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Abstract
A dynamic programming based methodology is pro-

posed for the design of aperiodic state feedback con-
trollers for sampled data systems. The aperiodic sam-
pling strategy follows a self-triggered control approach,
i.e., the feedback controller computes both the control
command and the next sampling instant. Three prob-
lem formulations are discussed for the self-triggered
case: to reach a target in a given time with a minimum
number of sampling instants; to reach a target no later
than a given time with a minimum number of sampling
instants; to reach the target in minimum time, with no
more sampling instants than necessary. The control de-
sign is robust with respect to bounded disturbances.

Key words
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gramming.

1 Introduction
Periodic discrete-time control is based on the assump-

tion that the cost of sampling the environment and
changing the actuation value is negligible. However,
there are several scenarios where such assumption is
not verified. For instance, in mechanical systems, the
simple act of changing the actuation value may incur
in costs (e.g., wear and tear, energy losses due to static
friction) which must be taken into account in the de-
sign of the feedback controller. In this case, it might
still be adequate to keep a periodic sampling rate and
simply design a feedback controller that changes the
control command only when worthwhile. However, for
systems designed with autonomy in mind, it may be
desirable that the control system is partially switched
off as frequently as possible. Additionally, when sens-
ing involves data network utilization, as happens in net-
worked systems [Hespanha et al., 2007], increasing the
time between sampling instants leads to a decrease in
network bandwidth usage, as also in the power con-
sumption.

There are several approaches for aperiodic control
[Mahmoud and Memon, 2015, Fiter et al., 2015]. One
such approach is to make the state feedback controller
responsible for the choice of the next sampling instant.
This means that, at each sampling instant, the con-
troller must compute the control command and also the
time of next sampling instant. This approach has been
coined as self-triggered control by some authors [Wang
and Lemmon, 2009,Anta and Tabuada, 2010]. The typ-
ical objective of the self-triggered approach is to de-
sign a control law that meets a trade-off between the
number sampling instants and some other given per-
formance index. In [Anta and Tabuada, 2010], self-
triggered approach is studied for the stabilization of
state-dependent homogeneous systems and polynomial
systems; in this work, the next sampling instant is cho-
sen such that a desired decrease condition, with re-
spect to a given Lyapunov function, is met, thus en-
suring exponential input-to-state stability. That ap-
proach is extended to smooth control systems in [Anta
and Tabuada, 2012]. In [Fiter et al., 2012], the au-
thors claim to present the first online implementation
of a self-triggered strategy, based on LMIs and a pre-
computed Lyapunov–Razumikhin function. In [Gom-
mans et al., 2014], a self-triggered approach is de-
veloped for unconstrained discrete-time linear time-
invariant systems subject to random noise with dis-
counted quadratic cost functions.
In this paper, the problem of finite time target reacha-

bility using self-triggered control is discussed. To our
best knowledge, this has not been discussed in the ex-
isting literature. We propose a self-triggered approach
where the underlying storage function (in the Lyapunov
sense) is the minimum number of sampling instants to
reach a given target T within a given time parametriza-
tion. In order to accomplish that, the problem of reach-
ing T in finite time with a minimal number of sampling
instants from any given initial state must be solved
at the design stage. Three types of time parametriza-
tions, corresponding to three sub-problems, are consid-
ered: target reachability at exact time, target reachabil-



ity within a time interval [0, tf ] and target reachability
in minimum time. The value function [Krasovskii and
Subbotin, 1988] corresponding to each sub-problem is
then used as a storage function for the control laws, in
a dynamic programming fashion.
A dynamic programming based numerical algorithm,

