SHIL'NIKOV SADDLE-FOCUS HOMOCLINIC ORBITS IN SINGULARLY PERTURBED SYSTEMS IN DIMENSION HIGHER THAN THREE

Flaviano Battelli

Dipartimento di Scienze Matematiche Marche Polytechnic University 60100 Ancona - Italy battelli@dipmat.univpm.it

Kenneth J. Palmer

Department of Mathematics National Taiwan University Taipei 106 - Taiwan palmer@math.ntu.edu.tw

Abstract

We consider a singularly perturbed system depending on two parameters with a normally hyperbolic centre manifold. We assume that the unperturbed system has a homoclinic orbit connecting a hyperbolic fixed point on the centre manifold. We give conditions concerning the persistence of this connecting orbit and apply the result to construct a class of singularly perturbed systems in R^{m+2} which possess Shilnikov saddle-focus homoclinic orbits.

Key words

Bifurcations, Chaos, Nonlinear systems

1 Introduction

In this talk we consider a singularly perturbed system like:

$$\begin{cases} \dot{x} = \varepsilon f(x, y, \lambda, \varepsilon) \\ \dot{y} = g(x, y, \lambda, \varepsilon) \end{cases}$$
 (1)

where $x \in \mathbf{R}^2$, $y \in \mathbf{R}^m$, λ and ε are small real parameters and $f(x,y,\lambda,\varepsilon)$, $g(x,y,\lambda,\varepsilon)$ are C^r -functions in their arguments bounded with their derivatives, $r \geq 1$. We suppose that the following conditions hold:

(i) for any $x \in \mathbf{R}^2$, the equation

$$q(x, y, 0, 0) = 0$$

has a solution $y = v(x) \in C_b^r(\mathbf{R}^2)$ (i.e. v(x) and its first r derivatives are bounded on \mathbf{R}^2),

- (ii) there exists $\delta_0 > 0$ such that, for any $x \in \mathbf{R}^2$, the eigenvalues $\lambda(x)$ of $g_y(x,v(x),0,0)$ satisfy $|\mathrm{Re}\lambda(x)| > \delta_0$
- (iii) the equation on the centre manifold

$$\dot{x} = F(x) := f(x, v(x), 0, 0)$$

has an unstable focus ξ_0 . We denote with $\mu \pm i\omega$ (with $\mu, \omega > 0$) the eigenvalues of the Jacoban matrix $F'(\xi_0)$.

(iv) the equation

$$\dot{y} = g(\xi_0, y, 0, 0)$$

has a solution $\gamma_0(t)$ satisfying $\gamma_0(t) \to v(\xi_0)$ as $|t| \to \infty$ (homoclinic orbit) and $\dot{\gamma}_0(t)$ is the unique bounded solution, up to a multiplicative constant, of the variational system $\dot{y} = g_u(\xi_0, \gamma_0(t), 0)y$.

(v) let $\psi(t)$ be the unique (up to a multiplicative factor) bounded solution of the adjoint system

$$\dot{y} + g_y^*(\xi_0, \gamma_0(t), 0, 0)y = 0.$$

Then the following generic condition holds:

$$\int_{-\infty}^{\infty} \psi^*(t) g_x(\xi_0, \gamma_0(t), 0, 0) y \neq 0.$$

Conditions (i) and (ii) imply the existence of a centre manifold $y=v(x,\lambda,\varepsilon)$ for the perturbed system together with their associated centre–stable and centre–unstable manifolds. Condition (iii) implies that the system on the perturbed centre manifold:

$$\dot{x} = F(x, \lambda, \varepsilon) := f(x, v(x, \lambda, \varepsilon), \lambda, \varepsilon) \tag{2}$$

has a hyperbolic fixed point $\xi_0(\lambda, \varepsilon)$ and

$$q(\lambda, \varepsilon) = (\xi_0(\lambda, \varepsilon), v(\xi_0(\lambda, \varepsilon), \lambda, \varepsilon)$$

is a hyperbolic fixed point of system (1). Condition (iv) is a kind of nondegenerateness condition which

