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Abstract
In this paper, our aim is to study the control of panic

behavior in a non-identical network coupled with a
model for human behaviors during catastrophic events,
and to establish the link between control and synchro-
nization of the network. We show how to model the
domino effect in the case of a succession of disasters
and exhibit a Hopf bifurcation. We explore the patterns
emerging from basic two-nodes configurations and an-
alyze the effect of the coupling strength on the bifur-
cations that occur in the subsequent dynamical system.
We illustrate our qualitative results by a numerical sim-
ulation of a specific catastrophe, prepared with the col-
laboration of geographers.
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1 Introduction
The topic of synchronization in coupled networks has

been widely studied in the last two decades. Different
methods have been proposed to give a general treat-
ment of synchronization [Belykh et al., 2005], [Pec-
ora and Carroll, 1998], [Arenas et al., 2008]. Chaotic
systems and bifurcations towards periodic orbits have
been analyzed in [Aziz-Alaoui, 2006] and [Golubitsky
and Stewart, 2006] respectively. The theory of normal

forms has been used in [Rink and Sanders, 2015] to
study general networks, among them non-identical net-
works, which we aim to study in this paper, by estab-
lishing how synchronization can be related to control.

Indeed, the PCR system (Panic-Control-Reflex) has
been proposed in 2013 to better understand and pre-
dict human behaviors facing a catastrophic event. Ob-
serving a population affected by a brutal disaster, with
a natural or industrial origin, we consider 3 differ-
ent subgroups of behaviors, namely the panic, reflex,
and control behaviors, in addition to the daily behavior
[Verdière et al., 2014], [Provitolo et al., 2015], [Cantin
et al., 2016]. The main question we are concerned with,
is to control the level of panic. In order to model the
geographical relief of the impacted zone, we consider
a network coupled with non-identical instances of the
PCR system: a subset of the nodes shall be coupled
with a PCR system exhibiting a persistence of panic,
while the rest of the nodes would be coupled with a
PCR system which presents a return to daily behavior.
We would like to study the effect of the topology on
the bifurcation identified in the PCR system, and find
out how the control of panic can be linked to the syn-
chronization of the network by a lightened disposal of
connections from panic nodes towards the other nodes.

This paper is organized as follows. In the next sec-
tion, we present the PCR system, its basic properties,
study the stability of the equilibrium points, and iden-
tify the parameter involved in the panic persistence



phenomenon. Then, we show how to model a succes-
sion of disasters and prove that a Hopf bifurcation can
occur in the system. After those preliminaries, we de-
fine non-identical PCR networks and explore patterns
emerging from basic two-nodes configurations. We fin-
ish our paper with the study of a particular catastrophe,
namely, the Mediterranean tsunami.

2 Panic-Control-Reflex system
The PCR system is given by the following adimen-

sional system of ordinary differential equations:



ṙ = γ(t)q(1− r)− (B1 +B2)r + F (r, c)rc

+G(r, p)rp

ċ = B1r + C1p− C2c− F (r, c)rc

+H(c, p)cp− ϕ(t)c(r + c+ p+ q)

ṗ = B2r − C1p+ C2c−G(r, p)rp

−H(c, p)cp

q̇ = −γ(t)q(1− r).
(1)

The unknown functions r, c, p, q are real valued func-
tions, and denote respectively the densities of individu-
als in reflex, control, panic and daily behaviors, among
a population concerned with the catastrophe. The func-
tions γ and ϕ model respectively the beginning of the
disaster, and the return to a daily behavior. They both
satisfy the properties

γ(t) ≥ 0, ϕ(t) ≥ 0, ∀t ≥ t0, (2)
γ(t) = ϕ(t) = 1, ∀t ≥ t1, (3)

for given t1 > t0 ≥ 0. The evolution parameters Bi >
0, Ci ≥ 0, i ∈ {1, 2}, model the behavioral changes of
each individual, while the imitation functions F ,G and
H model the interaction phenomena that act in parallel.
The next proposition summaries the qualitative results
of the mathematical analysis.

Proposition 2.1. For any initial condition
(r0, c0, p0, q0) ∈ (R+)

4, the system (1) admits
a unique global solution whose components are
positive and bounded. If C1 > 0, O(0, 0, 0, 0) is the
only equilibrium point, and it is locally asymptotically
stable. If C1 = 0, the system presents a persistence of
panic behavior, that is:

lim
t→+∞

p(t) = p̄ > 0.

Remark 2.1. The parameterC1 models the behavioral
evolution from panic to control. The latter proposition
shows that the solution of the PCR system bifurcates
towards a persistence of panic when C1 approaches 0.

This bifurcation has been analyzed in [Cantin et al.,
2016] as a degeneracy case of a saddle-node bifurca-
tion at infinity.

