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Abstract: Mathematical model of an autorotating main rotor with flexible hub has been
developed. Numerical solution of the model has been presented. Special features of the rotor
dynamics have been investigated and discussed. Parametric studies of the A-002M main rotor
have been performed. The results of the study have been used in designing the autogiro.
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1. INTRODUCTION

Modern world sees increased interest in autogiros, which
will have numerous applications, including unmanned aer-
ial platforms. The autogiro theory was first developed
by Glauert and Lock, and than mainly advanced in 20-
40th of the former century by J.B. Weatley, F.J. Beiley,
M.L. Mil’, N.I. Kamov, A.P. Proskuryakov, V.G. Tabach-
nikov et al. Due to advancement of the helicopters, until
recently the scope of research of main rotor dynamics
was mainly restricted by investigation of flapping, whereas
auto-rotation study was secondary. Some assumptions of
the analytical models of auto-rotation applied earlier did
not allow the designers to investigate auto-rotating rotors
comprehensively. Our interest in autogiro dynamics was
evoked by the A-002 aircraft, which was being developed
by IRKUT Corporation, Kalmykov et al. (2002a,b). Pre-
viously, the autogiro main rotor models were developed
for both steady-state (Polyntsev, 2003a) and unsteady
(Polyntsev, 2003b) auto-rotation conditions. An analytical
solution to the first model was found, and flapping stability
issues considered (Polyntsev, 2003c). Nonlinear dynamics
of the two-bladed main rotor with flexible blades was in-
vestigated for the cases of flapping-plane bending (Somov
and Polyntsev, 2003) and coupled flapping and rotation-
plane bending (Somov and Polyntsev, 2004). The results
of these studies were used in developing an autogiro flight
simulator, which showed good accordance of the predicted
results with the experimental data (Polyntsev, 2005). Also,
problems of main rotor aero-flexible stability and robust
control were addressed (Belyash et al., 2005; Somov and
Polyntsev, 2005). This work focuses on modeling the auto-
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Fig. 1. The scheme of the autogiro

Fig. 2. The scheme of the flexible hub

giro rotor (Fig. 1) with the flexible rotor head invented by
A. Tatarnikov and O. Polyntsev (patent RU 2281885C1).
The rotor consists of two blades attached to the hub, which
incorporates three flapping hinges and flexible beams, re-
stricting individual flapping of the blades, Fig. 2.



Fig. 3. Kinematic scheme

2. MODEL OF AN AUTOGIRO ROTOR WITH
FLEXIBLE HUB

The following assumptions are made with respect to the
model:

• blades are absolutely rigid;
• flexible oscillations of the beams in the rotation plane

are negligible;
• rotor is in a steady-state auto-rotation regime.

Blade-element motion is considered according to the kine-
matic scheme in Fig. 3 with the notations: O0 is center
of the common flapping hinge; O1 and O2 are centers of
individual hinges, and Og is center of the fixed coordinate
system (the Earth).

If restriction by the flexible beam is not considered, motion
of the blade-element with distributed mass mr and dx
length is described by the following relation

mrR̈gx = Fsdx,

where s is number of the considered blade (hereafter, s = 1
or s = 2); Rgx = Rg + Rs is a radius-vector of a blade-
element with respect to the fixed coordinate system; Fs is
vector of external distributed forces (aerodynamic forces
and gravity), and (˙) = ∂()/∂t – standard notation.

If Ω0 is angular rate of the rotor, and Ωs is angular rate
of the blade s with respect to the hub, then the vector of
absolute acceleration is written as

R̈gx = Ω̇0 ×Rs + Ω̇s × rs + Ws,

where
Ws = Ω0 × (Ω0 × (r0s + rs)) + (Ωs + 2Ω0)× (Ωs × rs).
Reference frames applied to the model are shown in Fig. 4,
and the matrixes are defined by the following expressions
using the standard notations:

Fig. 4. Reference frames

C1 = [β0]3; C2 = [ac]3; C3 = [β1]3; C4 = C2[π]2;

C5 = [β2]3; C6 = [αR]3; C7 = [−(π + ψL)]2; C8 = [δp]3;
E – identity matrix, where β0 and β1, β2 are flapping
angles in common and individual hinges, respectively; ac

is design rotor cone angle; αR is rotor’s angle of attack; ψL

is azimuth of the first blade; δp is controlled pitch angle.

