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Abstract
We consider a singularly perturbed system depending

on two parameters with a normally hyperbolic centre
manifold. We assume that the unperturbed system has
a homoclinic orbit connecting a hyperbolic fixed point
on the centre manifold. We give conditions concerning
the persistence of this connecting orbit and apply the
result to construct a class of singularly perturbed sys-
tems in Rm+2 which possess Shilnikov saddle-focus
homoclinic orbits.
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1 Introduction
In this talk we consider a singularly perturbed system

like: {
ẋ = εf(x, y, λ, ε)
ẏ = g(x, y, λ, ε) (1)

where x ∈ R2, y ∈ Rm, λ and ε are small real param-
eters and f(x, y, λ, ε), g(x, y, λ, ε) areCr–functions in
their arguments bounded with their derivatives, r ≥ 1.
We suppose that the following conditions hold:

(i) for any x ∈ R2, the equation

g(x, y, 0, 0) = 0

has a solution y = v(x) ∈ Crb (R2) (i.e. v(x) and
its first r derivatives are bounded on R2),

(ii) there exists δ0 > 0 such that, for any x ∈ R2,
the eigenvalues λ(x) of gy(x, v(x), 0, 0) satisfy
|Reλ(x)| > δ0

(iii) the equation on the centre manifold

ẋ = F (x) := f(x, v(x), 0, 0)

has an unstable focus ξ0. We denote with µ ± iω
(with µ, ω > 0) the eigenvalues of the Jacoban ma-
trix F ′(ξ0).

(iv) the equation

ẏ = g(ξ0, y, 0, 0)

has a solution γ0(t) satisfying γ0(t) → v(ξ0) as
|t| → ∞ (homoclinic orbit) and γ̇0(t) is the unique
bounded solution, up to a multiplicative constant,
of the variational system ẏ = gy(ξ0, γ0(t), 0)y.

(v) let ψ(t) be the unique (up to a multiplicative factor)
bounded solution of the adjoint system

ẏ + g∗y(ξ0, γ0(t), 0, 0)y = 0.

Then the following generic condition holds:

∫ ∞
−∞

ψ∗(t)gx(ξ0, γ0(t), 0, 0)y 6= 0.

Conditions (i) and (ii) imply the existence of a centre
manifold y = v(x, λ, ε) for the perturbed system to-
gether with their associated centre–stable and centre–
unstable manifolds. Condition (iii) implies that the sys-
tem on the perturbed centre manifold:

ẋ = F (x, λ, ε) := f(x, v(x, λ, ε), λ, ε) (2)

has a hyperbolic fixed point ξ0(λ, ε) and

q(λ, ε) = (ξ0(λ, ε), v(ξ0(λ, ε), λ, ε)

is a hyperbolic fixed point of system (1). Condition
(iv) is a kind of nondegenerateness condition which



is automatically satisfied when (as we will assume in
this paper) gy(x, v(x), 0) has a simple negative eigen-
value and all the other eigenvalues have positive real
parts. Condition (v) implies that the centre-stable and
the centre-unstable manifold of system (1) intersect
transversally in a family of solutions which are ho-
moclinic to the centre manifold y = v(x, λ, ε). Here
by centre-stable manifold we mean the submanifold of
Rm+2 consisting of the initial point we have to assign
to (1) so that the distance of the corresponding solution
to the perturbed centre manifold y = v(x, λ, ε) tends to
zero as t→∞. Centre-unstable manifold has a similar
meaning.

Our purpose is to give a general class of singularly
perturbed systems in Rm+2 which possess Shil’nikov
saddle-focus homoclinic orbits.

To reach this goal we proceed in two steps. Using
a result of [Battelli and Palmer, to appear] we find
λ = λ(ε) such that system (1) with λ = λ(ε) has an
orbit p(t, ε) = (x(t, ε), y(t, ε)) which is homoclinic
to the fixed point and, finally, we give a condition so
that this homoclinic orbit satisfies the Shil’nikov-Deng
conditions (see [Deng, 1993])

The theory of Shil’nikov saddle-focus homoclinic or-
bits is developed in [Shil’nikov, 1970; Deng, 1993].
Such orbits have been found in special systems (see, for
example, [Deng, 1993; Deng and Hines, 2002; Feng
and Wiggins; Hastings, 1982]) but not many general
classes of systems with such orbits have been found,
apart from that of Rodriguez [Rodriguez, 1986] where,
however, only three-dimensional systems are studied.
On the other hand, in higher dimensions, two extra con-
ditions must be verified.

2 Homoclinic orbits to the fixed point
In the following theorem, we treat two cases: the first

where the homoclinic orbit γ0(t) breaks as λ passes
through λ = 0 and a second degenerate case where
γ0(t) does not break as λ passes through λ = 0, so that
there is a one-parameter family y(t, λ) of homoclinic
orbits of ẏ = g(y, ξ0(λ, 0), λ, 0).