3 Hopf bifurcation in the case of a succession of
disasters

In this section, we show how to model a succession
of disasters. To that aim, we consider the transitional
phase of the PCR system, defined by

γ(t) = 1, ϕ(t) = 0, ∀t ∈ [t1, t2], (4)

for given t2 > t1 > t0. Consequently, we can reduce
the system using the substitution q = 1−r− c−p. We
simplify the equations by assuming that the imitation
functions F , G and H are null, in order to clarify our
purpose. Indeed, we will explain briefly how to pro-
ceed in the general case. In counterpart, we model the
domino effect by adding a forcing term as follows:



ṡ = λs+ z − s(s2 + z2)

ż = −s+ λz − z(s2 + z2)

ṙ = (1− r − c− p)(1− r)− (B1 +B2)r

+s2(c+ p)

ċ = B1r + C1p− C2c− s2c
ṗ = B2r − C1p+ C2c− s2p.

(5)

This choice is motivated by the fact that the domino ef-
fect is generated by an external cause, and not by an
inherent interaction of the behavioral subgroups of the
affected population. The value of λ can be chosen to
model various types of successions of disasters. The
numerical results presented in the next section are an-
alyzed with a geographical approach that comforts the
model. The system (5) has a master-slave structure,
and the two first equations correspond to the normal
form of a Hopf bifurcation. The external domino effect
provokes a return of individuals in control behavior or
in panic behavior to a reflex behavior. It can easily be
modified when considering that individuals in panic be-
havior are not subject to this domino effect. The next
proposition guarantees that for λ > 0, the orbit of the
whole system (5) is attracted to a limit cycle, whose
projection in the (r, c, p) space is shown in Figure 1.

Proposition 3.1. For any value of the parameters
B1 > 0, B2 > 0, C1 ≥ 0, C2 > 0, λ ∈ R,
the system (5) admits a non trivial equilibrium point
E(0, 0, 0, c0, p0). Furthermore, a supercritical Hopf
bifurcation occurs at E in a neighborhood of λ = 0.

Proof. The equilibrium points of system (5) are the so-



Figure 1. Domino effect in the PCR system. When taking into ac-
count a succession of disasters, the orbit is attracted to a limit cycle
during the transitional phase.

lutions of the following system:



λs+ z − s(s2 + z2) = 0

−s+ λz − z(s2 + z2) = 0

(1− r − c− p)(1− r) = (B1 +B2)r − s2(c+ p)

B1r + C1p− C2c− s2c = 0

B2r − C1p+ C2c− s2p = 0.

(6)

The two first equations correspond to the equilibrium
points of the normal form of a Hopf bifurcation, hence
we obtain s = z = 0. Moreover, some basic computa-
tions show that r = 0, and

c = c0 =
C1

C1 + C2
, p = p0 =

C2

C1 + C2
. (7)

Then, we compute the Jacobian matrix J(λ) at
E(0, 0, 0, c0, p0).

J(λ) =


λ 1 0 0 0
−1 λ 0 0 0
0 0 −1−B1 −B2 −1 −1
0 0 B1 −C2 C1

0 0 B2 C2 −C1

 . (8)

J(λ) admits 2 complex eigenvalues α(λ)±iω(λ), such
that α(0) = 0, ∂α∂λ (0) = 1 6= 0. The other eigenvalues
are real and negative. Finally, we easily compute the
first Lyapunov number c1 [Hassard and Wan, 1978],
[Kuznetsov, 2004] and check that c1 = −1.

As mentioned previously, we can prove the above
proposition in the general case, that is, when the imita-
tion functions F , G and H are not supposed to be null.

Indeed, it suffices to consider that the three following
assumptions hold :

(H1) α2 + δ2 < B1 +B2,

(H2) a1 + a2 < B1 +B2,

(H3) a3 − a4 < C1 + C2,

where

a1 = F (0, c0)c0, a2 = G(0, p0)p0,

a3 =
∂H

∂c
(c0, p0)c0p0 +H(c0, p0)p0,

a4 =
∂H

∂p
(c0, p0)c0p0 +H(c0, p0)c0,

and α2, β2 are parameters involved in the definition of
F , G and H [Verdière et al., 2014].

4 Non identical coupled networks
In this section, we consider a graph whose nodes are

coupled with non-identical instances of the PCR sys-
tem. Its state equations can be rewritten

ẋ = f(t, x, C1), t ≥ t0, x ∈ R4, C1 ≥ 0, (9)

where x = (r, c, p, q)T , and f(t, x, C1) is defined
by f = (f1, f2, f3, f4)T where

f1(t, x, C1) = γq(1− r)− (B1 +B2)r

+ F (r, c)rc+G(r, p)rp,

f2(t, x, C1) = B1r + C1p− C2c− F (r, c)rc

+H(c, p)cp− ϕc(r + c+ p+ q),

f3(t, x, C1) = B2r − C1p+ C2c

−G(r, p)rp−H(c, p)cp,

f4(t, x, C1) = −γq(1− r).

