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Abstract 

Unscented Kalman Filter (UKF) is a filtering 
algorithm which gives sufficiently good estimation 
results for estimation problems of nonlinear systems 
even in case of high nonlinearity. However, in case of 
system uncertainty UKF becomes to be inaccurate and 
diverges by time. In other words, if any change occurs 
in the process noise covariance, which is known as a 
priori, filter fails.  This study, introduces a novel 
Adaptive Unscented Kalman Filter (AUKF) algorithm 
based on the correction of process noise covariance for 
the case of mismatches with the model. By the use of a 
newly adaptation scheme for the conventional UKF 
algorithm, change in the noise covariance is detected 
and corrected. Differently from the most of the existing 
adaptive UKF algorithms, covariance is not updated at 
each step; it has been only corrected when the fault 
occurs and that brings about a noteworthy reduction in 
the computational burden. Proposed algorithm is tested 
as a part of the attitude estimation algorithm of a pico 
satellite, a satellite type for which computational 
convenience is necessary because of the design 
limitations. 
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1   Introduction 

Unscented Kalman Filter (UKF) algorithm is a 
considerably new filtering method which was proposed 
for nonlinear systems. Since it has many advantages 
against well known Extended Kalman Filter, especially 
in case of high nonlinearity (Julier et al., 1995), it has 
been preferred in lately methods presented for solving 
problems in the area of control, guidance, signal 
processing etc. 

The basic of UKF is the fact that; the approximation 
of a nonlinear distribution is easier than the 
approximation of a nonlinear function or 

transformation (Julier et al., 2000). UKF introduces 
sigma points to catch higher order statistic of the 
system and by securing higher order information of the 
system, it satisfies both better estimation accuracy and 
convergence characteristic (Soken and Hajiyev, 2009).  

As a spacecraft attitude estimation algorithm, UKF 
has many implementation examples in literature. In 
(Crassidis and Markley, 2003) it is used as a state 
estimator, while both the states and the parameters of 
the satellite are estimated by UKF in (Dyke et al., 
2004; Sekhavat et al., 2007). Moreover, in (Fisher and 
Vadali, 2008) UKF is used as a part of the attitude 
control scheme of multibody satellites. 

Despite its recent popularity, conventional UKF 
algorithm has no capability to adapt itself to the 
changing conditions. One of the problems which may 
be considered within this perspective is the changes in 
process noise covariance which is generally known as a 
priori.  

In literature there are several methods to adapt linear 
Kalman filter. As an example, Multiple Model Based 
Adaptive Estimation (MMAE), Innovation Based 
Adaptive Estimation (IAE) or Residual Based Adaptive 
Estimation (RAE) are some of known methods which 
are used in such situations (Hide et al., 2004). 
Nonetheless another concept is to scale the noise 
covariance matrix by multiplying it with a time 
dependent variable. One of the methods for 
constructing such algorithm is to use a scale factor as a 
multiplier to the process or measurement noise 
covariance matrices (Hajiyev and Soken, 2009; Geng 
and Wang, 2008). This kind of gain correction based 
algorithms can be both used when the information 
about the dynamic or measurement process is absent 
(Kim et al., 2006). Per contra, these algorithms are 
generally appropriate for linear Kalman filter and 
cannot be used for the process noise adaptation process 
of the UKF. 

It is also possible to meet adaptive unscented Kalman 
filter (AUKF) applications in literature. In (Han et al., 
2009), two distinct methods are described. In first 



method MIT rule is used to derive the adaptive law and 
a cost function is defined in order to minimize the 
difference between the filter computed covariance and 
the actual innovation covariance.  However, presented 
algorithm requires calculation of partial derivatives and 
that introduces a relative large computational burden as 
it is also stated by author himself. In second method, 
two UKFs are run in parallel within master and slave 
filter manner. Its computational demands may be 
relatively lower than the first method but still utilizing 
two filters means a necessity for a high processing 
capability and that is not usually possible for onboard 
small satellite applications.  Hence, they may be hard to 
imply for a pico satellite which has a limited computer 
processor capacity. Nonetheless in (Liu and Lu, 2009; 
Shi et al., 2009) Saga-Husa noise statistics estimator is 
integrated with UKF in order to make up an AUKF. 
Although it may be possible to have satisfactory results 
for target tracking problem, this method has an 
unstability issue; when noise covariance loses its semi-
positive definiteness filter diverges.   

