
given level of accuracy in a significantly smaller number
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Figure 5. Geological ground truth model and three posterior realiza-
tions obtained by history matching with SPSA

Table 1. Algorithms evaluation for four types of noise. ’mean’ col-
umn is average number of iterations, stddev column is standard devi-
ation of number of iterations, fail column is number of tries that was
unsuccessful, when the specified accuracy threshold was not reached,
but the maximum number of iterations was reached

Noise type Algorithm mean stddev fail

Gaussian
PSO 502 254 2

SPSA 439 332 2

Constant
PSO 657 364 4

SPSA 473 317 2

Plusminus
PSO 908 291 6

SPSA 448 402 3

Irregular
PSO 708 415 5

SPSA 514 358 3

of iterations than PSO on average for all type of noise.
Also, we can see that SPSA is equally efficient for any
type of noise. Standard deviation of the number of iter-
ations is high in all cases, because random realizations
were taken as prior.

6 Conclusion
In this paper we applied SPSA method to the history

matching problem and compared it with PSO method.
We have used SPSA in combination with CNN-PCA pa-
rameterization algorithm to reduce dimensionality of ge-
ological model realizations.

Our experiments indicate that SPSA method can give
good and stable results, even for non-Gaussian noise in

production data. We showed that SPSA method can be
successfully used for history matching of non-Gaussian
geological models with different types of noise in obser-
vations and outperforms Particle Swarm Optimization by
convergence speed.

In the future, it is planned to explore the possibil-
ity of implementing distributed version of the algorithm
and usage of randomization of control strategies as in
[Amelin and Granichin, 2016] for the problem of closed-
loop reservoir management. In the first place, it is
planned to consider the use of multi-agent technologies
[Amelin et al., 2012].
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