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Abstract
A new approach to the design of neurofeedback sys-

tems based on using Artificial Intelligence (AI) tools is
proposed. The concept of control models of biological
neural networks, and the set-up including equipment and
software tools developed in IPME RAS in order to im-
plement the proposed concept is described. as well as
the AI methods and programs proposed for use.
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1 Introduction
In recent years, there has been a rapid growth in the

application of methods and means of artificial intelli-
gence (AI). For a number of problems, the results ob-
tained in the AI paradigm are comparable or even supe-
rior to those obtained by humans [Silver et al., 2017].
The tasks of exploring the possibilities and improving
the efficiency of interaction between natural and artifi-
cial intelligence are on the agenda currently. The first
steps in this direction were made long before the recent
boom of artificial intelligence. They gave rise to the
concepts of biofeedback and neurofeedback [Kropotov,
2008; Sitaram et al., 2017]. In systems with biofeed-
back information about the state of the body (informa-
tion about the state of the nervous system, in particu-
lar, the cerebral cortex) is transmitted to the computer
using special tools for further processing and classifica-

tion. The results of the classification are shown to the
person in such a way that he can assess the proximity of
his state to a certain area that corresponds to desirable or,
conversely, undesirable states. As a means of collecting
information, non-invasive means are usually used: EEG,
MEG, fMRI, etc.

There are many publications reporting practical appli-
cations of the approach. In the work [Ovod et al., 2012]
the authors proposed to form a neurofeedback signal on
the basis of an adaptive model of brain rhythms, adjusted
by EEG signals using methods developed in cybernetics.
Adaptive formation of neuro-feedback signals allows not
only to take into account the change in the state of the
subject persons, but also to adjust the recommendations
of the system when the state of the subject person ap-
proaches or moves away from the target areas. The adap-
tive work model used in [Ovod et al., 2012], like other
adaptive models used to describe dynamics and control
in neural network models [Plotnikov et al., 2017; Gor-
shkov et al., 2017], is highly aggregated and contains a
relatively small number of parameters. The abilities of
such models to describe or predict complex signals are
relatively small. At the same time to increase the in-
formativeness of EEG data the number of leads and the
duration of samples have to be increased.

A matter of interest is the use of more complex adap-
tive signal models based on deep neural networks and
other models and methods of modern artificial intelli-
gence. Until now, researches on the construction of
neuro-feedback systems based on AI in the world are
almost absent. The use of neuro-feedback communica-
tion on the basis of AI methods and tools can provide
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an opportunity to improve significantly the efficiency of
interaction between natural and artificial intelligence. In
addition, this will provide new opportunities for improv-
ing brain-computer interfaces (BCI).

This paper describes a new approach to the construc-
tion of neuro-feedback systems based on AI. The fol-
lowing sections describe the concept of control models
of biological neural networks, developed in IPME RAS,
a set of equipment and a set of software tools created to
implement the proposed concept, as well as the AI meth-
ods and programs proposed for use.

2 Neurofeedback
The goal of clinical and behavioral neuroscience is to

observe and understand the mechanisms of the nervous
system to control behavioral neural processes and re-
store these functions if they are disturbed. To solve this
problem, a neurofeedback approach can be used, that is
a psychophysiological procedure in which subjects are
provided with models of neural activity with the goal of
regulating them online [Sitaram et al., 2017].

The best way to register the activity of neurons is to
use invasive methods. Depending on the size and of the
impendance of the electrodes it is possible to register
an activity of neuron groups or even separate neurons.
These methods allow disabled people (epilepsy, Parkin-
son’s disease, essential tremor) to control exoskeleton
[Takasaki et al., 2018] or to type the text [Arvaneh et al.,
2018]. However, these methods have several problems.
The first problem is the expensive cost of this procedure.
Secondly, electrode implantation into the brain cortex is
a complex neurosurgical operation leading to the dam-
age of neural tissues around the implant. Thirdly, im-
plant fouls with a glia during the time, which leads to
the problems with a signal recording.

Another way to register the brain activity is to use non-
invasive methods. The most common way is an elec-
troencephalography (EEG), i.e. the recording of brain
activity using the electrodes which are placed along the
scalp. This is the most widespread and cheap method
and has the highest time resolution of noninvasive meth-
ods. As the disadvantages of this method one can men-
tion a low spatial resolution and noisy signal. EEG
measures voltage fluctuations resulting from ionic cur-
rent within the neurons of the brain [Niedermeyer and
Lopes da Silva, 2005]. Various patterns of electrical ac-
tivity, known as brain waves, can be recognized by their
amplitudes and frequencies. The frequency shows how
quickly the waves oscillate, which is measured by the
number of waves per second (Hz), and the amplitude
represents the power of these waves, measured using mi-
crovolts [Marzbani et al., 2016].