UKF may be also built adaptively by using fuzzy logic 
based techniques. In (Jwo and Tseng, 2009) fuzzy logic 
adaptive system aids the interacting multiple models 
and by switching between filters suitable value for the 
process noise covariance can be determined. As a 
disadvantage such method also requires more than one 
filter running simultaneously. Besides the essences of 
these kinds of fuzzy methods are human experience 
and heuristic information; in out of experience cases 
they may not work. 

This study, introduces a novel Adaptive Unscented 
Kalman Filter algorithm based on the correction of 
process noise covariance for the case of possible 
mismatches with the model known as a priori. By the 
use of a newly adaptation scheme for the conventional 
UKF algorithm, change in the noise covariance is 
detected and corrected. Differently from the most of the 
existing adaptive UKF algorithms, covariance is not 
updated at each step; it has been only corrected when 
the fault occurs and that brings about a noteworthy 
reduction in the computational burden. Proposed 
algorithm is tested as a part of the attitude estimation 
algorithm of a pico satellite, a satellite type for which 
computational convenience is necessary because of the 
design limitations. 

 

 
2   Satellite Mathematical Model 

If the kinematics of the pico satellite is derived in the 
base of Euler angles, then the mathematical model can 
be expressed with a 6 dimensional system vector which 
is made of attitude Euler angles (  is the roll angle 

about x axis;    is the pitch angle about y axis;    is 

the yaw angle about z axis) vector and the body angular 
rate vector with respect to the inertial axis frame. 
Hence,       

,        
T

x y zx              (1) 

Also for consistency with the further explanations, the 
body angular rate vector with respect to the inertial axis 
frame should be stated separately as; 

,      
T

BI x y z  where BI  is the angular 

velocity vector of the body frame with respect to the 
inertial frame.  Besides, dynamic equations of the 
satellite can be derived by the use of the angular 
momentum conservation law;  
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where xJ , yJ  and zJ  are the principal moments of 

inertia and xN , yN  and zN   are the terms of the 

external torque affecting the satellite. For a Low Earth 
Orbit (LEO) pico satellite as in case, gravity gradient  
torque should be taken into consideration while the 
other disturbance torque terms such as aerodynamic 
torques, magnetic disturbance torques and torques 
caused by the solar radiation pressure may be neglected 
(Sekhavat et al., 2007). If only the gravity gradient 
torque is put into account for the satellite, these torque 
terms in eq.(2-4) can be written as 
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Here  is the gravitational constant, 0r  is the distance 

between the centre of mass of the satellite and the Earth 

and ijA  represents the corresponding element of the 

direction cosine matrix of; 

A  
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In matrix A ,  c and  s are the cosine and sine 

functions successively. Kinematic equations of motion 
of the pico satellite with the Euler angles can be given 
as (Wertz, 1988); 
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Here  t and  sec  stand for tangent and secant 

functions respectively. Moreover p , q and r are the 

components of BR  vector which indicates the angular 

velocity of the body frame with respect to the reference 
frame. BI and BR can be related via, 

 00 0 .     T

BR BI A                     (8) 

where 0  denotes the angular velocity of the orbit with 

respect to the inertial frame, found as  1/23
0 0/ .  r   

3   Measurement Sensor Model 

Pico satellite has three axis magnetometer (TAM) 
and three rate gyros onboard for attitude 
measurements. Models of these sensors are given 
below: 
 

3.1   The Magnetometer Model 

As the satellite navigates along its orbit, magnetic 
field vector differs in a relevant way with the orbital 
parameters. If those parameters are known, then, 
magnetic field tensor vector that affects satellite can be 
shown as a function of time analytically (Sekhavat et 
al., 2006). Note that, these terms are obtained in the 
orbit reference frame. 
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Here  

 157.943 10 . ;eM x Wb m  the magnetic dipole 

moment of the Earth, 
 14 3 23.98601 10 / ;  x m s the Earth Gravitational 

constant, 
 97 ; i  the orbit inclination, 

 57.29 10 / ; e x rad s  the spin rate of the Earth, 

 11.7 ;    the magnetic dipole tilt, 

 0 6,928,140 ;r m  the distance between the centre 

of mass of the satellite and the Earth. 