is automatically satisfied when (as we will assume in this paper) $g_y(x,v(x),0)$ has a simple negative eigenvalue and all the other eigenvalues have positive real parts. Condition (v) implies that the *centre-stable* and the *centre-unstable* manifold of system (1) intersect transversally in a family of solutions which are homoclinic to the centre manifold $y=v(x,\lambda,\varepsilon)$. Here by centre-stable manifold we mean the submanifold of \mathbf{R}^{m+2} consisting of the initial point we have to assign to (1) so that the distance of the corresponding solution to the perturbed centre manifold $y=v(x,\lambda,\varepsilon)$ tends to zero as $t\to\infty$. Centre-unstable manifold has a similar meaning.

Our purpose is to give a general class of singularly perturbed systems in \mathbf{R}^{m+2} which possess Shil'nikov saddle-focus homoclinic orbits.

To reach this goal we proceed in two steps. Using a result of [Battelli and Palmer, to appear] we find $\lambda = \lambda(\varepsilon)$ such that system (1) with $\lambda = \lambda(\varepsilon)$ has an orbit $p(t,\varepsilon) = (x(t,\varepsilon),y(t,\varepsilon))$ which is homoclinic to the fixed point and, finally, we give a condition so that this homoclinic orbit satisfies the Shil'nikov-Deng conditions (see [Deng, 1993])

The theory of Shil'nikov saddle-focus homoclinic orbits is developed in [Shil'nikov, 1970; Deng, 1993]. Such orbits have been found in special systems (see, for example, [Deng, 1993; Deng and Hines, 2002; Feng and Wiggins; Hastings, 1982]) but not many general classes of systems with such orbits have been found, apart from that of Rodriguez [Rodriguez, 1986] where, however, only three-dimensional systems are studied. On the other hand, in higher dimensions, two extra conditions must be verified.

2 Homoclinic orbits to the fixed point

In the following theorem, we treat two cases: the first where the homoclinic orbit $\gamma_0(t)$ breaks as λ passes through $\lambda=0$ and a second degenerate case where $\gamma_0(t)$ does not break as λ passes through $\lambda=0$, so that there is a one-parameter family $y(t,\lambda)$ of homoclinic orbits of $\dot{y}=g(y,\xi_0(\lambda,0),\lambda,0)$.

Let α, σ be positive numbers such that $\alpha < \mu$ and $\sigma < \delta_0$. In [Battelli and Palmer to appear] the following theorem has been proved.

Theorem Let f and g be C^r functions $(r \ge 2)$, bounded together with their derivatives and satisfying conditions (i)-(v). Suppose also that either the condition

(vi)

$$\int_{-\infty}^{\infty} \psi^*(t) [g_x(\xi_0, \gamma_0(t), 0, 0) \xi_0'(0) + g_{\lambda}(\xi_0, \gamma_0(t), 0, 0)] dt \neq 0$$

or the following two conditions

(vii) the stable and unstable manifolds of the hyperbolic equilibrium $y = v(\xi_0, \lambda, 0)$ of

$$\dot{y} = q(\xi_0(\lambda), y, \lambda, 0)$$

intersect near $\gamma_0(0)$ so that there is a solution $\gamma_0(t,\lambda) \to v^{\pm}(\xi_0,\lambda,0)$ as $t \to \pm \infty$ with $\gamma(0,\lambda)$ depending continuously on λ and $y_0(0,0) = y_0(0)$;

(viii) if we denote with $\psi(t,\lambda)$ the unique (up to a multiplicative constant), bounded solution of the adjoint linear system

$$\dot{y} + g_y^*(\xi_0(\lambda), \gamma_0(t, \lambda), \lambda, 0)y = 0,$$

then the Melnikov function

$$\mathcal{M}(\lambda) = -\int_{-\infty}^{\infty} \psi(t,\lambda)^* \Big\{ g_{\varepsilon}(\xi_0(\lambda), \gamma_0(t), \lambda), \lambda, 0) \\ + g_x(\xi_0(\lambda), \gamma_0(t,\lambda), \lambda, 0) \cdot \Big(\int_{t}^{\infty} f(\xi_0(\lambda), \gamma_0(\tau, \lambda), \lambda, 0) d\tau - \frac{\partial \xi_0}{\partial \varepsilon}(\lambda, 0) \Big) \Big] \Big\} dt$$

