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Abstract
Active volcanoes characterized by open conduit con-

ditions effectively generate sonic and infrasonic sig-
nals, whose investigation provides useful information
for both monitoring purposes and study of the dynam-
ics of explosive phenomena. At Mt. Etna volcano
(Italy) a clustering algorithm based on spectral features
and amplitude of the infrasonic events was developed.
It allows to recognize the active vent with no location
algorithm and by using only one station. Moreover,
a waveform inversion procedure was coded, based on
genetic algorithm, that enables us to quantitatively in-
vestigate the infrasound source parameters.
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1 Introduction
During the last decade, new insights into explosive

volcanic processes have been achieved by studying in-
frasonic signals (e.g. Vergniolle and Brandeis, 1994).
In fact, infrasonic activity on volcanoes is generally ev-
idence of open conduit conditions and can provide im-
portant indications on the dynamics of the explosive
processes. Unlike the seismic signal whose wavefield
can be strongly affected by topography (Neuberg and
Pointer, 2000) and path effects (Gordeev, 1993), the in-
frasonic signal maintains almost unchanged its features
during the propagation. In most of cases the infrasonic
signals are related to the internal magma dynamics, as
the acoustic resonance of fluids in the conduit, trig-
gered by explosive sources; this implies propagation of
sound waves in both magma and atmosphere (Garces
and McNutt, 1997). Other studies relate the source of
sound to the sudden uncorking of the volcano (John-
son and Lees, 2000), the local coalescence within a

magma foam (Vergniolle and Caplan-Auerbach, 2004)
and the Strombolian bubble vibration (Vergniolle et al.,
2004). In this paper we illustrate an unsupervised clus-
tering of infrasound events, able to recognise the active
vent without location algorithm. Moreover, a method
to quantitatively investigate the source mechanism is
shown.

Figure 1. Map of the summit area of Mt. Etna with the lo-
cation of the four infrasonic sensors (triangles), composing the
permanent infrasound network. The digital elevation model in
the lower right corner shows the distribution of the four summit
craters (VOR=Voragine, BN=Bocca Nuova, SEC=South-East Crater,
NEC=North-East Crater).

2 Infrasonic features clustering
The time period September-November 2007 was char-

acterised at Mt. Etna volcano (Italy) by explosive ac-



tivity and intense degassing. During this time interval
infrasonic signals were recorded by an infrasonic net-
work, composed of 4 sensors azimuthally distributed
around the summit area (Fig. 1). By a triggering proce-
dure, about 1000 infrasonic events were found, consist-
ing in amplitude transients with short duration (from 1
to over 10 s), impulsive compression onsets and peaked
spectra with most of energy in the frequency range 1-
5 Hz (Fig. 2). Generally, in order to reduce the size

Figure 2. Infrasonic events recorded by EBEL station and corre-
sponding Short Time Fourier Transform.

of certain information (signals, data, etc), definition of
peculiar features or properties by a ”feature extractor”
may be useful. In our case, we can use both the spec-
tral characteristics, computed by Sompi method (Ku-
mazawa et al., 1990) and consisting in dominant fre-
quency and quality factor, and the peak-to-peak am-
plitude, as features to describe the infrasonic events.
Then, in order to investigate prospective similarities or
differences among the features extracted from the in-
frasonic signals, we plotted the frequency, the quality
factor and the peak-to-peak amplitude, in the x-axis,
y-axis and z-axis, respectively, and obtained the so-
called ’feature space’ (Fig. 3). In order to discover
cluster in the feature space, the Self-Organizing Map
(SOM) was chosen. SOM is a neural network based

Figure 3. feature space of about 1000 of infrasound events,
recorded by EBEL station. In x-, y- and z-axes the frequency, the
quality factor and the peak-to-peak amplitude (Pa), respectively, are
reported.