Since sum of the elementary moments amounts to zero on
the three flapping hinges, by integrating one could obtain
the equation of common hinge flapping∫

{R1 × (F1 −mrR̈)g1}zcdx− {rb1 × Fy1}zc

+
∫
{R2 × (F2 −mrR̈g2}zcdx− {rb2 × Fy2}zc = 0,

(1)

and two equations for the individual hinge flapping mo-
tions∫

{rs × (Fs −mrR̈s)}zbsdx+ {ras × Fys}zbs = 0, (2)

where integral ∫
(·)dx ≡

∫ X

x2

(·)dx;

x2 is a horizontal offset of a blade and X is blade length;
rbs and ras are radius-vectors of the blade-beam junction
points with respect to points O0 and Os, respectively; Fys

is vector of reaction of the beam s.

Forced flexible oscillations of the beam element with length
dr are described by the relation

[EJy′′]′′dr − [Nsy
′]′ dr − Fxy

′′ drqb + ÿ dr = Fy, (3)
where (·)′ ≡ ∂(·)/∂x – standard notation; y is flapping-
plane displacement; EJ is bending stiffness of the beam’s
section; Ns is a tensile force; Fx and Fy are components
of the vector Fys in the beam’s coordinate system; qb is
distributed mass of the beam.

To solve the boundary problem (3) the Bubnov – Galerkin
method is used as the method of given forms (Morozov
et al., 1995). The beam’s displacement is presented as

y(t, r) =
n∑

j=1

h(j)(r) ζ(j)(t),

where ζ(j)(t) and h(j)(r) are oscillation amplitude and
function of natural mode shape for mode j, respectively.

The shape functions are estimated separately by finite
element analysis. After transformations, one can achieve
the following equation for any mode (symbol j is omitted
hereafter):

FyshL = ζCs + ζ̈mb.

Here

Cs = cb + FxsKF;mb =
∫
qbh

2dr;KF =
∫

(h′)2dr;

cb =
∫
EJ(h′′)2 dr +

∫
Ns(h′)2 dr

with notation for the integral∫
(·) dr =

∫ x1

0

(·) dr,

where x1 is length of the cantilevered beam; hL is value of
the shape function in the point of the applied force.



Calculations show that for the projected application of
this rotor hub only first bending mode is significant, and
no resonant oscillations is expected for the higher-order
modes in the operational regimes. Therefore, the solution
of the problem (1 ) – (3) is simplified, taking into account
a kinematic link between oscillations of the beams and
flapping motions of the blades. Components of the angular
rate vectors in the corresponding reference frames are
presented as follows

{Ω0}c = [0, −ω, β̇0]t; {Ωs}bs = [0, 0 β̇s]t,
where ω is rotor’s angular rate. Hence, the final three
equations describing three flapping motions are expressed
as

β̈0 = (Ma0 +My0 −M0)/JRy;

β̈s = (Mas +Mus −Ms)/Jys,

where Ma0 and Mas are moments of external forces; My0

and Mus are moments caused by stiffness of the beams;
JRy and Jys are time-dependant moments of inertia; M0

and Ms are moments of inertial forces. The components
are determined by the following relations:

M0 =
∑

s

M0s;M0s =
∫
mr{Rs × (Ω̇s × rs + Ws)}zc dx;

Ma0 =
∑

s

∫
mr{Rs × Fs}zc dx; My0 =

∑
s

lsc0s;

l1 = {rb1}xc cos(ac + β0) + {rb1}yc sin(ac + β0);
l2 = {rb2}xc cos(ac − β0) + {rb2}yc sin(ac − β0);

c0s = x1[(cb +NxsKF) sinβs +mb(β̈s cosβs − β̇2
s sinβs)];

Mas =
∫
{rs × Fs}zbs; Mus = csx1 cosβs;

cs = x1(cb +NysKF −mbβ̇
2
s ) sinβs;

Nxs =
∫
{Fs −mr(Ω̇s × rs + Ws)}xbs dx;

Nys =
∫
{Fs −mr(Ω̇s × rs + Ws)}ybs dx;

JRy =JR − l1J01 + l2J02; JR =
∑

s

∫
mr(R2

sxc +R2
syc)dx;

J0s = x1S0sKF sinβs; S0s =
∫
mr{Rs}ybs dx;

Jys = Jb + x1Ss cosβs;Ss = x1(mb cosβs + SbKF sin2 βs);

Jb =
∫
mrx

2dx; Sb =
∫
mrxdx.

Final equation required to complete the model describes
steady-state auto-rotation as ψ̇L = ωr.

3. DYNAMICS OF AN AUTOGIRO ROTOR WITH
FLEXIBLE HUB

The system of differential equations is solved by means
of the Runge – Kutta method. Nonlinearity of the system
results from nonlinear dependencies of aerodynamic forces
upon local attack angles, Mach and Reynolds numbers, and
flexible deformations of the beams; appearance of effects
of flow non-stationarity; non-uniformity of distribution
of mass and stiffness etc. To add, the blades are under
influence of non-symmetrical air stream.