has a simple zero at $\lambda = 0$

hold. Then there exists a C^{r-1} -function $(C^{r-2}$ in the second case) $\lambda(\varepsilon)$ with $\lambda(0)=0$ such that for ε sufficiently small and nonnegative, system (1) with $\lambda=\lambda(\varepsilon)$ has a homoclinic solution $p(t,\varepsilon)=(x(t,\varepsilon),y(t,\varepsilon))$, that is,

$$p(t,\varepsilon) \neq q^{\pm}(\lambda(\varepsilon),\varepsilon)$$

but $p(t,\varepsilon) \to q^{\pm}(\lambda(\varepsilon),\varepsilon)$ as $t \to \pm \infty$. Moreover $p(t,0) = (\xi_0,\gamma_0(t))$, and

$$\sup_{t \in \mathbf{R}_{\pm}} |x(t,\varepsilon) - \xi_0^{\pm}(\lambda(\varepsilon),\varepsilon)| e^{\varepsilon \alpha t} = O(\varepsilon), \\ \sup_{t \in \mathbf{R}} |y(t,\varepsilon) - \gamma_0(t)| = O(\varepsilon).$$
 (3)

Finally, $\dot{p}(t,\varepsilon)$ is not in the tangent space to the unstable fibre through $p(t,\varepsilon)$, provided that

$$\int_{-\infty}^{\infty} f(\xi_0, \gamma_0(t), 0, 0) dt \neq 0, \tag{4}$$

where, according to Theorem 3 in [Battelli and Palmer, to appear], vectors in the tangent space to the unstable fibre at $p(t,\varepsilon)$ are the initial values of the solutions of the variational system along $p(t,\varepsilon)$ which approach zero as $t\to -\infty$ at an exponential rate greater than σ .

3 Shil'nikov-Deng condition

Here we recall the definition of saddle-focus homoclinic orbit as given in [Deng and Hines, 2002]. Let $\dot{z}=F(z)$ be an autonomous system. The conditions for Shil'nikov chaos are:

(D1) q is an equilibrium such that the eigenvalues of F'(q) having the smallest positive real part are $\mu\pm i\omega$ with $\omega>0$ and

$$0 < \mu < -\text{Re}(\lambda)$$

for all eigenvalues λ with negative real parts; (D2) there is a homoclinic orbit p(t) to q, that is, $p(t) \neq q$ and $p(t) \in \mathcal{W}^s \cap \mathcal{W}^u$ (\mathcal{W}^s , \mathcal{W}^u denote the stable and unstable manifolds of q), such that

$$\dim T_{p(t)}\mathcal{W}^s \cap T_{p(t)}\mathcal{W}^u = 1.$$

- (D3) as $t \to -\infty$, p(t) is asymptotically tangent to the linear span of the eigenvectors of $\mu \pm i\omega$;
- (D4) there is a submanifold \mathcal{M}_0 of \mathcal{W}^u containing p(0) with $\dim \mathcal{M}_0 = \dim \mathcal{W}^{uu}$ such that

$$\lim_{t\to\infty} T_{p(t)}\mathcal{M}_t = T_q \mathcal{W}^{uu},$$

where $\mathcal{M}_t = \phi(t, \mathcal{M}_0)$ and \mathcal{W}^{uu} is the strong unstable manifold of the equilibrium q that is a locally invariant manifold containing q whose tangent space at q consists of the sum of the generalized eigenspaces of F'(q) corresponding to the eigenvalues with real part greater than μ .

Conditions (D1), (D2) are the only conditions needed in ${\bf R}^3$, although in ${\bf R}^3$ the second part of (D2) is automatically satisfied. In higher dimensions, we have to add conditions (D3) and (D4). Note that solutions of (1) starting in ${\cal W}^{uu}$ approach q as $t\to -\infty$ at an exponential rate faster than μ .

If there is such a homoclinic orbit, Shil'nikov and Deng show the presence of chaotic dynamics near it.