Definition 4.1. The nodes which are coupled with an
instance of system (1) where C1 = 0 will be called
panic nodes or nodes of type (1), while those which are
coupled with an instance of system (1) where C1 > 0
will be called control nodes or nodes of type (2).

Next, we consider a network made of n nodes xi, 1 ≤
i ≤ n of type (1), and m nodes yj(C

j
1), 1 ≤ j ≤ m

of type (2), with Cj1 > 0, 1 ≤ j ≤ m. The whole
network system reads

Ẋ = Φ(t, X, C) + LX̃, (10)

where the vectors X, X̃ ∈ R4(n+m) and C ∈ Rn+m
are defined by

X = (x1, . . . , xn, y1, . . . , ym)T

X̃ = (Hx1, . . . , Hxn, Hy1, . . . , Hym)T

C =
(
0, . . . , 0, C1

1 , . . . , C
m
1

)
,



and Φ corresponds to the internal dynamic of each
node, and is given by

(
(f(t, xi, 0))1≤i≤n ,

(
f(t, yj , C

j
1)
)
1≤j≤m

)T
.

The matrix H determines which components are cou-
pled:

H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (11)

The latter definition of H means that we consider that
only individuals in a catastrophe behavior (reflex, con-
trol or panic, but not daily behavior) are concerned with
migrations from one node to another. Finally, L is
a zero column sum matrix that contains the coupling
terms according to the topology of the network.

Proposition 4.1. The compact set

Ω =

X ∈ (R+)4(n+m),

4(n+m)∑
i=1

Xi ≤ 1


is an invariant region for the flow induced by the PCR
network (10).

We skip the proof, since it is very similar to the proof
of positiveness and boundedness of the solution of the
PCR system (1), detailed in [Cantin et al., 2016].

Definition 4.2. We will say that the PCR network (10)
presents a global return to daily behavior if:

lim
t→+∞

‖X(t)‖R4(n+m) = 0. (12)

Remark 4.1. That network can be improved by con-
sidering additional quadratic couplings. This work will
be presented in a forthcoming paper.

4.1 Patterns emerging from two-nodes configura-
tions

In this section, we study two-nodes PCR networks,
considering a non symmetric coupling, and show which
patterns emerge from those basic configurations.
We first consider a two-nodes PCR network with a

panic node (x) connected to a control node (y) in a
linear form. Such a network is given by the following
system:

{
ẋ = f(t, x, 0)− ηHx
ẏ = f(t, y, C1) + ηHx,

(13)

where x = (r1, c1, p1, q1)T , y = (r2, c2, p2, q2)T ,
C1 > 0, H is defined by (11), and η > 0 corresponds
to the coupling strength.

Proposition 4.2. The two nodes of system (13) syn-
chronize, and the control node drives the panic node
to its dynamic. Furthermore, the equilibrium O ∈ R8

is locally asymptotically stable.

Proof. We first look for the equilibrium points of node
(x), which can be seen as a perturbation of a PCR sys-
tem. Some basic computations lead to r1 = c1 = p1 =
q1 = 0. We then write the 4 equations of node (x) as:

ẋ = Mx+N(t)x+ ε(t, x),

where M and N(t) are two matrices of order 4 defined
by:

M =


−B1 −B2 − η 0 0 1

B1 −C2 − η 0 0
B2 C2 −η 0
0 0 0 −1

 , (14)

N(t) =


0 0 0 γ(t)− 1
0 0 0 0
0 0 0 0
0 0 0 −γ(t) + 1

 , (15)

and ε contains non linear terms:

ε(t, x) =


−γ(t)q1r1 + F (r1, c1)r1c1 +G(r1, p1)
−F (r1, c1)r1c1 +H(c1, p1)c1p1
−G(r1, p1)r1p1 −H(c1, p1)c1p1

γ(t)q1r1

 .

(16)
The eigenvalues of M are given by:

−B1 −B2 − η, −C2 − η, −η, −1, (17)

thus they are negative, since η > 0. Furthermore, some
basic algebraic computations, and property (3), guar-
anty that

lim
t→+∞

‖N(t)‖ = 0, (18)

lim
‖x‖→0

‖ε(t, x)‖
‖x‖

= 0, uniformly in t. (19)

The Poincaré-Lyapunov theorem (see [Verhulst,
1996] for instance) guarantees that the equilibrium
(0, 0, 0, 0) is locally asymptotically stable. Finally,
we look for the equilibrium points of node (y). Since
(r1, c1, p1, q1) = (0, 0, 0, 0) is the only equilibrium
point of node (x), we obtain the equations correspond-
ing to the equilibrium points of a PCR system (1) with
C1 > 0. Thus (r2, c2, p2, q2) = (0, 0, 0, 0), and the
only equilibrium point for the two-nodes network (13)
is 0 ∈ R8. Its stability follows from the stability of the
equilibrium point (0, 0, 0, 0) of node (x), combined
with proposition (2.1).