on unsupervised learning (Kohonen, 1995) useful in
data visualization and exploration. The SOM maps
high-dimensional input vectors onto two-dimensional
grid of prototype vectors that are easier to visualize
and explore than the original data. The fundamen-
tal of the SOM is the competition between the nodes
in the output layer. The fundamental of the SOM is
the competition between the nodes in the output layer.
The U-matrix is a common tool for visual inspection
of SOM. It visualizes distances between neighbouring
map units, and thus shows the cluster structure of the
map: high values of the U-matrix indicate a cluster
border while uniform areas of low values indicate clus-
ters themselves. In Fig. 4a the SOM U-matrix after
training algorithm is presented. Each group of neurons
constitutes a cluster. In the obtained U-matrix we can
see three dark blue regions, that correspond to low val-
ues in the U-matrix, and hence to clusters in the data.
These regions are separated by lighter colours. Thus
through the visual inspection of the U-matrix we can
recognise three clusters in the feature space.By study-
ing the final U-matrix map, and the underlying features
planes of the map, a number of cluster can be identified
by K-means algorithm (Dubes and Jain, 1976). The
best clustering structure, which was obtained by the K-
means algorithm, is selected using Davies-Bouldin in-
dex (Davies and Bouldin, 1979). This index uses the

Figure 4. (a) U-matrix, (b) Davies-Bouldin index and (c) best clus-
tering structures.

within-cluster distance and the between-clusters dis-
tance. The Davies-Bouldin index is suitable for evalu-
ation of K-means partitioning because it gives low val-
ues indicating good clustering results. Fig. 4b shows
the Davies-Bouldin index where the best clustering cor-
responds to the number of three clusters and then it has
been projected onto the SOM (Fig. 4c). According
to Cannata et al. (2009a), a cluster (called cluster 1)
was related to the degassing activity of the North East
Crater, while the other two (called clusters 2 and 3)
to two different explosive activities of the South East
Crater (Fig. 4c and 5).



Figure 5. (a) Infrasonic feature space (green, blue and red dots indi-
cate cluster 1, 2 and 3 respectively). (b) Location of the vents, source
of infrasound.

3 Infrasonic source modelling
Once the events are characterised and the active vents

located, the source processes can be studied. The de-
tected infrasonic events are similar to the signals de-
scribed in Ripepe and Marchetti (2002) and Vergniolle
et al. (2004), and explained as generated by the vi-
bration of a large gas bubble, before it bursts. There-
fore, in order to quantitatively investigate the source
mechanism of the infrasonic events, a waveform in-
version procedure was developed. Using the equations
reported in Vergniolle et al. (2004), we were able to
calculate synthetic waveforms. Then, by optimization
algorithms, we can constrain the values of the three un-
known parameters, radius, length of the bubble and ini-
tial overpressure (indicated by R, L and ∆P, respec-
tively) that allow finding the best fit between synthetic
and measured waveforms. Optimization method cho-
sen to look for the best fit between observed and syn-
thetic signals is the Genetic Algorithm. Examples of
waveform inversion are reported in Fig. 6.

Figure 6. Comparison between the stacked waveforms of the three
clusters of infrasonic events (black) and the synthetic ones (red). The
source parameters obtained by the waveform inversion are reported
at top of the plots.

4 Conclusions
At active volcanoes the detection and location of ex-

plosive activity is generally obtained by videocam-
eras and thermal sensors. However, the efficiency is
strongly reduced or inhibited in case of poor visibil-
ity caused by clouds or gas plumes. In these cases
the detection and characterization of explosive activ-
ity by infrasounds is very useful (i.e Cannata et al.,

2009b) and some techniques, based on infrasound sig-
nals recorded by arrays or networks, were developed
to locate the source of this signal and then the active
vent (e.g. Ripepe and Marchetti, 2002). All these tech-
niques require that most of the stations properly work
and the noise is low. At Mt. Etna the events at a single
vent for a certain type of activity maintain stable their
features (Cannata et al. 2009a). Therefore, once the
link between event characteristics and vent is known
we can understand which crater is active and which
volcanic activity is going on by simply extracting the
features of the infrasonic signal at a single station. In
the light of it, a clustering based on spectral features
and amplitude of the infrasonic events was developed.
It allows to recognize the active vent with no location
algorithm and by using only one station. Moreover,
a waveform inversion procedure was coded, based on
genetic algorithm, that enables us to quantitatively in-
vestigate the infrasound source parameters.
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