suitable for systems with Lipschitz continuous dynam-
ics and bounded inputs, is proposed for the computa-
tion of the value function. Bounded disturbances and
state-constraints are also considered. Robustness with
respect to bounded disturbances is handled by formu-
lating and solving the problem as two-person zero-sum
deterministic differential games [Krasovskii and Sub-
botin, 1988]. For each considered sub-problem, the
numerical algorithm computes an approximation of the
value function (the minimal number of sampling in-
stants) for a bounded region of the state space. Using
the computed approximation of the value function, it is
possible to synthesize a local state feedback control law
that, at each sampling instant, will compute both the ac-
tuation and the time for the next sampling instant. The
sampling instants are computed as multiples of a given
minimum time interval between sampling instants. The
performance of the control law depends essentially on
the accuracy of the approximation of the value func-
tion. The results are illustrated by means of a problem
involving a two-dimensional system.
Moreover, it must be remarked that the value func-

tion computed by the proposed algorithm can also be
applied to the problem of minimizing the number of
changes in the actuation for the periodic discrete-time
setting. A controller meeting such objective can be im-
plemented by using the value function computed by the
proposed algorithm.
The paper is organized as follows. Section 2 presents

the system model and assumptions. Section 3 presents
the problem formulation and solution approach for
undisturbed systems. In section 4, the approach is ex-
tended for systems with bounded disturbances. Sec-
tion 5 presents a numerical algorithm for the solution
of the problem. The methodology is illustrated with an
application example in section 6. The paper ends with
some concluding remarks in section 7.

2 System model
In what follows, the notation N = {1, 2, 3, . . .} and
N0 = {0} ∪ N is used. The model of the controlled
system is of the form ẋ(t) = f(x(t), u(t), v(t)), where
x ∈ Rn is the system state, u(t) ∈ Uu is the control
input, v(t) ∈ Uv is a disturbance input and f(x, u, v)
is a Lipschitz continuous function in the region of in-
terest K ⊂ Rn, where K is a closed set. The set Uv is
compact, and Uu is assumed to be a discrete and finite
set, with cardinality nu, as typically happens for com-
puter controlled systems. The existence of base clock
with a period of ∆t is assumed, with k defined as the
number of clock cycles since the initial time t = 0. The
input sequence u(.) is the output of a sample-and-hold

scheme with minimal hold time ∆t (one clock cycle):

u(.) ∈ Uu := {u : R+
0 → Uu :

∀s ∈ [0,∆t), k ∈ N0 : u(k∆t + s) = u(k∆t)} (1)

Therefore, the minimum time between sampling in-
stants will be ∆t. This also precludes the consideration
of complex open-loop control sequences.
The disturbance input sequence is also assumed to be

the output of a sample-and-hold scheme with minimal
hold time ∆t:

v(.) ∈ Uv := {v : R+
0 → Uv :

∀s ∈ [0,∆t), k ∈ N0 : v(k∆t + s) = v(k∆t)} (2)

It is assumed that f(x, u, v) and Uv are chosen in or-
der to simulate the behaviour of the system when sub-
jected to the optimal continuous-time variations of the
disturbance input. This might not be trivial even for
moderately complex systems but, on the other hand, it
allows us to treat the system trajectories in the sense
of π-trajectories (see [Krasovskii and Subbotin, 1988]
and [Clarke et al., 1997]).
Moreover, the dynamics are bounded as follows:

∀x ∈ K, u ∈ Uu, v ∈ Uv : |fi(x, u, v)| ≤ fi,max (3)

where fi(x, u, v), with i ∈ {1, . . . , n}, is the ith com-
ponent of f(x, u, v).
Define y∆(x, s, u, v) as the state of the system s units

of time after departing from x with constant u and v.
It is implied that, in order to compute y∆(x, s, u, v) it
is enough that v(t) is defined for t ∈ [0, s). Similarly,
define yu(x, s, u, v) for u ∈ Uu and v(.) ∈ Uv , and
y(x, s, u, v) for u(.) ∈ Uu and v(.) ∈ Uv .
Consider also the set of augmented control sequences

Uua
:= {(u, γ) : u ∈ Uu, γ : R+

0 → N} (4)

where γ(t) is the number of clock cycles to be com-
pleted until the next sampling instant. The number of
sampling instants up to t = k∆t is computed as fol-
lows:

ns(k∆t) =

1, k = 0
ns((k − 1)∆t), γ((k − 1)∆t) > 1
ns((k − 1)∆t) + 1, γ((k − 1)∆t) = 1

Remark 1. For many systems, the sampling action
may be a little bit more complex than just reading the
sensors at the desired sampling instant. Sensor mea-
surements may be delivered asynchronously and, in
general, some form of state estimation is used. There-
fore, in what follows, it is assumed that the sensor mea-
surements are queued and a suitable state estimator is
executed only at the sampling instants, so that the pur-
pose of minimizing the number of executions of the con-
trol law is not defeated.