Three onboard magnetometers of pico satellite 
measures the components of the magnetic field vector 
in the body frame. Therefore for the measurement 
model, which characterizes the measurements in the 
body frame, gained magnetic field terms must be 
transformed by the use of direction cosine matrix, A . 
Overall measurement model may be given as; 
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where,  1H t ,  2H t and  3H t  represent the Earth 

magnetic field vector components in the orbit frame as 

a function of time, and  , , ,  xH t ,  , , ,  yH t  

and  , , ,  zH t  show the measured Earth magnetic 

field vector components in body frame as a function of 

time and varying Euler angles. Furthermore, 1  is the 

zero mean Gaussian white noise with the characteristic 
of  

2
1 1 3 3      

T
k j x m kjE I .                      (13) 

3 3xI is the identity matrix with the dimension of  3 3 , 

m is the standard deviation of each magnetometer 

error and kj  is the Kronecker symbol. 

3.2   The Rate Gyro Model 

Three rate gyros are aligned through three axes, 
orthogonally to each other and they supply directly the 
angular rates of the body frame with respect to the 
inertial frame. Hence the model for rate gyros can be 
given as; 

, 2   BI meas BI .                        (14) 

where, ,BI meas  is the measured angular rates of the 

satellite, and 2  is the zero mean Gaussian white noise 

with the characteristic of 

 2
2 2 3 3       

T
k j x kjE I ,                      (15) 

Here,  is the standard deviation of each rate gyro 

random error. 

4   Adaptive Unscented Kalman Filter 

In case of normal operation, where the model for the 
process noise covariance matches with the real values, 
UKF works correctly. However, when a change occurs 
in the noise covariance, the filter fails and the estimation 
outputs become faulty.  

Hence, an adaptive algorithm must be introduced so as 
the filter adapts itself to the changing conditions for the 
process noise covariance and corrects estimations 
without affecting good estimation characteristic of the 
remaining process. 
 

4.1   Unscented Kalman Filter 

In order to utilize Kalman filter for nonlinear systems 
without any linearization step, the unscented transform 
and so Unscented Kalman Filter is one of the 
techniques. UKF uses the unscented transform, a 



deterministic sampling technique, to determine a 
minimal set of sample points (or sigma points) from the 
a priori mean and covariance of the state. Then, these 
sigma points go through nonlinear transformation. The 
posterior mean and the covariance are obtained from 
these transformed sigma points (Julier et al., 1995).  

As it is stated, UKF procedure begins with the 
determination of 2 1n  sigma points with a mean of 

 x̂ k k  and a covariance of  P k k . For an n 

dimensional state vector, these sigma points are 
obtained by  

     0 ˆx k k x k k                     (16)  

        ˆl
l

x k k x k k n P k k  
        

(17) 

        ˆl n
l

x k k x k k n P k k    ,       (18) 

where,  0x k k ,  lx k k and  l nx k k  are sigma 

points, n  is the state number and  is the scaling 

parameter which is used for fine tuning and the 
heuristic is to chose that parameter as 3 n  (Julier 

et al., 1995). Also, l  is given as 1l n  .  

Next step of the UKF process is transforming each 
sigma point by the use of system dynamics,   

   1 , .    i ix k k f x k k k     0 2i n    (19)   

Then these transformed values are utilized for gaining 
the predicted mean and the covariance (Crassidis and 
Markley, 2003; Soken and Hajiyev 2009). 
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Here,  ˆ 1x k k is the predicted mean,  1P k k is 

the predicted covariance and  Q k  is the process noise 

covariance matrix.  

