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Abstract
The paper offers an approach to the analysis and

stabilization of positive linear systems based on the use
of additional constraints that provide superstability of
the system. It is shown that meeting the superstability
conditions singles out a specific class of positive linear
systems for which we can get an effective state esti-
mation with or without external bounded disturbances
and also expand the understanding of robust properties.
Two ways of solving stabilization problem are given.
Each of them is reduced to linear programming and
can be generalized to the case of bounded control. The
paper contains examples demonstrating the peculiari-
ties of dynamics of superstable positive systems and
regulator synthesis that provides required behavior of
the closed-loop system.
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1 Introduction
Natural peculiarity of dynamic systems that occur in

practice is the nonnegativity of their state. These sys-
tems constitute an important class of positive systems
[Farina, Rinaldi, 2000], [Kaczorek, 2002], and their
main property is that their output and state during
all the time of functioning are nonnegative for any
nonnegative inputs and initial state. Systems with this
property arise in network flows and communications
(traffic, transport, control in TCP networks, distributed
power control algorithms for cellular communications,
job balancing in computer networks, consensus and
synchronization problems), transportation (vehicle for-
mation, electrical power transmission, a supply chain
for fresh products), industrial and engineering systems
(wind farm, irrigation channels, chemostats, bioreac-
tors). The property of positiveness is also seen in

biology, ecology, economics and sociology. A wide
range of applications and improvement of technology
explains the burst of attention to positive systems that
lasts for more than a decade and motivates further
studies.
By now two approaches to the analysis and stabi-

lization of positive linear systems have evolved. The
first approach is based on the stable positive system
having diagonal quadratic Lyapunov function. The use
of its existence conditions allows finding the feedback
that ensures positiveness and asymptotic stability of
the closed-loop system. The problem of designing the
control law is reduced to solving of LMIs, comple-
mented by the structural constraints, responsible for
the positiveness of the closed-loop system [Gao, Lam,
Wang, Xu, 2005]. The development of this approach
led to important results in analysis and synthesis of
positive systems (see ref. in [Tanaka, Langbort, 2011],
[Ebihara, Peaucelle, and Arzelier, 2014]). The second
approach to the study of positive linear systems drives
of the fact that their stability can be connected to
the existence of linear copositive Lyapunov functions
[Fornasini, Valcher, 2010]. The corresponding condi-
tions allowed developing an effective approach to the
feedback synthesis for positive systems [Rami, Tadeo,
2007]. This approach provides necessary and sufficient
stabilizability conditions and attractive for numerical
computations as it is reduced to linear programming
(LP). Development of this approach allowed for the
advancement in robust stabilization of positive systems
[Briat, 2012], [Ebihara, Peaucelle, and Arzelier, 2012].
Approaches to positive system control, using LMI or

LP are united by the implementation of the properties
of Metzler matrices characterized by nonnegativity of
of-diagonal entries [Berman, 1994]. The Metzlerian
character of the matrix A is a necessary and suffi-
cient positiveness condition of the linear system ẋ =
Ax. Hence most of the positive system theory results
(stability, reachability, controllability, stabilization, ro-
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bustness, optimization) are based on the peculiarities
specific to this class of matrices.
In this paper we study what stability properties and

stabilization possibilities are revealed with the use of
superstability constraints. The idea of implementing
superstability conditions to the analysis and synthesis
of linear systems is offered in [Polyak, Shcherbakov,
2002(a)], [Polyak, Shcherbakov, 2002(b)]. Supersta-
bility is a sufficient stability condition. Superstable
linear systems are characterized by the existence of
a specific Lyapunov function. Just like positiveness,
superstability is caused by structural constraints formu-
lated by means of linear restrictions on the entries of
the system matrices. Combination of these constraints
allows defining a class of systems not studied before -
superstable positive systems. Due to the performance
of superstability conditions a positive system acquires
additional practically important properties inaccessible
by usual positive systems. The utility of implement-
ing superstability conditions to positive systems also
becomes apparent as we get a developed approach
to solving a number of complex analysis and control
problems. Some of them have not been studied relating
to positive systems yet.
The paper is organized as follows. Section II con-

tains the main properties of positive and superstable
systems considered separately as well as methods of
synthesis of stabilizing regulators. Section III studies
the peculiarities of superstable positive linear systems,
formulates the positive superstabilization problem and
presents several ways of solving it.
Notation: for the vector x ∈ Rn and matrix A =
(aij) ∈ Rn×n the notations x > 0 (x < 0) and
A ≥ 0 (A > 0), correspondingly mean xi > 0
(xi < 0) and aij ≥ 0 (aij > 0); A ≻ 0 (A ≺ 0) is
positive (negative) definite matrix; ||x||∞ = max

i
|xi|,

||A||1 = max
i

(
∑
j

|aij |).

