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1. Abstract

This paper describes constructive ellipsoidal algorithms for problems of closed-loop control in os-
cillating systems which approximate the telegraph equation.

2. The Problem

Consider the controlled linear ODE system:

m1ÿ1(t) = −(k1 + k2)y1(t) + k2y2(t) − µ1ẏ1(t) − ν1y1(t)
m2ÿ2(t) = k2y1(t) − (k2 + k3)y2(t) + k3y3(t) − µ2ẏ2(t) − ν2y2(t)

...
m2ÿN1

(t) = kN−1yN−2(t) − (kN−1 + kN )yN−1(t) + kNyN (t) − µN−1ẏN−1(t) − νN−1yN−1(t)
mN ÿN (t) = −kNyN−1(t) + kNyN (t) − µN ẏN (t) − νNyN (t) + u(t)

(1)

where u(t), yi(t), ki, mi, µi, νi, i=1,2,...,N, are positive real values.

The value yi represents displacement of the ith weight from the equilibrium.

This system describes small oscillations of a chain of springs and weights in a viscous medium and
thus approximates the telegraph equation:

utt = v2
0uxx − (σ1 + σ2)

∂u

∂t
− σ1σ2u + f. (2)

We subject the control u(t) to constraints:

u(t) ∈ P = [umin, umax] (3)

It is possible to rewrite the system (1) in the standard matrix form:

ẋ(t) = Ax(t) + bu(t), (4)

where
x(t) ∈ Rn, n = 2N , (x1(t), . . . , xN (t)) = (y1(t), . . . , yN (t)), (xN+1, . . . , x2N ) = (ẏN+1, . . . , ẏ2N ).

Let us give the definition of closed-loop control:
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Definition. A closed-loop control is a multimapping U(t, x) : [t0, t1] × R2N → P, that is upper
semicontinuous with respect to variable x, is measurable with respect to t and is with nonempty
convex compact values in P The set of positional (feedback) strategies is denoted as UCL

The above mentioned class of controls provides the existence and continuity of solutions to the
differential inclusion:

ẋ(t) ∈ Ax(t) + bU(t, x), t ≤ t0 (5)

Problem 1. Find the solvability set W[t0] ⊆ Rn and the feedback control U(t, x) which ensures
that all the trajectories of the system (4) starting from initial set W[t0] would attain the equilibrium
at finite time t1 (i.e. x(t1) = 0).

Consider the value function V (t, x)

V (t, x) = min
u∈UCL

max
x(·)∈XU (·)

{d2(x(t1), 0)|x(t) = x} (6)

Here XU (·) is the trajectory tube of solutions to the differential inclusion (5) with fixed closed-loop
control U(t, x) and initial condition x(t) = x.

This function is a solution of the Hamilton-Jacoby-Bellman equation.

∂V (t, x)

∂t
+ min

u∈[umin, umax]
<

∂V (t, x)

∂x
, Ax + bu >= 0 (7)

V (t1, x) = d2(x, 0) (8)

The optimal closed loop control can be found from the following relation:

U(t, x) = Argmin
u∈[umin, umax]

<
∂V (t, x)

∂x
, bu > (9)

We note that the value function can be expressed via the solvability set W[t]:

V (t, x) = d2(e(t1−t)Ax, e(t1−t)AW[t]). (10)

The optimal feedback control has the form:

U∗(t, x) =











umin, ℓ0
n > 0;

umax, ℓ0
n < 0;

[umin, umax], ℓ0
n = 0,

(11)

where ℓ0 is the maximizer in the next expression

d2(e(t1−t)Ax, e(t1−t)AW[t]) = max
ℓ∈Rn

< ℓ, x > −ρ(ℓ|W[t]) − ‖e(t−t1)A′

ℓ0‖2 = (12)

=< ℓ0, x > −ρ(ℓ0|W[t]) − ‖e(t−t1)A′

ℓ0‖2.

Here ρ(ℓ|W[t]) is support function of the solvability set W[t].
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The most difficult computational part of the above solution is the optimization problem in (12).
We can simplify the calculations if the solvability set W[t] is replaced by an internal ellipsoidal
approximation:

E(x∗(t), X−(t)) = ∪{x ∈ Rn|< x − x∗(t), X−(t)−1(x − x∗(t)) >≤ 1},

which be found from the next system:

ẋ∗(t) = Ax∗(t) + bp, x∗(t1) = 0;

Ẋ−(t) = AX−(t) + X−(t)A′+

X
1/2
− (t)S(t)(bPb′)1/2 + (bPb′)1/2S′(t)X

1/2
− (t), X−(t1) = 0;

S(t)P 1/2B′s(t) = λ(t)X
1/2
− s(t), S′(t)S(t) = I.

Here p = 1/2(umin + umax), P = 1/4‖(umax − umin)‖
2 are the parameters of ellipsoid

E(p, P ) = P = [umin, umax].

In this case the maximizer ℓ0 in (12) can be calculated from the next relation

ℓ0 = 2λ(X− + λF )−1(x − x∗), F = e(t−t1)Ae(t−t1)A′

, (13)

where λ is a unique nonnegative root of the equation

< (X− + λF )−1(x − x∗), X−(X− + λF )−1(x − x∗) >= 1. (14)

and ℓ0 = 0 if there are no positive roots.

Thus the closed loop control may be calculated using the relations (13),(14).

References

[1] Kurzhanski A.B. and Valyi I., Ellipsoidal Calculus for Estimation and Control, Birkhauser,
Boston, Basel, Berlin, 1997.

[2] Kurzhanski A.B. and Varaiya P., Ellipsoidal Techniques for Reachability Analysis: internal

approximation, System and Control Letters, v.41, pp.201-211, 2000.

[3] Kurzhanski A.A. and and Varaiya P. Ellipsoidal Toolbox,
http://www.eecs.berkeley.edu/~akurzhan/ellipsoids/, 2005.

[4] Fillipov A.F., Differential Equations with Discontinuous Righthand Sides. Dordrecht: Kluwer,
1988

[5] Vostrikov I.V., Dar’in A.N., and Kurzhanski A.B. On the Damping of a Ladder-Type Vibration

System Subjected to Uncertain Perturbations, Differential Equations, vol.42, No.11, pp 1524-
1535, 2006.

3