The various frequency components are divided into
delta (less than 4 Hz), theta (4-8 Hz), alpha (8-13 Hz),
beta (13-30 Hz) and gamma (30-100 Hz) rhythms, where
each one represents a specific physiological function.
Delta and theta rhythms are connected with a sleep state

of a person. Alpha rhythm is represented mainly in
the occipital areas. Its amplitude significantly increases
while the eyes are closed; it is also suppressed with men-
tal stress and increases with relaxation. This rhythm is
produced when arousal circulates between the cortex and
the thalamus. Beta and gamma rhythms increase with a
mental activity and alert and have lower amplitude com-
pared to the alpha rhythm.

Our goal is to develop a complex which allows a per-
son to control a vehicle using a neurofeedback paradigm,
i.e. to control it by changing his brain activity. Delta and
theta rhythms are not suitable to solve this problem be-
cause they can be observed when the person is asleep.
Beta and gamma rhythms have low amplitude compared
to the noise, therefore it is complex to use them for con-
trolling. The most appropriate rhythm to solve the posed
problem is alpha rhythm. However, a person can not
control the vehicle while his eyes are closed. For this
purpose one can use so called sensorimotor rhythm (mu
rhythm), which is the EEG rhythm in the range of al-
pha rhythm, observed in the central and centrotalporal
regions of the cerebral cortex in a relaxed state. The
mu rhythm is blocked by the movement, observation of
movement, kinesthetic or visual representation of move-
ment [Neuper et al., 2005].

3 Experimental Setup
The development of an experimental setup is a key

stage of the brain-computer interface (BCI) design. Be-
sides the software implementation of mathematical al-
gorithms, the experimental setup should have a high-
quality hardware. In our case, we have used the fol-
lowing components: a wireless electroencephalograph
Mitsar-EEG-SmartBCI by Mitsar Company (32 ana-
log channels) [Mitsar], a mobile robot with the pro-
grammable controller by TRIK Company [TRIK] and a
PC with the necessary software that has been developed
by our group. The practical implementation and struc-
ture of the experimental setup are shown in Fig. 1 and
2. The software has been developed in the MATLAB en-
vironment and it consists of five basic units: EEG signal
acquisition, frequency filtering, spatial filtering, adaptive
estimation of the model parameters and robot connection
(Fig. 2).

The EEG signal acquisition unit is designed to transfer
electrical potentials from the encephalograph electrodes
to the PC. The received EEG signal is transmitted to the
frequency filtering unit. This unit contains the Cheby-
shev bandpass filter (type I) which allows us to increase
the signal-to-noise ratio, as well as to select the required
frequency range in the EEG signal spectrum [Smetanin
et al., 2018a; Smetanin et al., 2018b]. The spatial filter-
ing unit is based on the CSP (common spatial pattern)
algorithm and it is applied to separate EEG signals that
correspond to different states of the subject [Takasaki
et al., 2018]. For example, let X1 and X2 are time series
(with sizes T1 and T2 respectively) which correspond to
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Figure 1. Experimental setup

Figure 2. Experimental setup and Software schematics - 1

two states of the subject. In our study, these states are
right and left hand movements. Then the equations of
CSP algorithm can be presented in the following form:

C10 =
X1X

∗
2

T1
, C1 = C10 +

λTrC10

n In,

C20 =
X1X

∗
2

T2
, C2 = C20 +

λTrC20

n In,

where is n a number of the EEG channels; In is an iden-
tity matrix n × n; λ is a gain. From the solution of the
matrix equation C1v = αC2v, we could find the eigen-
values α and eigenvectors v. The eigenvector that cor-
responds to the largest eigenvalue is taken as the CSP
filter coefficients. The next unit is called the adaptive es-
timation of the model parameters. This unit is estimated
the model parameters on the basis of the incoming sig-
nal. In our investigation, we use a vector autoregressive
model (VAR) as the adaptive mathematical model [Ovod
et al., 2012]. After that, the control signal is generated
by comparing the VAR model and the results of the CSP
algorithm in the control generation unit. The obtain con-
trol signal is transmitted to the controlled robot, which
in turn starts moving in either the left or right direction
(according to the subject’s current state). Some units of
the developed software have the certificate of state regis-
tration of software [Stepanenko et al., 2019].

4 Results and Discussion
The sensorimotor rhythm recognition experiment was

performed on a test trained subject (male, 28 years
old). The spatial filter was trained through rotation by
the wrist of the left or right hands in turn, recognition
through rotation and imagination of rotation. The results
are consistent with the observations of Neuper [Neuper
et al., 2005], namely the movement is better recognized
than his imagination. In our case:

rotation of the right hand: recognition is 61%;
imagination of rotation of the right hand: recogni-
tion is 52%;
rotation with the left brush: recognition is 82%;
imagination of rotation of the left hand: recognition
is 68%.