3 Undisturbed systems
3.1 Problem formulation
Consider the problem of ensuring that the system is at

a given target set, T ⊂ K, ktt clock cycles after depart-
ing from the initial state x0, with a minimum number
of control switches:

V (ktt, x0) = min
ua∈Uua

ns((ktt − 1)∆t) (5)

subject to:
ẋ(t) = f(x(t), u(t), 0)

x(0) = x0, x(ktt∆t) ∈ T , x(t) ∈ K

Moreover, the following boundary condition is consid-
ered:

V (0, x) =

{
0, x ∈ T
∞, x 6∈ T (6)

This formulation does not preclude the system from
reaching the target before ktt clock cycles are elapsed.
The objective of reaching the target exactly after ktt
clock cycles, and not before, can be formulated by con-
sidering the following state constraint:

x(t) 6∈ T , t < ktt∆t (7)

Assuming the problem has a solution, define u∗a(.) as
the minimizer of (5). If the problem does not have a
solution, define V (ktt, x0) =∞.
The main objective is to design a state feedback con-

trol law fc : N× Rn → Ua × N such that fc(ktt, x) =
u∗a(0), ∀(ktt, x) ∈ N× Rn.
Two additional problems are also considered: find-

ing a control law fc,minN (ktt, x) such that the system
reaches T in no more than ktt clock cycles, with mini-
mal number of sampling instants; finding a control law
fc,minT (x) such that the system reaches T in the min-
imum number of clock cycles.

3.2 Solution approach
Consider the following family of (backward in time)

reachable sets (also known as capture basins),R : Uu×
N0 × (N× Rn)→ (N× Rn):

R(u, γ, S) :={(ktt, x0) ∈ (N× Rn) \ S :

∃s ∈ {1, . . . ,min(γ, ktt)}
(ktt − s, y∆(x0, γ∆t, u, 0)) ∈ S} (8)

R(u, 0, S) :=∅ (9)

and

R(u, S) := lim
γ→∞

R(u, γ, S) (10)

The set R(u, γ, S) is composed of the pairs (ktt, x0) 6∈
S such that the system is able to reach S from (ktt, x0)
with constant control value u in no more than γ clock
cycles. Note that the existential quantifier in (8) is eval-
uated only at the discrete time instants dictated by the
base clock.
Define

Ri := {(ktt, x0) 6∈ Ri−1
0 : ∃u ∈ Uu :

(ktt, x0) ∈ R(u,Ri−1)} (11)

with Rkj :=
⋃k
i=j Ri and R0 := {0} × T . Then, the

value function V : N0 × Rn → N0 is determined as
follows:

V (ktt, x) =

{
NI(ktt, x), NI(ktt, x) 6= ∅
∞, NI(ktt, x) = ∅ (12)

NI(ktt, x) := {i : (ktt, x) ∈ Ri} (13)

either empty or a singleton.
Consider the feedback control law fc : N×Rn → Ua.