2 Preliminaries
Consider a linear continuous-time system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is
input vector, A = (aij) ∈ Rn×n, B = (bis) ∈ Rn×m.
It is supposed that the system (1) is unstable, i.e.

A /∈ H = {A ∈ Rn×n : max
i

{Reλi(A)} < 0},

where H is the set of Hurwitz matrices. The pair
(A,B) is controllable.
Let the stabilizing regulator be found in the form of

the state feedback

u(t) = Kx(t), K = (ksj) ∈ Rm×n. (2)

Below we give definitions and statements used in
the analysis and synthesis of positive and superstable
systems.

2.1 Positive Systems
The following definition registers the distinctive pe-

culiarity of positive systems. Having started up at
any initial condition x0 in Rn

+, the trajectories x(t, x0)
further evolve in the positive orthant Rn

+.
Definition 1: The system (1) is called positive if for

any initial condition x0 ∈ Rn
+ and input u(t) ∈ Rm

+ the
state of the system is x(t) ∈ Rn

+ for all t ≥ 0.
Generally accepted approach to defining positive sys-

tems is meeting the constraints for system matrices.
Definition 2: Matrix A is called Metzler if A ∈ M ,

where

M = {A = (aij) ∈ Rn×n : aij ≥ 0, i ̸= j}.

Theorem 1 [Farina, Rinaldi, 2000]: The system (1) is
positive if and only if A ∈M and B ≥ 0.
The following theorem accumulates known properties

of the stable positive systems [Farina, Rinaldi, 2000],
[Berman, 1994].
Theorem 2: Let the system (1) be positive. Then it is

asymptotically stable if and only if one of the following
equivalent conditions is satisfied: 1) A ∈ H; 2) there
exists a vector v ∈ Rn such that v > 0 and Av < 0;
3) there exists a vector ψ ∈ Rn such that ψ > 0 and
ATψ < 0; 4) there exists a diagonal matrix P ≻ 0 such
that ATP + PA ≺ 0.
Positive system stabilization cannot be accomplished

by traditional methods. The control law must be chosen
so that the closed-loop system ẋ = (A + BK)x
was simultaneously positive and asymptotically stable.
Thus the positive stabilization problem is in finding the
regulator in the form (2) that will stabilize the closed-
loop system so that A + BK ∈ H ∩ M . It follows
from conditions 3 and 4 of Theorem 2, that stable
positive system possesses two Lyapunov functions: a
linear copositive one V (x) = ψTx and a quadratic one
V (x) = xTPx, P = diag(pi) ≻ 0. Depending on
which condition of Theorem 2 we use for the basis,
alternative ways of finding the gain matrix K such
that A + BK ∈ H ∩ M are possible. The use of
the condition 4 gives us an efficient approach, which
is reduced to the solution of LMI complete with con-
straints of closed-loop system positiveness [Gao, Lam,
Wang, Xu, 2005]. As to numerical computation, the
approach [Rami, Tadeo, 2007] based on the condition
2 is preferable. Unlike the first one, this approach
provides necessary and sufficient conditions of positive
system stabilization. The solution for this category of
problems can be obtained via LP. The main result here
is the following theorem.
Theorem 3 [Rami, Tadeo, 2007]: For the system

(1) the following statements are equivalent: 1) there
exists such feedback (2) that the closed-loop system is
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positive and asymptotically stable; 2) there exists the
matrixK such, thatA+BK ∈ H∩M ; 3) the following
LP problem, in the variables ξ = [ξ1 ξ2 ... ξn]

T ∈ Rn

and zi ∈ Rm, i = 1, 2, ..., n, is feasible:

Aξ +B

n∑
i=1

zi < 0, ξ > 0,

aijξj + bizj , i ̸= j,

with B = [b1 b2 ... bn]
T . The gain matrix can be

obtained as

K =

[
z1
ξ1

z2
ξ2

...
zn
ξn

]
.

