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Abstract
This paper studies the describing function (DF) of sys-

tems constituted by a mass subjected to nonlinear fric-
tion. The friction force is decomposed in two compo-
nents namely, the viscous and the Coulomb friction.
The system dynamics is analyzed in the DF perspec-
tive revealing a fractional-order behaviour. The relia-
bility of the DF method is evaluated through the signal
harmonic contents.
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1 Introduction
The phenomenon of vibration due to friction is ver-

ified in many branches of technology where it plays
a very useful role. On the other hand, its occurrence
is often undesirable, because it causes additional dy-
namic loads, as well as faulty operation of machines
and devices. Despite many investigations that have
been carried out so far, this phenomenon is not yet
fully understood, mainly due to the considerable ran-
domness and diversity of reasons underlying the energy
dissipation involving the dynamic effects (Armstrong
et al., 1994), (Armstrong and Amin, 1996), (Barbosa
and Machado, 2002), (Barbosa et al., 2003). In this pa-
per we investigate the dynamics of systems that contain
nonlinear friction, namely the Coulomb forces, in ad-
dition to the linear viscous component. Bearing these
ideas in mind, the article is organized as follows. Sec-
tion 2 introduces the fundamental aspects of the de-
scribing function method. Section 3 studies the de-
scribing function of mechanical systems with nonlin-
ear friction. Finally, section 4 draws the main conclu-
sions and addresses perspectives towards future devel-
opments.

2 Fundamental concepts
Let us consider the feedback system of Figure 1 with

one nonlinear element N and a linear system with
transfer function G(s).

Figure 1. Nonlinear control system

Suppose that the input to a nonlinear element is sinu-
soidal x(t) = X sin(ωt). In general the output of the
nonlinear element y(t) is not sinusoidal; nevertheless,
the signal y(t) is periodic, with the same period as the
input, and containing higher harmonics in addition to
the fundamental harmonic component.
If we assume that the nonlinearity is symmetrical with

respect to the variation around zero, the Fourier series
become:

y(t) =
∞∑

k=1

Yk cos (k ω t + φk) (1)

where Yk and φk are the amplitude and the phase shift
of the kth harmonic component of the output y(t), re-
spectively.
In the DF analysis, we assume that only the fundamen-

tal harmonic component of the output is significant.
Such assumption is often valid since the higher har-
monics in the output of a nonlinear element are usually
of smaller amplitude than the fundamental component
(Slotine and Li, 1991), (Vinagre and Monge, 2007),



(Lanusse and Oustaloup, 2004). Moreover, most sys-
tems are “low-pass filters” with the result that the
higher harmonics are further attenuated (Cox, 1987),
(Atherton, 1975), (Dupont, 1992).
The DF, or sinusoidal DF, of a nonlinear element,

N(X, ω), is defined as the complex ratio of the fun-
damental harmonic component of the output and the
input, that is:

N(X,ω) =
Y1

X
ejφ1 (2)

where the symbol N represents the DF, X is the am-
plitude of the input sinusoid, and Y1 and φ1 are the
amplitude and the phase shift of the fundamental har-
monic component of the output, respectively. Sev-
eral analytical expressions of DFs of standard nonlin-
ear elements can be found in the references (Haessig
and Friedland, 1991), (Karnopp, 1985), (Azenha and
Machado, 1998).
For nonlinear systems without involving energy stor-

age the DF is merely amplitude-dependent, that is N =
N(X). However, when we have nonlinear elements
that involve energy, the DF method is both amplitude
and frequency dependent yielding N=N(X, ω). In this
case, to determine the DF, usually we have to adopt a
numerical approach because it is impossible to find a
closed-form analytical solution. Once calculated, the
DF can be used for the approximate stability analysis
of the nonlinear control system.
Let us consider again the standard control system

shown in Figure 1 where the block N denotes the DF
of the nonlinear element. If the higher harmonics are
sufficiently attenuated, N can be treated as a real or
complex variable gain and the closed-loop frequency
response becomes:

C (jω)
R (jω)

=
N(X, ω)G(jω)

1 + N(X,ω)G(jω)
(3)

The characteristic equation is:

1 + N(X,ω)G(jω) = 0 (4)

If equation (4) can be satisfied for some values of X
and ω, then a limit cycle is predicted for the nonlinear
system. Moreover, since (4) is valid only if the non-
linear system is in a steady-state limit cycle, the DF
analysis predicts only the presence or the absence of
a limit cycle and cannot be applied to the analysis of
other types of time responses.

3 Mechanical systems with nonlinear friction
In this section we analyze the DF of a dynamical sys-

tem with nonlinear friction composed by a combination
of the viscous and Coulomb components.

Let us consider a system (Figure 2) with a mass M ,
moving on a horizontal plane under the action of a input
force f(t), with a friction Ff (t) effect composed of two
components: a non-linear Coulomb K part and a linear
viscous Bẋ part (so-called CV model).

a)

b)

Figure 2. a) Elemental mass system subjected to nonlinear friction
and b) Non-linear friction with Coulomb and viscous components
(CV model).