The accuracy of the motion recongnition is not enough
to solve the posed problem of controlling robot. The ac-
curacy significantly depends on the subject, whether it
trained to control his brain activity or not. The other
problem is that movement of the eyes and facial mus-
cles affect the recorded signal. As a result, there is a
real opportunity to learn how to control the vehicle us-
ing muscles and eyes, and not the brain. To overcome
these difficulties we propose to use modern methods of
pattern recognition based on an artificial intelligence.

5 Artificial Intelligence
Artificial Intelligence (AI) and machine learning (ML)

technology have been developing rapidly in recent years.
Traditional machine learning approach consists of two
steps: feature engineering and model fitting/training.
Feature engineering is the process of selecting and trans-
forming the key information contained in the raw data.
Obtained features are served as the input for machine
learning model. The model consists of several parame-
ters which are tuned (’trained’) typically using some iter-
ative process so that given goal is achieved. For example
one might consider training a model which maps input
features to a fixed set of labels. This task is called clas-
sification. In the case of our setup these labels might be
’right hand rotation’ and ’left hand rotation’.

Feature engineering requires strong domain knowl-
edge and high quality raw data. EEG data has a low
SNR (signal-to-noise ratio) making it challenging to ex-
tract reasonable features. Although several preprocess-
ing methods have been developed to decrease the noise
level, these methods are time-consuming and not suit-
able for online control design and may cause useful in-
formation loss. Besides that EEG signals are affected
by eyes movement and facial muscles which might be
reflected in extracted features.

During past years the alternative approach for machine
learning gains popularity. This approach which is called
deep learning instead of splitting feature engineering and
learning into two separate stages trains features and clas-
sification model at the same time. In other words deep
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Figure 3. Experimental setup and Software schematics - 2

learning model extracts suitable features from the raw
data by itself.

The key point of our proposal is extension of the adap-
tive model and adaptive parameter estimation in the
scheme of Fig.2 to the AI model and machine learn-
ing classification algorithms, see Fig.3. Deep learning
paradigm seems the most promising for this classifica-
tion task because of feature engineering challenges that
were discussed above. One of the issues with deep learn-
ing approach is a need for big volumes of raw data. To
address this problem we propose to use data from public
sources [EEG-datasets; EEG/ERP data] to pretrain our
model [Erhan D., et al., 2010]. This model will serve as
the basis for classification models which will be trained
on our labeled data. We could start from binary classi-
fication (’right hand rotation’, ’left hand rotation’) and
add new classes once we collect more data without need
to retrain the base model.

There are many architectures of deep learning models.
So called Convolutional Neural Networks (CNN) allow
to capture spatial structure of the data while Recurrent
Neural Networks (RNN) are suitable well for capturing
temporal structure. Since EEG signals have both spa-
tial and temporal components one might consider using
hybrid models consisting of CNN and RNN layers.

Although deep learning models extract features by
themselves and can be applied directly to the raw data
[Sors et al., 2018; Tang et al., 2017], one can still use pre-
processed signal as model input [Johansen et al., 2016;
Tsiouris et al., 2018]. Deep learning models also often
used as feature extractors [Ansari et al., 2018; Wang
et al., 2017]. Our intent is to try all these main ap-
proaches and compare their performance for the task of
vehicle control.

6 Conclusion
The modern AI-based technology seems suitable for

processing big datasets of EEG data. We propose to use
it in the neurofeedback environment. It opens the way
for improvement of the interaction between human and

machine and for extension of the area of the neurofeed-
back applications. The next stage of the research will be
the experimental study of the proposed approach.

Acknowledgements
This work was partly supported by RFBR, grant 19-

08-00865.

References
Ansari A.H., Cherian P.J., Caicedo A., Naulaers G.,

De Vos M., and S. Van Huffel (2018). Neonatal
seizure detection using deep convolutional neural net-
works. International Journal of Neural Systems (2018),
1850011.

Arvaneh, M., Robertson, I. H., and Ward, T. (2018). A
P300-based brain-computer interface for improving at-
tention. Front. Hum. Neurosci., 12, pp. 524.

EEG-datasets. https://github.com/meagmohit/
EEG-Datasets

EEG / ERP data available for free public download.
https://sccn.ucsd.edu/˜arno/fam2data/
publicly_available_EEG_data.html

Erhan D., Bengio Y., Courville A., et al. (2010). Why
Does Unsupervised Pre-training Help Deep Learning?
Journal of Machine Learning Research 11, 625-660.