2.2 Superstable Systems
Superstability conditions are formulated as restric-

tions on the entries of the system matrix.
Let

σ(A) = min
i
(−aii −

∑
j ̸=i

|aij |)

be the superstability degree A.
Definition 3: MatrixA is called superstable, ifA ∈ S,

where

S = {A = (aij) ∈ Rn×n : σ(A) > 0}.

Superstable matrices that form the set S are character-
ized by the performance for all their rows the condition
of negative diagonal dominance

−aii >
∑
j ̸=i

|aij |, i = 1, 2, ..., n. (3)

Definition 4 : The system (1) is called superstable if
A ∈ S.
Superstability provides a sufficient stability condition:

if A ∈ S, then A ∈ H (the inverse statement is not
true).
Though the class of superstable systems is narrow,

the interest in them is caused by their practically
important properties [Polyak, Shcherbakov, 2002(a)].
The superstable system (1) possesses the Lyapunov
function V (x) = ||x||∞ = max

i
|xi| and at the zero

input (u(t) ≡ 0) the estimation

||x(t)||∞ ≤ ||x0||∞e−σ(A) t, t ≥ 0 (4)

is true for the system state. It follows from (4) that
unlike usual (including positive) stable linear systems

for the superstable systems the possibility of appear-
ance of the so called “peak” effect [Polyak, Tremba,
Khlebnikov, Shcherbakov, Smirnov, 2015] is excluded.
It consists in drastic increase of the values of the state
vector components xi(t) at the initial stage of the
transient process, and can result in undesirable conse-
quences for the reliable functioning of the system.
If the input in (1) exists and is restricted ||u(t)||∞ ≤ 1,

then the state of the system satisfies

||x(t)||∞ ≤ γ + ηe−σ(A)t, t ≥ 0, (5)

where γ = ||B||1/σ(A), η = max{0, ||x0||∞ − γ}.
It follows from (5) at ||x0||∞ ≤ γ that ||x(t)||∞ ≤ γ,
t ≥ 0, meaning that for all admissible u(t) the invariant
set of the superstable system is

Q = {x(t) ∈ Rn : ||x(t)||∞ ≤ γ}.

The problem of the system (1) superstabilization is
in finding the superstabilizing matrix K, that provides
the performance of A + BK ∈ S for the closed-loop
system. For the entries of matrixA+BK, we can write
the condition (3) as

−aii −
∑
s

bisksi −
∑
j ̸=i

|aij +
∑
s

bisksj | > 0 (6)

and formulate the general existence condition of the
superstabilizing feedback in the theorem below.
Theorem 4: For the system (1) with the state feedback

control law (2) there exists the gain matrix K such that
A + BK ∈ S, if the system of inequalities (6) has the
solution ksj , s = 1, 2, ...,m, j = 1, 2, ..., n.
Note that the necessary condition for the existence of

solution of linear inequalities (6) is the performance
(the analysis of superstability achievement conditions
is given in [Talagaev, Tarakanov, 2012])

−aii −
∑
s

bisksi > 0, i = 1, 2, ..., n.

The existence check of the matrix K, satisfying (6),
can be reduces to LP [Polyak, Shcherbakov, 2002(b)].
If the solution of the LP problem is found, we get
the superstabilizing regulator, that maximizes the su-
perstability degree σ(A + BK) of the closed-loop
system. The approach remains efficient for the case
when superstabilization must be performed by the
static output feedback. Superstability persists at non-
linear disturbancies, that allows using the conditions
corresponding to it for the analysis and control of
non-linear systems with complex dynamics [Talagaev,
Tarakanov, 2012], [Talagaev, 2014].
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3 Superstable Positive Systems
The similarity of positive and superstable systems is

that each class is characterized by special structural
constraints on the system matrix entries (see Theorem 1
and Definition 4). We can combine these constraints in
one general condition and study a new class of systems,
which acquires unique properties from the types of the
systems that constitute it.
The matrix A ∈ Rn×n can be called the superstable

Metzler matrix, if

aij ≥ 0, i ̸= j, i, j = 1, 2, ..., n (7)

−
∑
j

aij > 0, i = 1, 2, ..., n. (8)

The inequalities (7)-(8) combine the conditions that
provide the simultaneous membership of A to the
classes of the Metzler and superstable matrices, i.e.
A ∈M∩S. The constraint (7) means thatA ∈M . The
constraint (8) ensures the performance of superstability
conditions (3) written with regard to (7). Note that from
A ∈M ∩ S follows A ∈M ∩H .
By performing the conditionA ∈M∩S for the matrix
A we can separate the class of superstable positive
linear systems

ẋ(t) = Ax(t) +Bu(t), A ∈M ∩ S,B ≥ 0, x0 ∈ Rn
+.
(9)

The study of positive systems with performed su-
perstability conditions allows deepening our under-
standing of the peculiarities of their dynamics and
discovering new properties.