The first argument of the control law is the desired
number of periods ∆t to reach the target. The system
may eventually reach the target before that time but it is
required to be at the target at the desired time. Note that
the desired time to reach the target must be at least ∆t,
the minimum time interval between samples. This is in
accordance with the practical implementation: the min-
imum duration for the controller output will be the min-
imum duration of the sample and hold cycle. For some
systems (e.g., a torpedo), it is indifferent whether the
system reaches the target at the sampling instants or be-
tween them. However, the present formulation ensures
that target reachability is detectable by the computer
based control system at the sampling instants. This
way, the control system will be able to confirm that the
target was reached and, eventually, to commute to an-
other operational mode.
The feedback control law is computed using the dy-

namic programming approach:

fc(ktt, x) ∈ (14)
arg min

u∈Uu,s∈{1,...,ktt}
V (ktt − s, y∆(x, s∆t, u, 0))

Remark 2. In order to implement the search proce-
dure of (14), V (ktt − s, y∆(x, s∆t, u, 0)) is evalu-
ated for different values of u and s until V (ktt −
s, y∆(x, s∆t, u, 0)) < V (ktt, x) is met (terminating
condition). A straightforward way of implementing this
search is to incrementally compute the trajectories for
every u ∈ Uu, with time step ∆t, until one of them
meets the terminating condition. At each time step,
trajectories reaching a state with value higher than
V (ktt, x) are pruned from the search procedure.



3.3 Complementary problems
The minimum number of sampling instants to reach

the target in no more than ktt clock cycles is given by

VminN (ktt, x) = arg min
s∈{1,...,ktt}

V (s, x) (15)

To reach the target in no more than ktt clock cycles
with minimal number of sampling instants, the follow-
ing control law should be used at each sampling instant:

(u(k∆t), γ(k∆t)) =

fc(kmin(ktt − k, x(k∆t)), x(k∆t)) (16)

where

kmin(ktt, x) = arg min
s∈{1,...,ktt}

V (s, x) (17)

Once again, reachability is considered only at the sam-
pling instants.
The minimum number of clock cycles to reach the tar-

get is simply given by

VminT (x) = arg min{s ∈ N : V (s, x) 6=∞} (18)

The corresponding feedback control law, to be com-
puted only at the sampling instants, is given by

(u(k∆t), γ(k∆t)) =

fc(VminT (x(k∆t)), x(k∆t)). (19)

4 Disturbed systems
4.1 Problem formulation
This problem is addressed in the framework of dif-

ferential games (see, e.g., [Krasovskii and Subbotin,
1988, Ch. 10]). Consider the following finite horizon
dynamic optimization problem:

V (ktt, x0) =

min
(c,M):N×Rn→Uu×N

max
v∈Uv

ns((ktt − 1)∆t) (20)

subject to:
ẋ(t) = f(x(t), u(k∆t), v(k∆t))

x(0) = x0, x(ktt∆t) ∈ T , x(t) ∈ K(
u(k∆t)
γ(k∆t)

)
=

(
c(ktt, x0)
M(ktt, x0)

)
, k = 0(

u((k − 1)∆t)
γ((k − 1)∆t)− 1

)
, γ((k − 1)∆t) > 1(

c(ktt − k, x(k∆t))
M(ktt − k, x(k∆t))

)
, γ((k − 1)∆t) = 1

In this formulation, it is implicit that the disturbance
knows u(k∆t) when choosing v(k∆t). Future val-
ues of the sequence ua(.) := (u(.), γ(.)) are not
fixed a priori for each maximization, since ua(.)
is defined by the feedback strategy fc(ktt, x0) :=
(c(ktt, x0),M(ktt, x0)), thus depending on future val-
ues of v(.). This corresponds to the upper value of the
game, suitable to model system behaviour under worst
case adversarial conditions.

4.2 Solution approach
The solution approach is similar to the one of the

undisturbed case. However, in this case, R(u, γ, S)
must take into account the effect of the disturbance:

R(u, γ, S) ={(ktt, x0) ∈ (N× Rn) \ S :

∃s ∈ {1, . . . ,min(γ, ktt)}
∀v ∈ Uv :

(ktt − s, yu(x0, s∆t, u, v)) ∈ S} (21)

The sets R(u, S) and Ri and Rkj are computed as for
the undisturbed case and the value function V (ktt, x)
is defined as in (12).
Let us define the auxiliary value function
V (u, γ, ktt, x) as the minimum number of sam-
pling instants to reach the target from x in ktt sampling
intervals, keeping a constant control u over the
following γ∆t units of time:

V (u, γ, ktt, x) ={
NI(u, γ, ktt, x), NI(u, γ, ktt, x) 6= ∅
∞, NI(u, γ, ktt, x) = ∅ (22)

with

NI(u, γ, ktt, x) :=

{i : (ktt, x) ∈ R(u, γ,Ri−1
0 )} (23)

either empty or a singleton. The auxiliary value func-
tion V (u, γ, ktt, x) can be computed by application of
the dynamic programming principle:

V (u, γ, ktt, x) =

max
v∈Uv

V (u, γ − 1, ktt − 1, y∆(x,∆t, u, v)) (24)

V (u, 0, ktt, x) ={
V (ktt, x) + 1, V (ktt, x) 6=∞
∞, V (k, x) =∞ (25)

V (ktt, x) =

min
u∈Uu,γ∈{1,...,ktt}

V (u, γ, ktt, x) (26)

Also, define γmax(u, ktt) as the maximum γ for which
there are states from which it is possible to reach the



target in ktt∆t units of time keeping a constant control
u over the following γ∆t units of time. Armed with
this, the search space for the optimization in the control
law can be reduced:

fc(ktt, x) ∈
arg min

u∈Uu,γ∈{1,...,γmax(u,ktt)}
V (u, γ, ktt, x) (27)

The complementary problems are computed as for the
undisturbed case.

4.3 Reducing the problem dimensionality
It is possible to embed the information regarding γ

in an auxiliary function of the form V (u, ktt, x), and
therefore reduce the problem dimensionality, with ob-
vious advantages for numerical implementation. Con-
sider the following value function, defined as number
of sampling instants to reach the target, from x, in ktt
clock cycles, keeping a constant control u until the next
sampling instant (or reaching the target):

V (u, ktt, x) = (28)
min{Vu(u, ktt, x), Vu′(u, ktt, x)}

Vu(u, ktt, x) = (29)
max
v∈Uv

V (u, ktt − 1, y∆(x,∆t, u, v))

Vu′(u, ktt, x) = (30)
min

u′∈Uu\{u}
max
v∈Uv

V (u′, ktt − 1, y∆(x,∆t, u
′, v)) + 1

V (u, 0, x) =

{
1, x ∈ T
∞, x 6∈ T (31)

The control law is implemented as follows. At each
sampling instant, compute

u = c(ktt, x) ∈ arg min
u∈Uu

V (u, ktt, x) (32)

and define V (ktt, x) := V (c(ktt, x), ktt, x). If
V (ktt, x) = 1, then M(ktt, x) = ktt; otherwise, it
is necessary to compute the optimal number of clock
cycles to reach RV (ktt,x)−1 with constant control input
u and disturbance input sequence v(.) given by:

v(k∆t) ∈ arg max
v∈Uv

min(Vv(v, k), V ′v(v, k)) (33)

Vv(v, k) = (34)
V (u, ktt − k, y∆(x(k∆t),∆t, u, v))

V ′v(v, k) = (35)
min

u′∈Uv\{u}
V (u′, ktt − k, y∆(x(k∆t),∆t, u, v) + 1

The system trajectory is then simulated, in temporal in-
crements of ∆t, until it reaches RV (ktt,x)−1.

5 Numerical Computation of the value function
5.1 Undisturbed systems
The definition of the value function for the undis-

turbed case (12) depends on the definition of Ri. In or-
der to compute Ri, it is necessary to compute R(u, S),
for every u ∈ Uu and S ∈ {R0, R1, . . .}, as defined
in (11). This is made in sequence. First, R(u,R0) is
computed for every u ∈ Uu; from that computation,
R1 - the set of points (ktt, x0) from which the target is
reachable with a single sampling instant - is obtained.
Then, R(u,R1) is computed for every u ∈ Uu , in or-
der to produce R2, and the computation proceeds up
to the desired maximum number of sampling instants.
The central procedure for this algorithm is the compu-
tation of R(u, S).
In the case of nonlinear systems, it is, in general,