Assuming the conditions of Theorem 1 hold, we take $z=(x,y), F(z)=(\varepsilon f(x,y,\lambda(\varepsilon),\varepsilon),g(x,y,\lambda(\varepsilon),\varepsilon)), q=q(\lambda(\varepsilon),\varepsilon)$ and $p(t)=p(t,\varepsilon)$. The Jacobian matrix F'(q) is

$$\begin{pmatrix} \varepsilon f_x(q(\lambda(\varepsilon),\varepsilon)) \ \varepsilon f_y(q(\lambda(\varepsilon),\varepsilon)) \\ g_x(q(\lambda(\varepsilon),\varepsilon)) \ g_y(q(\lambda(\varepsilon),\varepsilon)) \end{pmatrix}$$

and has the eigenvalues $\varepsilon(\mu\pm i\omega+O(\varepsilon))$ and $\pm\lambda+O(\varepsilon)$. Thus (D1) is satisfied, if $\varepsilon>0$ is sufficiently small. Next, since $\dim \mathcal{W}^s$ equals the number of eigenvalues with negative real parts and we only have one such eigenvalue, we see that (D2) is satisfied. Next (D3) is equivalent to saying that $\dot{p}(t,\varepsilon)$ is not in the tangent space to the unstable fibre through $p(t,\varepsilon)$ and this follows from Theorem 1, provided condition (4) holds. Thus we only have to check that (D4) is satisfied. It turns out this is equivalent to the condition: $\dim(T_{p(0,\varepsilon)}\mathcal{W}^u\cap W^{cs})=2$ where $W^{cs}=T_{p(0,\varepsilon)}\mathcal{M}^{cs}$

is the tangent space to the centre stable manifold. We show that $T_{p(0,\varepsilon)}\mathcal{W}^u=T_{p(0,\varepsilon)}\mathcal{M}^{cu}$, the tangent space to the centre unstable manifold. For this, it suffices to show that $T_{p(0,\varepsilon)}\mathcal{W}^u\subset T_{p(0,\varepsilon)}\mathcal{M}^{cu}$ since both subspaces have the same dimension. However it follows from [Battelli and Palmer, to appear] that $T_{p(0,\varepsilon)}\mathcal{M}^{cu}$ consists of the initial values of solutions of the variational system which do not grow at too high an exponential rate as $t\to -\infty$. However, all the solutions beginning in $T_{p(0,\varepsilon)}\mathcal{W}^u$ tend to zero as $t\to -\infty$. So the inclusion follows. Then (D4) follows, since (vi) implies that \mathcal{M}^{cs} and \mathcal{M}^{cu} intersect transversely at $p(0,\varepsilon)$ (see [Battelli and Palmer, 2001]). So we obtain the following

Theorem. Assume that conditions (i)—(iv), equation (4) and that either (v)-(vi) or (vi)—(viii) hold. Then system (1) has a Shil'nikov saddle focus homoclinic orbit with the induced chaotic behaviour.

4 An example

We consider the following system in \mathbb{R}^5

$$\begin{cases} \dot{x} = \varepsilon f(x, y, \varepsilon) + \varepsilon^2 f_1(x, y, z, \lambda, \varepsilon) \\ \dot{y} = g(x, y, z) + \lambda g_1(x, y, z, \varepsilon) \\ \dot{z} = zh(z) + \varepsilon h_1(x, y, z, \lambda, \varepsilon) \end{cases}$$
(5)

where $x,y \in \mathbf{R}^2$ and $z \in \mathbf{R}$. We assume that $f(x,y,\varepsilon)$, $f_1(x,y,z,\lambda,\varepsilon)$, g(x,y,z), $g_1(x,y,z,\lambda,\varepsilon)$, h(z) and $h_1(x,y,z,\lambda,\varepsilon)$ are C^2 -functions bounded together with their derivatives and the following conditions hold:

1)
$$g(x,0,0) = 0$$
, $g_1(x,0,0,0) = 0$

Taking x as slow variable and (y,z) as fast variable, it follows from 1) that when $\varepsilon=\lambda=0$ system (5) has the centre manifold (y,z)=v(x)=0. Moreover, according to 1), this centre manifold persists when $\lambda\neq 0$, that is $v(x,\lambda,0)=0$.

