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Abstract
In this paper, a spring-mass-damper system with an

electrical circuit (3rd-order system) is investigated to
establish a self-vibration machine. The design of feed-
back gain makes the system a self-excited oscillator.
The mechanical part (spring-mass-damper system) in
the 3rd-order system becomes self-vibration machine
which is robust against variation of the mass.
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1 Introduction
Self-vibration machine [1],[2] is a machine vibrat-

ing with the natural frequency which is varied depend-
ing on the variation of the system parameters of mass
and stiffness. Because the energy efficiency of the
self-excited machine is kept independent of the vari-
ation, there are many applications for realizing high-
performance machines, for example, ultrasonic trans-
ducer[3] and vibratory drilling[4]. Also, the character-
istic that the resonance frequency is traced to the varied
natural frequency depending on the variation of the pa-
rameters is applicable to the measurement of the natural
frequency and such a characteristic is recently utilized
to make AFM (atomic force microscope) much higher
resolution [5].
In this paper, we consider a spring-mass-damper sys-

tem which is actuated by a linear motor and establish
a self-vibration machine under feedback control. A
method of the amplitude control is also discussed by
introducing the center manifold theory[6].

2 Realization of self-vibration machine
2.1 Analytical model and equation of motion
We consider an analytical model of spring-mass-

damper system as shown in Fig.1 and investigate the
method to make the system a self-vibration machine
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Figure 1. Analytical model.

and to control the magnitude of the amplitude. The
thrust force of a linear motor is proportional to the
current. The equation of motion of the spring-mass-
damper system is expressed as follows:

m
d2x

dt2
+ c

dx

dt
+ kx = Ki, (1)

where K is the thrust constant of the linear motor. To
realize a self-vibration machine, we actuate the input
voltage of the linear motor. The dynamics of the linear
motor is described by an equivalent L-R circuit. We
input the voltage to the circuit which is proportional to
the velocity of the mass. Under this feedback input, the
circuit equation is expressed as follows:

L
di

dt
+ Ri + P

dx

dt
= V, (2)

where i, L，R，and P are reactance, resistance, and
back electromotive force constant of the linear motor.
The input voltage is set as

V = Kl
dx

dt
, (3)

where Kl is the linear feedback gain. Introducing rep-
resentative length values of X = KI/k，I (rating



current of the linear motor)，T =
√

m/k and using
dimensionless displacement x∗ = x/X，dimension-
less current i∗ = i/I，and dimensionless time t∗ =
t/T yield the following equations of the spring-mass-
damper system and the circuit for Eqs. (1) and(2):

d2x∗

dt∗2
+ γ∗ dx∗

dt∗
+ x∗ = i∗, (4)

di∗

dt∗
+ R∗i∗ + P ∗ dx∗

dt∗
= V ∗, (5)

where the dimensionless parameters are γ∗ = c/
√

mk，
R∗ = RT/L，P ∗ = KP/kL. The dimensionless in-
put voltage is

V ∗ = Kl
∗ dx∗

dt∗
, (6)

where Kl
∗ = KlK/LI .

2.2 Analysis of equation of motion and equation of
circuit

Introducing the state variables of x1 = x∗，x2 =
dx∗/dt∗，x3 = i∗ yields the state equation:

d
dt


x1

x2

x3


 =


 0 1 0
−1 −γ 1
0 Kl − P −R





x1

x2

x3


 (7)

or

dx

dt
= Ax, x =


x1

x2

x3


 , A =


 0 1 0
−1 −γ 1
0 Kl − P −R


(8)

In the above equations and hereafter, the symbol ∗ to
denote dimensionless value is dropped for simplicity.
We clarify that the mechanical part of the spring-

mass-damper system in the above 3rd order system in-
cluding the dynamics of the circuit can accomplish the
behavior of the self-vibration machine. In such a sys-
tem, the 3 eigenvalues of the 3rd-order system have to
be one negative real and a pair of complex with pos-
itive real part. The real eigenvalue has to be negative
for drift-free oscillation of the mechanical part. Figure
2 shows the root locus corresponding to the parameter
values of an experimental system. Under the appropri-
ate choice of the feedback gain Kl, the above eigenval-
ues for the self-vibration machine are obtained. Figure
3 shows time histories of the displacement of the me-
chanical system and the current in the linear motor. It
can be seen that the drift-free self-excited oscillation
occurs and the amplitude grows with time.

3 Amplitude control of self-vibration machine
In the preceeding section, a self-vibration machine is

realized, but the amplitude grows with time. In this sec-
tion, we propose a nonlinear feedback control method
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Figure 2. Root locus of A with γ=0.00272, R=13.41, and

P =0.3506 under changing Kl from 0 to 50 ((i): Kl=20, (ii):

Kl=50).

to keep the resonance amplitude constant. We design
the appropriate nonlinear feedback gain on the center
manifold. The design is much easier than that for the
original system because the system order is reduced to
second order.

3.1 Feedback control to make center subspace
We seek the linear feedback control so that the eigen-

subspace of the dynamics of the 3rd-order system con-
sists of the center and stable subspace. Then, the linear
operator A has a pair of pure imaginary eigenvalues and
a negative real eigenvalue, and by x = Qy the linear
operator A can be transformed into

Q−1AQ =


 0 ω 0
−ω 0 0
0 0 −η


 . (9)

where ω and η are positive. The characteristic equation
of A is ΦA(λ) = det(λI −A) is expressed as follows:

ΦA(λ) = λ3 + (γ + R)λ2

+ {γR − Kl + P + 1}λ + R, (10)

which is equal that of Eq. (9):

ΦA(λ) = λ3 + ηλ2 + ω2λ + ηω2. (11)

From Eqs. (10) and (11) the following equations for
the above request for the eigenvalues:

η = γ + R > 0, (12)
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Figure 3. Time histories of dimensionless displacement and current

with γ=0.00272, R=13.41, and P =0.3506, under Kl=1.5.