impracticable to compute the exact composition of
R(u, S). In what follows, it is assumed that an ap-
proximation of R(u, S), R̃(u, S), is obtained using nu-
merical methods. Moreover, the domain for the nu-
merical computation of R̃(u, S) is a bounded subset of
N0 × Rn, defined according to the maximal time hori-
zon kmax∆t and spatial region of interest. The approx-
imation of the reachable sets R(u,Ri), u ∈ Uu, i ∈
N can be obtained using any existing method (see,
e.g., [Mitchell, 2008], [Bokanowski et al., 2010] and
[Kurzhanski et al., 2006]) for the desired degree of ac-
curacy. In what follows, a grid-based method is as-
sumed. The grid covers the desired region of N0 ×Rn,
with inter-node spacing ∆t for the temporal dimension
and inter-node spacing ∆xj for each spatial dimension
j. Define Kj = ceil( fj,max∆t

∆xj
), where ceil(x) is the

smallest integer not smaller than x. Moreover, ∆t is
used as the time-step of the numerical solver.
In the undisturbed case, R̃(u, S) can be com-

puted by simple evaluation of the trajectories (ktt −
s, y∆(x0, s∆t, u, 0)), s ∈ {1, . . . , ktt} departing from
each grid node (ktt, x0) in the computational domain.
If the trajectory from (ktt, x0) reaches S in no more
than ktt∆t units of time without leaving the computa-
tional domain, then (ktt, x0) is marked as belonging to
R̃(u, S).
By careful choice of the order of evaluation of the

nodes, it is possible to avoid evaluating the whole tra-
jectory from each node. The key idea is to follow the
reverse order of the optimal the trajectories, i.e., to start
processing from the target set and to visit each node
only once. Only the points that can possibly reach
the target at a given time, according to the envelop
(3) of the system dynamics, are evaluated. This set of
points is denominated narrow-band. Define R̃(u, γ, S)
as the numerical approximation of R(u, γ, S). Then,
the narrow-band at iteration γ ≥ 1 is defined as

NB(γ) = {(ktt, x) 6∈ R̃(u, γ − 1, S)
⋃
S : (36)

∃(ktt − 1, y) ∈ R̃(u, γ − 1, S)
⋃
S :∥∥diag(K1∆x1, . . . ,Kn∆xn)−1(x− y)
∥∥
∞ ≤ 1}



Thus, the narrow band is initially composed of the
nodes in the direct neighbourhood of S; afterwards,
NB(γ) is updated based on the approximation of
R(u, γ − 1, S), i.e., it is composed of the nodes in the
direct neighbourhood of R̃(u, γ − 1, S).
In each iteration γ, the trajectory (ktt −
s, y∆(x0, s∆t, u, 0)), s ∈ {1, . . . ,min(ktt, γ)}
emanating from each node (ktt, x0) in NB(γ) is
computed in temporal increments of ∆t until one of
the following conditions is verified: a) the trajectory
leaves the computational space; b) the trajectory
reaches a cell with no vertex in R̃(u, γ − 1, S)

⋃
S;

c) the trajectory reaches a cell with all its vertices in
R̃(u, γ − 1, S)

⋃
S. If the latter condition is verified,

then the node is marked as belonging to R̃(u, γ, S).
This may introduce both over-approximation and

under-approximation errors. More specifically, if all
vertices of a cell are marked as belonging to R̃(u, γ −
1, S)

⋃
S then the algorithm assumes that all points

of that cell also belong to R(u, γ − 1, S)
⋃
S; how-

ever, this may hide concavities of R(u, γ − 1, S)
⋃
S,

thus leading to over-approximation. On the other hand,
whenever the intersection of R(u, γ − 1, S)

⋃
S with

a cell does not include all the vertices of the cell,
the algorithm will produce an under-approximation of
R(u, γ − 1, S)

⋃
S.