Fig. 5. Deformation coefficient vs. azimuth

Fig. 6. Deformation coefficient vs. advance ratio

It is well known that aerodynamics of a main rotor is a sep-
arate complicated problem (Mil’ et al., 1966; Boyd et al.,
2002). Thus, for the purpose of our study we apply the
modified classic blade-element theory (Polyntsev, 2004).

Input parameters for the model are calculated separately
using the analytical solution of the auto-rotating rotor
(Polyntsev, 2003c).

In order to illustrate the special features of the rotor
dynamics, calculations were performed for the A-002M au-
togiro developed by IRKUT Corporation. Fig. 5 presents
deformation coefficient ζ̄ = ζ/x1 of a blade versus azimuth
and rotor’s tip-speed ratio µ. It is seen that the beams
oscillate with doubled auto-rotation frequency.

Fig. 6 illustrates that oscillation magnitudes go up with
the advance ratio µ value. Parametric studies of the beam
stiffness influence on the rotor dynamics revealed that
by changing the stiffness it was possible to minimize
oscillations magnitudes, and, therefore, loads and vehicle
vibrations.



Fig. 7. Deformation coefficient vs. K-ratio

Fig. 7 shows deformation coefficient values versusK, where
K is ratio of parametric and actual bending stiffness of the
A-002M hub beams.

The other finding indicated significance of avoidance the
resonant oscillations coming from inadequate stiffness and
leading to increased vibrations.

Fig. 8. Wind gust dynamics

Fig. 8 shows transient behavior of the blades after the
sudden gust of wind. It is seen that stabilization of the
flapping motions occurs in four-five revolutions.

4. ROBUST CONTROL OF AN AUTOGIRO

Applied general approach to synthesis of nonlinear control
system (NCS) with a partial measurement of its state
is presented, moreover the method of vector Lyapunov
functions (VLF), which has a strong mathematical basis
for analysis of stability of various nonlinear interconnected
systems with the discontinuous right-hand side, is used in
cooperation with the exact feedback linearization (EFL)
technique. Let there be given a nonlinear controlled object

D+x(t)=F(x(t),u); x(t0)=x0; t ∈ Tt0 ,

where x(t) ∈ H ⊂ Rn is a state vector with an ini-
tial condition x0 ∈ H0 ⊆ H; u = {uj} ∈ U ⊂ Rr

is a control vector. Let some vector norms ρ(x) ∈ R l

+

and ρ0(x0)∈R l0
+ also be given. For any control law (CL)

u=U(x) the closed-loop system has the form

D+x(t) = X (t, x); x(t0) = x0, (4)
where X (t, x)=F(x,U(x)),X : Tt0 ×H→H is a discontin-
uous operator. Assuming the existence and the non-local
continuability of the right-sided solution x(t) ≡ x(t0, x0; t)
of the system (4) for its extended definition in the aspect of
physics, the most important dynamic property is obtained,
that is ρρ0-exponential invariance of the solution x(t)=0
under the desired γ ∈ R l

+:

(∃α ∈ R+) (∃B∈B
l×l0
+ ) (∃δ ∈ Rl0

+) (∀ρ0(x0) < δ)

ρ(x(t)) ≤ γ + B ρ0(x0) exp(−α(t− t0)) ∀t ∈ Tt0 .

For the VLF υ : H → R k

+ with components υs(x) ≥ 0,
υs(0) = 0, s = 1 : k and the norm ‖υ(x)‖=max{υs(x)},
defined are scalar function υ(x)=max{υs(x), s=1: lk, 1≤
lk≤k} and a υ upper right derivative with respect to (4):

υ ′(x) ≡ lim
δt→0+

(υ(x + δtX (t, x))− υ(x))/δt.

Theorem (Somov et al., 2007). Let there exist the VLF
υ, so that:

1) (∃a ∈ Rl
+) (∀x ∈ H) ρ(x) ≤ a · υ(x);

2) (∃b ∈ Rl0
+) (∀x0 ∈ H0) ‖υ(x0)‖ ≤ 〈b, ρ0(x0)〉;

3) ∃γc ∈ R k

+, a function ϕγ(·) exists for γc ≤ ϕγ(a, γ);
4) ∀ (t, x) ∈ (Tt0 ×H) the conditions are satisfied:
a) υ′γ(x)≤̇fc(t, υγ(x))≡Pυγ(x) + f̃c(t, υγ(x));
b) Hurwitz condition for positive matrix P;
c) Waz̆ewski condition on quasi-monotonicity for the

function f̃c(t, y);
d) Carateodory condition for the function f̃c(t, y), boun-

ded in each domain Ωr
c =(Tt0 ×Sr

c ), where r > 0 and
Sr

c = {y ∈ Rk : ‖y‖E < r};
e) (̃fc(t, y)/‖y‖)

t∈Tt0=⇒ 0 for y → 0 uniformly with
respect to time t ∈ Tt0 ,

where υγ = υ − γc. Then solution x(t) = 0 of the system
(4) is ρρ0-exponential invariant and the matrix B has the
form B = c · abt with c ∈ R+.