Figure 2. Phase portrait for a panic node connected to a control
node in a two-nodes network with domino effect.

Remark 4.2. This first proposition means that an
evacuation of individuals in panic behavior from a
panic node towards a control node, brings the whole
network to a global return to daily behavior. In other
words, the linear coupling affects the bifurcation on the
panic node (x), and makes the panic persistence van-
ish. Furthermore, such an evacuation is similarly effi-
cient to empty the panic behavior in the case of domino
effect (see Figure 2).

We then look ahead to the inverse situation, when a
control node (y) is connected towards a panic node (x):

{
ẋ = f(t, x, 0) + ηHy
ẏ = f(t, y, C1)− ηHy.

(20)

Proposition 4.3. System (20) exhibits a persistence of
panic on node (x).

Proof. We begin with the research of the equilibrium
points of node (y), which is very similar to the previous
proof, and leads to the uniqueness and local asymptotic
stability of (r2, c2, p2, q2) = (0, 0, 0, 0). It follows
that the equilibrium points of node (x) correspond to
the equilibrium points of a PCR system (1) with C1 =
0, thus the persistence of panic in node (x).

Remark 4.3. This second proposition shows that the
PCR network associated with system (20) cannot
present a global return to the daily behavior, and sug-
gests that a displacement of individuals of a control
node towards a panic node should be avoided, at the
risk to worsen the panic persistence level.

4.2 Numerical simulation of a tsunami on the
Mediterranean coast

We end our paper with a numerical simulation cor-
responding to a particular type catastrophe, whose
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Figure 3. A PCR network corresponding to the geographical relief
of a city on the Mediterranean coast.
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Figure 4. A view of the front coast in Nice, showing the evacuation
paths in the case of a Mediterranean tsunami (adapted from Google

Earth).

risk is clearly identified, due to the presence of the
azurean sub-marine fracture, namely, the Mediter-
ranean tsunami [Ioualalen et al., 2014]. The corre-
sponding network has been proposed after a geograph-
ical analysis of the relief, and is depicted in Figures 3
and 4.
The nodes 1, 2, . . . , 17 correspond to different places

on the beach, which are directly concerned with the
risk of tsunami. The nodes 18, 19, . . . 30 model steps
corridors connecting the beach to the Promenade des
Anglais, which is a large street, approximately 5 me-
ters over the beach places, and can be considered as
protected for the water submersion risk. Finally, the
nodes 31, 32, . . . , 43 represent places in the heart of
the city. The value of the evolution parameter C1 has
been chosen accordingly to the nature of those nodes,
and is shown with the other parameters values in Table
1. Meanwhile, the coupling strength has been fixed to
0.3. The main disposal of edges corresponds to the
usual evacuation paths. We compare the solution of the
network with two other different configurations, pre-
sented in Figure 3, obtained by adding 5 edges (25, 32),
(26, 32), (27, 28), (29, 30) and (30, 31), indicated by
⊕, chosen to improve the evacuation of nodes 1, . . . , 6,
or by removing 2 edges (17, 18) and (16, 19), indicated
by 	, chosen to experiment the effect of broken con-



Table 1. Parameters values for a PCR network corresponding to a
Mediterranean tsunami.

Nodes 1, . . . , 17 18, . . . 43

B1, B2 0.5 0.5

C1 0 0.3

C2 0.2 0.2

αi, δi, µi, i = 1, 2 0.1 0.1

Figure 5. Numerical results for a tsunami on the Mediterranean
coast. P corresponds to the population density in panic behavior for
the network shown in Figure 3. P0 shows the effect of 2 removed
edges, P1 the effect of 5 additional edges, and P2 the effect of a
succession of disasters.

nections. The total population density in panic behav-
ior is denoted P for the main configuration, P1 for the
configuration with 5 additional edges, and P0 for the
configuration with 2 removed edges. Furthermore, we
experiment a domino effect on the main configuration,
and denote by P2 the total population in panic behavior
in that case. The Figure 5 shows the results of the nu-
merical simulation. Those results are in agreement with
the qualitative results of the previous section, and show
the decisive control of the edges disposal on the panic
persistence level in the network. A broken evacuation
of a panic node generates an increase of the panic be-
havior, while an addition of connections towards refuge
zones improves the fluidity of human displacements,
and accelerates the return of the affected population to
the daily behavior.

5 Perspectives
In a forthcoming paper, we shall demonstrate in the

general case that the evacuation of every panic node by
a oriented chain of linear edges towards a refuge zone,
is a necessary and sufficient condition for the synchro-
nization and the global stability of any PCR network.
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