The computation of R̃(u, S) starts with NB(1) and
finishes after a maximum of γmax ≤ kmax iterations.
Notice that R̃(u, γ, S) is defined incrementally from
γ = 1 to γ = γmax, meaning that, at the end of
the computation, only R̃(u, γmax, S) must be stored in
memory.

5.2 Disturbed systems
In the disturbed case, the objective is to compute
V (u, ktt, x). Nevertheless, like for the undisturbed
case, the synthesis procedure is centred in the sequen-
tial computation of R̃(u, S) for every u ∈ Uu and
S ∈ {R0, R1, . . . , Rkmax}. This is done by comput-
ing the auxiliary value function V (u, ktt, x) at the grid
nodes, applying (28)-(31) with the narrow-band ap-
proach. Initially, the nodes corresponding to the tar-
get are marked with 0 and all the remaining nodes are
marked as infinity.
The narrow-band approach is applied taking into ac-

count that R(u, 1, R(u, γ − 1, S)) = R(u, γ, S) \
R(u, γ − 1, S). However, in this case, a single pass is
not, in general, sufficient to obtain convergence to the
solution. The narrow-band approach is based on the
principle that the control input always seeks the lower
values of the value function (note that the running cost
is null), thus allowing the computation of the value
function in a single pass, from the target set to the level
sets associated with increasing values of the value func-
tion. However, in the disturbed case, the computation
of the worst case disturbance for a given state requires
the knowledge of the value function in the whole neigh-
bourhood of that state (i.e., not only in the lower level
sets). Therefore, in the disturbed case, a single pass

of the narrow-band approach does not provide the best
approximation of the value function. Several iterations
are required until a good approximation is achieved.

6 Application example
Consider the following nonlinear system:

ẋ(t) =

(
sin(x2(t)) + v(t)

u(t)

)
(37)

with state x constrained to [−16, 16]× [−π, π], control
input u ∈ Uu = {−0.26, 0, 0.26} and bounded distur-
bance v ∈ Uv = [−0.25, 0.25]. The minimum control
period is ∆t = 100 ms. The computations are per-
formed on a 301×241×241 regular grid, where the first
dimension is the time to reach the target. This implies
that the longest optimization horizon is 300∆t = 30 s.
The target is T = {x : x2

1 + (x2/0.5)2 ≤ 2}.
The procedure described in section 5 was employed to

compute Ri from i = 1 to i = 56, after which no more
pairs (t, x) were added to the reachable sets. Figures 1-
6 illustrate some of the computed reachable sets. The
capture basin for this example, with no dependence on
the number of sampling instants, is simply the reunion
of every Ri. Figure 6 shows the level sets of the cap-
ture basin up to a time horizon of 30 s. Inspection of
figures 1-5 can provide some more insight on the pro-
posed approach. In figure 1, it is possible to see that
there is no state from which the target can be reached
in 6 s using a constant actuation, computed at the initial
time. Recall that the first sampling instant and control
action are assumed to happen at the initial time t = 0 s.
In figure 2, it can be seen that the set of states from
which the target can be reached in 2 s starts to van-
ish. This is in accordance with the underlying system
dynamics and given target, as can be concluded from
figure 6. Focusing on the case of tf = 6 s, it is possible
to see that figure 3 fills some of the empty regions of
figure 2, i.e., the former displays the states from which
the target can only be reached with 3 sampling instants.
The same can be verified for tf ∈ {12, 18, 24} in fig-
ures 3, 4 and 5.

7 Conclusions
This paper describes a numerical approach for the op-

timal self-triggered control of systems. Optimality is
considered in the sense of minimal number of sampling
instants to reach a target in a given time frame.
The numerical algorithm is based on dynamic pro-

gramming principle and suffers from the usual dimen-
sionality problems. Nevertheless, the computed value
function can be used to implement state feedback con-
trol laws, and also as a benchmark for other control
designs. Moreover, the feedback control laws for the
three considered problems can be obtained using the
same value function.



Figure 1. Projections ofR0

⋃
R1 for different time horizons.

Figure 2. Projections ofR2 for different time horizons.
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