ω2 = γ(R − Kl) + P + 1 > 0, (13)

Kl = γR + P + 1 − R

R + γ
, (14)

Equation (12) can always be satisfied. We need to
choose the feedback gain according to Eq. (14) un-
der the condition Eq. (13) and the feedback gain is
expressed Kcr.

3.2 Design of nonlinear feedback gain on center
manifold

To perform the amplitude control, we apply nonlin-
ear feedback control and design the nonlinear feedback
gain on the center manifold. We set the dimensionless
input voltage as follows:

V = Kcr(1 + ε)
dx

dt
+ µ

(
dx

dt

)3

, (15)

where ε << 1

Then, the state equation is expressed as follows:

d
dt


x1

x2

x3


 =


 0 1 0
−1 −γ 1
0 Kcr − P −R





x1

x2

x3




+(Kcrεx2 + µx3
2)


0

0
1


 (16)

The transformation by Q yields

d
dt


y1

y2

y3


 =


 0 ω 0
−ω 0 0
0 0 −η





y1

y2

y3




+{Kcr(q21y1 + q22y2 + q23y3)

+µ(q21y1 + q22y2 + q23y3)3}

 ˜q13

˜q23

˜q33


(17)

where qij and q̃ij are ij components for Q and Q−1,
respectively. By suspension-trick we obtain the center
manifold as follows: [6]

y3 = χ300y
3
1 + χ210y

2
1y2 + χ120y1y

2
2 + χ030y

3
2

+ χ101εy1 + χ011εy2. (18)

The dynamics reduced on the center manifold is gov-
erned with

d
dt

[
y1

y2

]
=

[
Kcr ˜q13q31ε ω + Kcr ˜q13q32ε

−ω + Kcr ˜q23q31ε Kcr ˜q23q32ε

] [
y1

y2

]

+µ

[
α1y

3
1 + α2y

2
1y2 + α3y1y

2
2 + α4y

3
2

α5y
3
1 + α6y

2
1y2 + α7y1y

2
2 + α8y

3
2

]
,(19)

where

α1 = ˜q13q
3
21, α2 = 3 ˜q13q

2
21q22, α3 = 3 ˜q13q21q

2
22,

α4 = ˜q23q
3
21, α5 = ˜q23q

3
21, α6 = 3 ˜q23q

2
21q22,

α7 = 3 ˜q23q21q
2
22, α8 = ˜q23q

3
22 (20)

Furthermore, the normal form [7] of (19) under the
nonlinear coordinate transformation:

y = z + h(z) (21)

is

d
dt

[
z1

z2

]
=

[
Kcr ˜q13q31ε ω + Kcr ˜q13q32ε

−ω + Kcr ˜q23q31ε Kcr ˜q23q32ε

] [
z1

z2

]

+µ

[
(az1 + bz2)(z2

1 + z2
2)

(az2 − bz1)(z2
1 + z2

2)

]
, (22)

where

a =
1
8
(3α1 + α3 + α6 + 3α8),

b =
1
8
(α2 + 3α4 − 3α5 − α7) (23)
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Figure 4. Phase space with γ=0.00272, R=13.41 P =0.3506, Kl=0.387 and ε=0.05. (i): µ=10, (ii): µ=1000.

Figure 4 shows the phase of two kinds of nonlinear
feedback gain. From comparison between them, by
changing the nonlinear feedback gain, we carry out the
amplitude control. Figure 5 are corresponding time his-
tories. The amplitudes of the displacement of the mass
and the current in the linear motor are constant in the
steady state. Therefore, it can be seen that the setting of
the nonlinear feedback gain realizes desired response
amplitude of the self-vibration machine.

4 Experimental apparatus and procedure
Figure6 shows the experimental apparatus. The

primary coil of the linear motor is fixed to the
base. The secondary permanent magnet of the linear
motor (Syowa-Densen-Denran Corporation; VCM26-
02R; maximum thrust force of 8 N and thrust constant
of 2 N/A) is supported by a slide bearing (IKO Cor-
poration, BSU66-100A) and its relative position can
be moved with respect to the base. The mass of the
secondary permanent magnet corresponds to the mass
of the system in Fig.1. To provide the linear restor-
ing force, we attach a spring (Samini Corporation) to
linear-motor.
The displacement is measured by using a laser sensor

(KEYENCE Corporation, LB-01/LB-60) and the dis-
placement signal is input to a PC through an AD-board
(Interface Corporation, PCI-3523A), in which the con-
trol voltage V is calculated in real time. The signal
corresponding to V of Eq.15 is fed from the PC to
the power amplifier (KIKUSUI Corporation, PBX40-
10) through a DA-board (Interface Corporation, PCI-
3523A). The amplified signal is input to the linear mo-
tor.

5 Conclusion
A method is presented to make the mass-spring-

damper system a self-vibration system. The system is
regarded as the 3rd-order system. By eigenvalue anal-
ysis, it is shown that the mass-spring-damper system is
self-excited and a self-vibration system is established.

For the amplitude control, the application of cubic ve-
locity feedback is proposed and the feedback gain is
design on the center manifold.
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Figure 5. Time histories of dimensionless displacement and current with γ=0.00272, R=13.41 P =0.3506, Kl=0.387 and ε=0.05. (i): µ=10,

(ii): µ=1000.
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Figure 6. Experimental apparatus.