Nonetheless, predicted observation vector is,  
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where, 

   1 1 , .i iy k k h x k k k        0 2i n     (23) 

After that, observation covariance matrix is 
determined as, 
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where innovation covariance is 

        1 1 1    vv yyP k k P k k R k             (25) 

Here  1R k is the measurement noise covariance 

matrix. On the other hand, the cross correlation matrix 
can be obtained as, 
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Following part is the update phase of UKF algorithm. 
At that phase, first by using incoming measurements,

 1y k , innovation sequence is found as  

         ˆ1 1 1 ,    e k y k y k k            (27) 

and then Kalman gain is computed via equation of, 

       11 1 1 .   xy vvK k P k k P k k             (28) 

At last, updated states and covariance matrix are 
determined by, 

       ˆ ˆ1 1 1 1 1 ,      x k k x k k K k e k   (29) 
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Here,  ˆ 1 1 x k k is the estimated state vector and 

 1 1 P k k is the estimated covariance matrix. 

4.2   Adaptive UKF Algorithm 

Adaptive algorithm performs the correction only when 
the real values of the process noise covariance does not 
match with the model used in the synthesis of the filter. 
Otherwise the filter works with regular algorithm (19)-
(30) in an optimal way.  Adaptation occurs as a change 
in the predicted covariance. First, let us rewrite (21) as; 

    *1 1 ( )   P k k P k k Q k               (31) 

So  * 1P k k  is the predicted covariance without the 

additive process noise. In order to adapt the covariance 
an adaptive factor is put into the procedure; 

   *1 1 ( ) ( )    P k k P k k k Q k               (32)
    

                        

where ( ) k is the adaptive factor calculated in the base 

of residual for the state vector estimation,   1e k , 

which may be defined as; 
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where ( 1)H k  is the measurement matrix. 

Nonetheless covariance matrix of the residue (33) can 
be written as (Mohamed and Schwarz, 1999), 
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The gain matrix is changed when the condition of 
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is the point at issue. Here  tr is the trace of the related 

matrix. Left hand side of (35) represents the real 
filtration error while the right hand side is the accuracy 
of the residue known as a result of priori information. 
When the estimated observation vector 

 ˆ( 1) 1 1  H k x k k  is reasonably different from 

measurement vector,  1y k , because of any change 

that occurs in ( )Q k  real filtration error exceeds the 

theoretical one. Hence, the process noise covariance 
must be fixed hereafter by the use of defined adaptive 

factor ( ) k . In order to calculate the measurement 

adaptive factor equality of 

   1 1    Ttr e k e k                         

   1 ( 1) 1 1 ( 1)            
Ttr R k tr H k P k k H k   (36) 

is used. If we replace  1 1 P k k with its definition 

(30), then; 

     1 1 1          Ttr e k e k tr R k       
 

        ( 1) 1 1 1 1 ( 1)        
T T

vvtr H k P k k K k P k k K k H k

  (37) 
After that we should put (32) into (37) and; 

     1 1 1         Ttr e k e k tr R k          

              *( 1) 1 ( 1)     
Ttr H k P k k H k  

       ( ) ( 1) ( ) ( 1)    
Tk tr H k Q k H k        

     ( 1) 1 1 1 ( 1)       
T T

vvtr H k K k P k k K k H k (38) 

Finally if the knowledge of  

          1 1 1 1T Ttr e k e k e k e k                    (39) 

is taken into consideration then the adaptive factor 
can be found as (note that discretization indices are 
not written for sake of readability) 

  * T T T T
vv

T

tr R tr HP H tr HKP K H e e

tr HQH

         
  

 
    (40) 

On the other hand, as a main difference from the 
existing AUKF algorithms process noise covariance 
matrix is not updated for whole the estimation 

procedure; adaptive algorithm is used only in case of 
changes and in all other cases procedure is run 
optimally with regular Unscented Kalman filter. 
Checkout is satisfied via a kind of statistical 
information. In order to achieve that, following two 
hypotheses may be introduced: 

  o ; the system is normally operating 

 1 ; there is a malfunction in the estimation system. 

Failure detection is realized by the use of following 
statistical function, 

( ) k    

       
1

1 1 ( 1) 1 1 ( 1) 1T Te k R k H k P k k H k e k


           (41) 

This statistical function has 2 distribution with s

degree of freedom where s  is the dimension of the 

residual vector  1e k   . 