There is such an important problem: by what approach
is it possible to create constructive techniques for con-
structing the VLF υ(x) and simultaneous synthesis of a
nonlinear control law u = U(x) for the close-loop system
(4) with given vector norms ρ(x) and ρ0(x0) ? Recently,
a pithy technique on constructing VLF at such synthesis
has been elaborated. This method is based on a nonlinear
transformation of the NCS model and solving the problem
in two stages.

In stage 1, the right side F(·) in (4) is transformed as
F(·)=f(x)+G(x) u+F̃(t, x(t),u), some principal variables
in a state vector x∈H̃⊂Rñ ⊆Rn with ñ≤n, x0∈H̃0⊆H̃
are selected and a simplified nonlinear model of the object
(4) is presented in the form of an affine quite smooth
nonlinear control system

ẋ=F(x,u)≡ f(x)+G(x)u≡ f(x)+
∑

gj(x)uj ,

which is structurally synthesized by the EFL tech-
nique. In this aspect, based on the structural analy-
sis of given vector norms ρ(x) and ρ0(x), and also
vector-functions f(x) and gj(x), the output vector-function
h(x)={hi(x)} is carefully selected. Furthermore, the non-



linear invertible (one-to-one) coordinate transformation
z = Φ(x) ∀x ∈ Sh ⊆ H̃ with Φ(0) = 0 is analytically
obtained with simultaneous constructing the VLF. Fi-
nally, bilateral component-wise inequalities for the vectors
x, z, υ(x), ρ(x), ρ0(x0) are derived, it is most desirable to
obtain the explicit form for the nonlinear transforma-
tion x = Ψ(z), inverse with respect to z = Φ(x), and the
VLF aggregation procedure is carried out with analysis
of proximity for a singular directions in the Jacobian
[∂F(x, U(x))/∂x].

In stage 2, the problem of nonlinear CL synthesis for
the complete model of the NCS (4), taking rejected
coordinates, nonlinearities and restrictions on control, into
account is solved by the VLF-method. If a forming control
is digital, a measurement the model’s state is discrete and
incomplete, then a simplified nonlinear discrete object’s
model is obtained by Teylor-Lie series, a nonlinear digital
CL is formed and its parametric synthesis is carried out
with a simultaneously construct a discrete sub-vector VLF.

Principal problems on a robust stabilization of the autogiro
flexible rotor were studied. This research was carried
out in association with ground physical experiments and
identification of the main rotor parameters during full-
scale test flights.

Obtained results on onboard signal processing by multiple
discrete filtering, on guidance and nonlinear robust digital
control applied for the aircraft will presented in a final
variant of this paper.

5. PRACTICAL REALIZATION

Based on the results of main rotor dynamics research, the
authors developed several simulation software products
(Kalmykov et al., 2002a,b; Polyntsev, 2005), which allow
engineers to investigate spatial motion of autogiros in vari-
ous flight regimes, including take-off, climbing, descending,
level flight, and transient manoeuvres.

Dynamic loads on the vehicle structure could be inves-
tigated using these programs as well. Simulation results
give opportunity to optimize flight regimes with a view to
improving aircraft dynamical features and raising in-flight
safety.

In order to verify the developed engineering techniques
three autogiros were designed and built: two-seated in 1997
and two three-seated in 2000 and 2005. The autogiros
were equipped with flight recorders to obtain data from
the strain-gage systems to define actual loads on the rotor
pylon and mechanical control system. Good accordance of
the predicted parameters with their experimental values
was observed. Some details will presented in a final variant
of this paper.

The results were used in designing the main rotor for
the A-002 and A-002M autogiros. These aircraft were
flight tested and presented at the Moscow Aero-Space
Exhibitions MAKS 2001-2007, see Fig. 9.

6. CONCLUSIONS

Mathematical model of a two-bladed main rotor with flexi-
ble hub has been developed to describe three fundamental

Fig. 9. The A-002M autogiro in flight

flapping-plane motions of the blades. Major special fea-
tures of the rotor dynamics in the flapping plane have been
studied and discussed. The mathematical model has been
implemented in the A-002M autogiro design processes.

Principal problems of robust control and stabilization of
the autogiro flexible rotor have been studied and associ-
ated both with ground physical experimental research and
natural flights.
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