Let α, σ be positive numbers such that α < µ and
σ < δ0. In [Battelli and Palmer to appear] the follow-
ing theorem has been proved.

Theorem Let f and g be Cr functions (r ≥ 2),
bounded together with their derivatives and satisfying
conditions (i)-(v). Suppose also that either the condi-
tion

(vi)

∫ ∞
−∞

ψ∗(t)[gx(ξ0, γ0(t), 0, 0)ξ′0(0)

+gλ(ξ0, γ0(t), 0, 0)]dt 6= 0

or the following two conditions

(vii) the stable and unstable manifolds of the hyper-
bolic equilibrium y = v(ξ0, λ, 0) of

ẏ = g(ξ0(λ), y, λ, 0)

intersect near γ0(0) so that there is a solution
γ0(t, λ) → v±(ξ0, λ, 0) as t → ±∞ with γ(0, λ)
depending continuously on λ and y0(0, 0) =
y0(0);

(viii) if we denote with ψ(t, λ) the unique (up to a mul-
tiplicative constant), bounded solution of the ad-
joint linear system

ẏ + g∗y(ξ0(λ), γ0(t, λ), λ, 0)y = 0,

then the Melnikov function

M(λ) = −
∫ ∞
−∞

ψ(t, λ)∗
{
gε(ξ0(λ), γ0(t), λ), λ, 0)

+gx(ξ0(λ), γ0(t, λ), λ, 0)·(∫ ∞
t

f(ξ0(λ), γ0(τ, λ), λ, 0)dτ − ∂ξ0
∂ε

(λ, 0)
)]}

dt

has a simple zero at λ = 0

hold. Then there exists a Cr−1–function (Cr−2 in
the second case) λ(ε) with λ(0) = 0 such that
for ε sufficiently small and nonnegative, system (1)
with λ = λ(ε) has a homoclinic solution p(t, ε) =
(x(t, ε), y(t, ε)), that is,

p(t, ε) 6= q±(λ(ε), ε)

but p(t, ε) → q±(λ(ε), ε) as t → ±∞. Moreover
p(t, 0) = (ξ0, γ0(t)), and

supt∈R± |x(t, ε)− ξ
±
0 (λ(ε), ε)|eεαt = O(ε),

supt∈R |y(t, ε)− γ0(t)| = O(ε).
(3)

Finally, ṗ(t, ε) is not in the tangent space to the unsta-
ble fibre through p(t, ε), provided that

∫ ∞
−∞

f(ξ0, γ0(t), 0, 0)dt 6= 0, (4)

where, according to Theorem 3 in [Battelli and Palmer,
to appear], vectors in the tangent space to the unsta-
ble fibre at p(t, ε) are the initial values of the solutions
of the variational system along p(t, ε) which approach
zero as t→ −∞ at an exponential rate greater than σ.

3 Shil’nikov-Deng condition
Here we recall the definition of saddle-focus homo-

clinic orbit as given in [Deng and Hines, 2002]. Let
ż = F (z) be an autonomous system. The conditions
for Shil’nikov chaos are:



(D1) q is an equilibrium such that the eigenvalues of
F ′(q) having the smallest positive real part are µ±
iω with ω > 0 and

0 < µ < −Re(λ)

for all eigenvalues λ with negative real parts;
(D2) there is a homoclinic orbit p(t) to q, that is,

p(t) 6= q and p(t) ∈ Ws ∩ Wu (Ws, Wu de-
note the stable and unstable manifolds of q), such
that

dim Tp(t)Ws ∩ Tp(t)Wu = 1.

(D3) as t → −∞, p(t) is asymptotically tangent to
the linear span of the eigenvectors of µ± iω;

(D4) there is a submanifold M0 of Wu containing
p(0) with dimM0 = dimWuu such that

lim
t→∞

Tp(t)Mt = TqWuu,

whereMt = φ(t,M0) andWuu is the strong un-
stable manifold of the equilibrium q that is a lo-
cally invariant manifold containing q whose tan-
gent space at q consists of the sum of the gener-
alized eigenspaces of F ′(q) corresponding to the
eigenvalues with real part greater than µ.

Conditions (D1), (D2) are the only conditions needed
in R3, although in R3 the second part of (D2) is au-
tomatically satisfied. In higher dimensions, we have
to add conditions (D3) and (D4). Note that solutions
of (1) starting in Wuu approach q as t → −∞ at an
exponential rate faster than µ.

If there is such a homoclinic orbit, Shil’nikov and
Deng show the presence of chaotic dynamics near it.