If the level of significance, ,  is selected as, 

 2 2
, ;sP          0 1  ,          (42) 

the threshold value, 2
, s  

can be determined. Hence, 

when the hypothesis 1  is correct, the statistical value 

of ( ) k  will be greater than the threshold value 2
, s , 

i.e.:
      

          
  2

0 ,:    sk                                k  

   2
1 ,:    sk                                 k   .      (43)       

  
5   Simulations 

Simulations are realized for 1000 seconds with a 
sampling time of 0.1sec.t   For the used pico 

satellite model the inertia matrix is taken as;  

3

3 2

3

2.1 10 0 0

0 2.0 10 0 .

0 0 1.9 10







 
   
  

x

J x kg m

x

 

Nonetheless the orbit of the satellite is a circular orbit 

with an altitude of 550r km . Other orbit parameters 

are same as it is presented in the section for the 
Magnetometer Model (Section 3.1).  

For magnetometer measurements, sensor noise is 
characterized by zero mean Gaussian white noise with 

a standard deviation of 200 m nT  . Besides, rate 

gyro random error is taken as 31 10 [deg/ ]g h
  . 

That corresponds to 79.19 10 /rad s
  for a 

sampling frequency of 10Hz.  

During simulations, for testing AUKF algorithm, 
process noise covariance matrix is changed at 600th  
second, thus it mismatches with the model known as a 
priori.  This abrupt change is simply formed by 
multiplying covariance with a constant. 



Besides, in case of measurement faults, simulation is 
also achieved for optimal UKF in order to compare 
results with AUKF and understand efficiency of the 
adaptive algorithm in a better way. For robust Kalman 

filters 
2

,s  is taken as 12.592 and this value comes 

from chi-square distribution when the degree of 
freedom is 6 and the reliability level is 95%.  

First part of figures gives UKF and AUKF parameter 
estimation results and the actual values in a comparing 
way. Second part of the figures shows the error of the 
estimation process based on the actual estimation 
values of the satellite. The last part indicates the 
variance of the estimation. 

As it is apparent form Fig. 1, regular UKF fails at 
estimating the attitude parameters when the change 
occurs. Besides, the effect of the change continues for 
at least 400 seconds and at that period filter cannot 
estimate the parameters in an accurate way. On the 
other hand as given in Fig.2, AUKF is not affected 
from the change in the process noise covariance and it 
satisfies its good estimation characteristic for the whole 
process. 

 
Figure 1. Roll angle estimation by regular UKF in case of change in 
the process noise covariance 

 
Figure 2. Roll angle estimation by AUKF in case of change in the 

process noise covariance 

Furthermore, so as to unfurl the difference between the 
estimation characteristic in case of change in the 
process noise covariance, absolute values of error at 
two distinct time steps are tabulated below (Table 1). 
As it may be also interpreted from table, AUKF 
provides better performance than the regular UKF. 

Par. 

Abs. Values of 
Error for Regular 

UKF 

Abs. Values of 
Error  for AUKF 

600 s. 900 s. 600 s. 900 s. 
(deg)  1,8915 15,518 1,6595 0,7798 

(deg)  38,830 0,6788 1,1083 0,1337 

(deg)  6,7968 3,5878 3,7717 1,3146 
 

(deg/s)x
 

1,5488
392e-5 

3,3969
015e-5 

1,5991
435e-5 

1,1687
905e-5 

 

(deg/s) y
 

1,5488
324e-5 

4,2829
485e-5 

1,5992
616e-5 

9,3625
491e-6 

 

(deg/s)z
 

1,5488
398e-5 

2,5802
310e-5 

1,5976
755e-5 

1,5694
421e-5 

Table 1. Absolute values of error for regular UKF and AUKF in case 
of change in the process noise covariance. 

6   Conclusions 

High possibility of any kind of unexpected events in 
space environment makes satellites vulnerable vehicles 
in point of view of attitude determination system. 
Results of this study show that it is not possible to get 
precise estimation results by optimal regular UKF if the 
model for the process noise covariance mismatches 
with the real value as a result of change occurred 
somehow. On the other hand, presented AUKF 
algorithm is not affected from those changes and 
secures its good estimation characteristic all the time.  

Differently from the most of the existing adaptive 
UKF algorithms, covariance is not updated at each 
step; it has been only corrected when the fault occurs 
and that brings about a noteworthy reduction in the 
computational burden. This makes the proposed 
algorithm appropriate for pico satellites, especially if 
their limited onboard processing capacity is taken into 
account. 
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