3.1 The Analysis
3.1.1 State Estimation Along with the existence

for the stable positive systems linear copositive and
diagonal quadratic Lyapunov functions, the superstable
positive system (9) at u(t) ≡ 0 also possesses the
following Lyapunov function

V (x) = max
i

(xi)

with the estimation V (x(t)) = V (x0)e
−σ(A)t, by

inheriting this property form superstable systems. The
possibility of a positive system simultaneously possess-
ing three Lyapunov functions was mentioned earlier
(see [Rantzer, 2012]). Now it is clear that such situation
really takes place and is a property of the class of
superstable positive linear systems.
It is possible to get an effective state estimation for

superstable positive systems with and without external
bounded disturbances. Namely, unlike the usual stable
systems, for the positive superstable system (9) at

u(t) ≡ 0 the estimation (4) is performed. It means that
the ∞-norm solution of the unperturbed system will
monotonically decrease in Rn

+.
Rewrite the system (9) as

ẋ(t) = Ax(t) +Dw(t),

where w(t) ∈ Rr is the external disturbance, satisfying
the restriction

0 ≤ ||w(t)||∞ ≤ 1, t ≥ 0,

D ∈ Rn×r
+ is constant matrix. So, if A ∈M ∩ S, then

for any x0 ∈ QM at all t ≥ 0 it will be

x(t) ∈ QM = {x(t) ∈ Rn
+ : 0 ≤ ||x(t)||∞ ≤ λ},

where λ = ||D||1/σ(A).
Thus, at bounded perturbations ∞-norm solution re-

mains restricted, and we get an easy way of estimating
the invariant set QM of the positive system (9).
Example 1. Compare the dynamics of the stable and

superstable positive systems given by the matrices

A1 =

[
−1 5

0 −1

]
∈M ∩H,A2 =

[
−6 5

0 −1

]
∈M ∩S

In the numerical experiment, the initial conditions were
chosen at random from the set X0 = {x0 ∈ R2

+ :
0 ≤ x0i ≤ 1, i = 1, 2}. The dynamics of both
systems is shown in the Fig. 1. We can see that,
unlike the stable one, the trajectories of the superstable
positive system satisfy the estimation ||x(t)||∞ ≤
||x0||∞e−σ(A2) t, where σ(A2) = 1. The differences
in transient processes of the systems are shown in
Fig. 2 (x0 = (0.1, 1)). While the components
x2(t) of the state vector x(t) = (x1(t), x2(t)) of both
systems behave the same way, the component x1(t)
of the stable positive system undergoes the “peak” of
max(x1(t))/x1(0)) ≈ 18.8.

3.1.2 Robustness Fulfillment of superstability
conditions expands our understanding of robust
properties of positive systems.
Consider a matrix family

A = DA0,

where A0 = (a0ij) ∈ M is the nominal matrix,
D = diag(di) > 0 is the strictly positive diagonal
matrix. The first robust property of positive systems
is known as D-stability [Farina, Rinaldi, 2000]: let
A0 ∈ M ∩ H , then DA0 ∈ M ∩ H . It is easy to see
that by replacing stability with superstability we don’t
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Figure 1. Phase trajectories of the stable positive system (dotted)
and superstable positive system (solid).

Figure 2. Transient responses of the stable (a) and superstable (b)
positive systems.

break this property. For the matrix A = DA0 ∈M the
superstability condition −

∑
j

dia
0
ij > 0, i = 1, 2, ..., n

is performed at any di > 0. Following the accepted
terminology, we get that superstable positive systems
are D-superstable: if the positive system ẋ = A0x
is superstable, then all diagonally perturbed systems
ẋ = DA0x are superstable too.
Consider the following matrix family