Assuming the conditions of Theorem
1 hold, we take z = (x, y), F (z) =
(εf(x, y, λ(ε), ε), g(x, y, λ(ε), ε)), q = q(λ(ε), ε) and
p(t) = p(t, ε). The Jacobian matrix F ′(q) is

(
εfx(q(λ(ε), ε)) εfy(q(λ(ε), ε))
gx(q(λ(ε), ε)) gy(q(λ(ε), ε))

)

and has the eigenvalues ε(µ ± iω + O(ε)) and ±λ +
O(ε). Thus (D1) is satisfied, if ε > 0 is sufficiently
small. Next, since dimWs equals the number of eigen-
values with negative real parts and we only have one
such eigenvalue, we see that (D2) is satisfied. Next
(D3) is equivalent to saying that ṗ(t, ε) is not in the
tangent space to the unstable fibre through p(t, ε) and
this follows from Theorem 1, provided condition (4)
holds. Thus we only have to check that (D4) is sat-
isfied. It turns out this is equivalent to the condition:
dim(Tp(0,ε)Wu∩W cs) = 2 whereW cs = Tp(0,ε)Mcs

is the tangent space to the centre stable manifold. We
show that Tp(0,ε)Wu = Tp(0,ε)Mcu, the tangent space
to the centre unstable manifold. For this, it suffices to
show that Tp(0,ε)Wu ⊂ Tp(0,ε)Mcu since both sub-
spaces have the same dimension. However it follows
from [Battelli and Palmer, to appear] that Tp(0,ε)Mcu

consists of the initial values of solutions of the varia-
tional system which do not grow at too high an expo-
nential rate as t → −∞. However, all the solutions
beginning in Tp(0,ε)Wu tend to zero as t → −∞. So
the inclusion follows. Then (D4) follows, since (vi)
implies that Mcs and Mcu intersect transversely at
p(0, ε) (see [Battelli and Palmer, 2001]). So we obtain
the following

Theorem. Assume that conditions (i)–(iv), equation (4)
and that either (v)-(vi) or (vi)–(viii) hold. Then system
(1) has a Shil’nikov saddle focus homoclinic orbit with
the induced chaotic behaviour.

4 An example
We consider the following system in R5

 ẋ = εf(x, y, ε) + ε2f1(x, y, z, λ, ε)
ẏ = g(x, y, z) + λg1(x, y, z, ε)
ż = zh(z) + εh1(x, y, z, λ, ε)

(5)

where x, y ∈ R2 and z ∈ R. We assume that
f(x, y, ε), f1(x, y, z, λ, ε), g(x, y, z), g1(x, y, z, λ, ε),
h(z) and h1(x, y, z, λ, ε) are C2−functions bounded
together with their derivatives and the following condi-
tions hold:

1) g(x, 0, 0) = 0, g1(x, 0, 0, 0) = 0

Taking x as slow variable and (y, z) as fast variable,
it follows from 1) that when ε = λ = 0 system (5)
has the centre manifold (y, z) = v(x) = 0. Moreover,
according to 1), this centre manifold persists when λ 6=
0, that is v(x, λ, 0) = 0.
Then we assume

2) h(0) > 0 and ẏ = g(0, y, 0) has a homoclinic or-
bit y0(t) to the fixed point y = 0 and for any
x ∈ R2, gy(x, 0, 0) has the eigenvalues ±α(x)
with α(x) > α > 0.

Conditions 1) and 2) imply that (ii) is satisfied. More-
over 2) implies that the fast system{

ẏ = g(0, y, z)
ż = zh(z) (6)

has the fixed point (y, z) = (0, 0) and the homoclinic
orbit to it: γ0(t) = (y0(t), 0). Moreover the Jacobian
matrix of (6) at (y, z) = (0, 0) has two positive eigen-
values (α(0) and h(0)) and the negative eigenvalue
−α(0). Thus the intersection of the stable and unsta-
ble manifold of (y, z) = (0, 0) is one–dimensional and
then condition (iv) is satisfied.
Next we assume



3) x = 0 is a focus of equation ẋ = f(x, 0, 0), that is
f(0, 0, 0) = 0 and fx(0, 0, 0) has the eigenvalues
µ+ iω, µ, ω > 0.

Hence condition (iii) is satisfied. To apply our Theorem
we need that conditions (v), (vi) and (4) are satisfied.
Since when ε = 0 the equation on the centre manifold
(y, z) = v(x, λ, 0) = 0 is always ẋ = f(x, 0, 0), we
see that ξ0(λ, 0) = 0. Hence (v) and (4) read respec-
tively:

∫ ∞
−∞

ψ∗(t)g1(0, y0(t), 0, 0)dt 6= 0 (7)

and

∫ ∞
−∞

f(0, y0(t), 0)dt 6= 0. (8)

Thus we obtain the following:
Proposition 1. Assume f(x, y, z, λ, ε), g(x, y, z),
g1(x, y, z, ε), h(z) and h1(x, y, z, λ, ε) are C2− func-
tions bounded with their derivatives and that condi-
tions 1)–3) and (7), (8) hold together with

∫ ∞
−∞

ψ∗(t)gx(0, y0(t), 0)dt 6= 0.

Then system (5) has a Shil’nikov saddle–focus orbit
with the induced chaotic behaviour.
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