The equation of motion in this system is as follows:

M ẍ (t) + Ff (t) = f (t) (5)

where x, ẋ and ẍ are the displacement, velocity and
acceleration, respectively.
For the system of Figure 2 we can calculate numeri-

cally N(F, ω) considering as input a sinusoidal force
f(t) = F cos (ω t) applied to mass M and as output
the position x(t).
Figure 3 shows the Nichols plot of N(F, ω) for M =

1.0 kg, B = 0.5 Nsm−1 and K = 2.0 N. Alternatively
Figures 4 and 5 illustrate the log-log plots of |Re{N}|
and |Im{N}| vs the exciting frequency ω, for differ-
ent values of the input force 2.5 ≤ F ≤ 100.0 N. We
have different results according to the excitation force
F and we get straight lines with slopes revealing clearly
a fractional-order behaviour.
In Figure 6 it is depicted the harmonic content of the

output signal x(t) for an input force of F = 10 N. We
verify that the output signal has a half - wave symme-
try because the harmonics of even order are negligible.
Moreover, the fundamental component of the output
signal is the most important one, while the amplitude
of the high order harmonics decay significantly. There-
fore, we can conclude that, for the friction CV model,
the DF method may lead to a good approximation.
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Figure 3. Nichols plot of N(F, ω) for the system subjected to
nonlinear friction (CV model) with M = 1.0 kg, 2.5 ≤ F ≤
100.0 N, 1.0 ≤ ω ≤ 100.0 rad s−1 with {B, K} =
{0.5 Nsm−1, 2.0 N}.
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Figure 4. Log-log plots of |Re{N}| vs. the exciting fre-
quency 1.0 ≤ ω ≤ 100 rad s−1, for the CV model with
{B, K} = {0.5 Nsm−1, 2.0 N}, M = 1.0 kg and
F = {5, 15, 30, 100} N.

In order to study Re{N(F, ω)} and Im{N(F, ω)},
we approximate the numerical results through power
functions:

Re{N(F, ω)} = −a ω−b, {a, b} ∈ IR+ (6)
Im{N(F, ω)} = −c ω−d, {c, d} ∈ IR+

Figure 7 illustrates the variation of the param-
eters {a, b} and {c, d} versus F for K =
{1.0, 2.0, 3.0, 4.0, 5.0}. We verify that Re{N(F, ω)}
and Im{N(F, ω)} reveal a distinct relationships with
ω (Podlubny, 1999). In fact, we conclude that Re{N}
and Im{N} are, in the two cases, of the same type,
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Figure 5. Log-log plots of |Im{N}| vs. the exciting fre-
quency 1.0 ≤ ω ≤ 100 rad s−1, for the CV model with
{B,K} = {0.5 Nsm−1, 2.0 N}, M = 1.0 kg and
F = {5, 15, 30, 100} N
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Figure 6. Fourier transform of the output position x(t), for the
CV model, vs. the exciting frequency 1.0 ≤ ω ≤ 100.0
rad s−1 and the harmonic frequency index k = {1, 3, 5, 7, 9}
for an input force F = 20 N, with M = 1.0 kg, {B, K} =
{0.5 Nsm−1, 2.0 N}.

following a power law according with expression (7).
Furthermore, we obtain fractional-order dynamics as
revealed by the Nichols chart in Figure 3. Neverthe-
less, Re{N(F, ω)} has an integer nature with b ≈ 2,
while Im{N(F, ω)} is clearly fractional with 2 <
d < 2.7 (Duarte and Machado, 2005), (Duarte and
Machado, 2006).
To have a deeper insight into the effects of the dif-

ferent CV components several complementary exper-
iments were performed varying separately the val-
ues of K and M while maintaining the rest con-
stant. For example, Figure 8 present the values of
the parameters {a, b} and {c, d} when approximat-
ing Re{N} and Im{N}, for 2.5 ≤ F ≤ 100.0
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Figure 7. Variation of the parameters {a, b} and {c, d} vs
2.5 ≤ F ≤ 100.0 N, in the CV model with M = 1.0 kg,
B = 0.5 Nsm−1 and K = {1.0, 2.0, 3.0, 4.0, 5.0} N.

N with M = {0.5, 1.0, 2.0, 3.0} kg and {B, K} =
{0.5 Nsm−1, 2.0 N}.
As we should expect Re{N(F, ω)} and

Im{N(F, ω)} vary with the system parameters,
but we conclude that the integer vs. order behaviour
remain identical, respectively. Furthermore, the
fractional characteristics of Im{N} are a direct
consequence of the nonlinear action of the Coulomb
friction, since the viscous friction leads simply to a
linear integer order result.

4 Conclusions
This paper addressed the study of systems with non-

linear friction. The dynamics of elemental mechanical
system was analyzed through the describing function
method and compared with standard models. The po-
lar plot reveals a fractional order behaviour which was
further analyzed in the real and imaginary components.
The results encourage further studies of nonlinear sys-
tems in a similar perspective and the adoption of the
tools of fractional calculus.
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