Then we assume

2) h(0) > 0 and $\dot{y} = g(0, y, 0)$ has a homoclinic orbit $y_0(t)$ to the fixed point y = 0 and for any $x \in \mathbf{R}^2$, $g_y(x, 0, 0)$ has the eigenvalues $\pm \alpha(x)$ with $\alpha(x) > \alpha > 0$.

Conditions 1) and 2) imply that (ii) is satisfied. Moreover 2) implies that the fast system

$$\begin{cases} \dot{y} = g(0, y, z) \\ \dot{z} = zh(z) \end{cases}$$
 (6)

has the fixed point (y,z)=(0,0) and the homoclinic orbit to it: $\gamma_0(t)=(y_0(t),0)$. Moreover the Jacobian matrix of (6) at (y,z)=(0,0) has two positive eigenvalues $(\alpha(0))$ and h(0) and the negative eigenvalue $-\alpha(0)$. Thus the intersection of the stable and unstable manifold of (y,z)=(0,0) is one–dimensional and then condition (iv) is satisfied.

Next we assume

3) x=0 is a focus of equation $\dot{x}=f(x,0,0)$, that is f(0,0,0)=0 and $f_x(0,0,0)$ has the eigenvalues $\mu+i\omega, \mu, \omega>0$.

Hence condition (iii) is satisfied. To apply our Theorem we need that conditions (v), (vi) and (4) are satisfied. Since when $\varepsilon=0$ the equation on the centre manifold $(y,z)=v(x,\lambda,0)=0$ is always $\dot{x}=f(x,0,0)$, we see that $\xi_0(\lambda,0)=0$. Hence (v) and (4) read respectively:

$$\int_{-\infty}^{\infty} \psi^*(t)g_1(0, y_0(t), 0, 0)dt \neq 0 \tag{7}$$

and

$$\int_{-\infty}^{\infty} f(0, y_0(t), 0) dt \neq 0.$$
 (8)

Thus we obtain the following:

Proposition 1. Assume $f(x, y, z, \lambda, \varepsilon)$, g(x, y, z), $g_1(x, y, z, \varepsilon)$, h(z) and $h_1(x, y, z, \lambda, \varepsilon)$ are C^2 – functions bounded with their derivatives and that conditions 1)–3) and (7), (8) hold together with

$$\int_{-\infty}^{\infty} \psi^*(t) g_x(0, y_0(t), 0) dt \neq 0.$$

Then system (5) has a Shil'nikov saddle-focus orbit with the induced chaotic behaviour.

References

Battelli, F. and Palmer, K. J., Heteroclinic connections in singularly perturbed systems, *Disc. Cont. Dynam. Sys.*, to appear

Battelli, F. and Palmer, K. J., Transverse intersection of invariant manifolds in singular systems, *J. Diff. Equations*, **177**, (2001), 77-120

Battelli, F. and Palmer, K. J., Connections to fixed points and Shil'nikov saddle-focus homoclinic orbits in singularly perturbed systems, *Ukrainian Mathematical Journal*, to appear

Deng, B., On Shil'nikov's Homoclinic-Saddle-Focus Theorem, *J. Diff. Equations* **102**, (1993), 305-329

Deng, B. and Hines, G. Food chain chaos due to Shil'nikov's orbits, *Chaos* **12**, (2002), 533-538.

Feng, Z.C. and Wiggins, S., On the existence of chaos in a class of two degree of freedom, damped, parametrically forced mechanical systems with broken O(2) symmetry, Z- Angew. Math. Phys. **44**, (1993), 201-248

Hastings, S. P., Single and multiple pulse waves for FitzHugh Nagumo equation, *SIAM J. Appl. Math.*, **42** (1982), 247-260.

Rodriguez, J. A., Bifurcation to homoclinic connections of the focus-saddle type, Arch. Rat. Mech. Anal. **93**, (1986), 81-90.

Shil'nikov, L. P., A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Math. USSR Sbornik **10**, (1970), 91-102