Gorshkov A.A., Plotnikov S.A., Fradkov A.L. (2017).
Bifurcation and synchronization analysis of neu-
ral mass model subpopulations. IFAC-PapersOnLine,
50(1), pp. 14741-14745.

Johansen A.R., Jin J., Maszczyk T., Dauwels J, Cash S.S.
and M Brandon Westover. 2016. Epileptiform spike de-
tection via convolutional neural networks. In Acous-
tics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE, 754–758.

Kropotov Yu. D. (2008). Quantitative EEG, Event-
Related Potentials and Neurotherapy. Elsevier, Berlin.

Marzbani, H., Marateb, H. R., and Mansourian, M.
(2016). Neurofeedback: a comprehensive review on
system design, methodology and clinical applications.
Basic Clin. Neurosci., 7 (2), pp. 143–158.

Mitsar company website - https://mitsar-eeg.com
Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller,

G. (2005). Imagery of motor actions: differential ef-
fects of kinesthetic and visual-motor mode of imagery
in single-trial EEG. Cogn. Brain Research, 25 (3),
pp. 668–677.

Niedermeyer, E. and Lopes da Silva, F. H. (2005). Elec-
troencephalography: basic principles, clinical appli-
cations, and related fields. Lippincott Williams &
Wilkins, Philadelphia.

Ovod I.V., Ossadtchi A.E., Pupyshev A.A., Fradkov A.L.
2017 Forming neurofeedback signal based on adaptive
model of brain activity. Journal Neurocomputers. No
2. pp. 36-41 [in Russian].

Plotnikov S.A., Lehnert J., Fradkov A.L., and Schoell E.
(2016). Adaptive control of synchronization in delay-
coupled heterogeneous networks of FitzHugh-Nagumo



CYBERNETICS AND PHYSICS, VOL. 8, NO. 4, 2019 291

nodes. International Journal of Bifurcation and Chaos,
26 (4) 1650058 (14 pages).

Silver, D., Schrittwieser, J. S. K. et al. (2017). Mastering
the game of Go without human knowledge. Nature,
550 (7676), pp. 354–359.

Sitaram, R., Ros, T., Stoeckel, L., Haller, S.,
Scharnowski, F., Lewis-Peacock, J., Weiskopf, N.,
Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N.,
and Sulzer, J. (2017). Closed-loop brain training: the
science of neurofeedback. Nat. Rev. Neurosci., 18 (2),
pp. 86–100.

Smetanin, N., Volkova, K., Zabodaev, S., Lebedev, M.,
Ossadtchi, A. (2018). NFBLab – A Versatile Software
for Neurofeedback and Brain-Computer Interface Re-
search. Frontiers in Neuroinformatics. Vol. 12 (100).

Smetanin, N., Ossadtchi, A., Plotnikov S. (2019). A
software package for the EEG signal preprocessing.
Certificate of state registration of software, reg. No
2019610034 from 09.01.2019. M.: Rospatent.

Sors A., Bonnet S., Mirek S., Vercueil L., and J.-F.Payen
(2018). A convolutional neural network for sleep stage
scoring from raw single-channel eeg. Biomedical Sig-
nal Processing and Control, 42, pp. 107–114.

Stepanenko D. A., Semenov D. M., Plotnikov S. A.,
Fradkov A.L. (2019). A software package for the im-
plementation of neurofeedback: the EEG signal pro-

cessing module. Certificate of state registration of
software, reg. No 2019610034 from 09.01.2019. M.:
Rospatent.

Takasaki, K., Liu, F., Ogura, M., Okuyama, K.,
Kawakami, M., Mizuno, K., Kasuga, S., Noda, T.,
Morimoto, J., Liu, M., and Ushiba, J. (2018). EEG-
based neurofeedback training with shoulder exoskele-
ton robot assistance triggered by the contralesional pri-
mary motor cortex activity in poststroke patients with
severe chronic hemiplegia. Ann. Phys. Rehab. Med.,
61, pp. e94–e95.

Tang Z., Li C., and Sun S. (2017). Single-trial EEG clas-
sification of motor imagery using deep convolutional
neural networks. Optik - International Journal for Light
and Electron Optics 130 (2017), 11–1 .

TRIK company website - https://trikset.com
Tsiouris K.M., Pezoulas V.C., Zervakis M, Konitsio-

tis S., Koutsouris D.D., and D. I. Fotiadis (2018). A
Long Short-Term Memory deep learning network for
the prediction of epileptic seizures using EEG signals.
Computers in Biology and Medicine 99 (2018), 24–37.

Wang Q., Hu Y., and H. Chen (2017). Multi-channel
EEG Classification Based on Fast Convolutional Fea-
ture Extraction. In International Symposium on Neural
Networks. Springer, 533–540.