A = A0 +∆,

where A0 ∈ M ∩ H , ∆ = (δij) ∈ Rn×n is the
uncertainty. The second robust property of the posi-
tive systems is so called connective stability [Farina,
Rinaldi, 2000]: let A0 ∈ M ∩ H , then A0 + ∆ ∈
M ∩ H , if −a0ij ≤ δij ≤ 0, i ̸= j, δii = 0. Let’s
demonstrate how this property expands if we transfer
from just stable to superstable positive systems. Let
A0 ∈M ∩ S. Obviously, any matrix from the A0 +∆
family at δii = 0 and −a0ij ≤ δij ≤ 0 will also remain
Metzler and superstable at all i ̸= j. Thus superstable

positive systems are connectively superstable. Now
we demonstrate that fulfillment of superstability condi-
tions allows expanding the restrictions on the elements
δij of the matrix ∆. The condition A0+∆ ∈M is met
for any δij ≥ 0, i ̸= j and δii = 0. However at A0 +
∆ ∈ M the matrix A0 +∆ will also be superstable, if
δii = 0 and for every i = 1, 2, ..., n there performed in-
equalities −a0ii−

∑
j ̸=i (a

0
ij + δij) > 0, i = 1, 2, ..., n

or
∑

j ̸=i δij <
∑

j a
0
ij , i = 1, 2, ..., n. By combining

we get the next robust property of superstable positive
systems: let A0 ∈M ∩ S, then the uncertain system

ẋ(t) = (A0 +∆)x(t),

is superstable and positive if δii = 0 and there
performed

−a0ij ≤ δij ≤ 0 ∀ i ̸= j,

or

∑
j ̸=i

δij <
∑
j

a0ij ∀ i.

Robustness to the class of perturbations A0 → A0 +
∆ has useful practical applications (drift, “aging ” of
parameters, etc.). The first condition (−a0ij ≤ δij ≤
0, i ̸= j) is simply inherited from the well-known
property of positive systems. The second condition
(
∑

j ̸=i δij <
∑

j a
0
ij , i = 1, 2, ..., n) is new. It arises

only from combining the properties of Metzler and
superstable matrices and applicable only to superstable
positive systems. Notice that in a special case, when
δii = 0 and for all i ̸= j there performed δij = δ, the
preserving condition of A0 +∆ ∈M ∩ S will be

max(−a0ij) ≤ δ ≤
∑
j

a0ij/(n− 1).

3.2 Stabilization
Implementation of superstability conditions to posi-

tive systems allows better understanding of their prop-
erties. Along with that there arises the possibility to
develop several mutually complementary approaches
to the solution of the stabilization problem.
The peculiarity of the problem under consideration is

that the desired feedback should simultaneously pro-
vide both positiveness and superstability of the closed-
loop system, i.e. the matrix K such that A + BK ∈
M ∩ S must be found. As the free system can be
nonpositive, let’s call the problem positive supersta-
bilization. This problem can arise in cases when the
dynamics of the closed-loop system must possess the
features of transient processes peculiar to superstable
systems, and positiveness is native for the system or an
additional restriction.
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The first approach is based on the modification of
Theorem 3. For this to the existing theorem conditions
we add a constraint, requiring the superstability of the
matrix A+BK.
Theorem 5: There exists a state feedback control law

(2) for the system (1) such that the closed-loop system
becomes positive and superstable if the following LP
has a feasible solution with respect to the variables ξ =
[ξ1 ξ2 ... ξn]

T ∈ Rn and z1, ..., zn ∈ Rm

Aξ +B
∑
i

zi < 0, ξ > 0, (10)

aijξj + bizj ≥ 0, i ̸= j, (11)

−
∑
j

(aijξj + bizj) > 0, i = 1, 2, ..., n (12)

with B = [b1 b2 ... bn]
T . The gain matrix can be

obtained as

K =

[
z1
ξ1

z2
ξ2

...
zn
ξn

]
.

Proof. Constraints (10) and (11) come from Theorem
3 unchanged. They provide the performance of A +
BK ∈ H (10) and A + BK ∈ M (11). The addition
of (12) allows performing the condition A + BK ∈
S. The corresponding structural constraint (12) is
constructed similarly to (11). For the matrix A + BK
we have (A+BK)ij = aij+biKj = aij+bi

zj
ξj
. Then

from (8) we get (12).
Implementation of Theorem 5 opens a consistent

approach to the synthesis of the superstable positive
systems. Like Theorem 3, Theorem 5 can be com-
plemented with the constraints caused by uncertainties
in the matrices A, B or control boundedness (a kind
of the arising constraints is given in [Rami, Tadeo,
2007]). For example, if the control law is sought with
regard to the condition 0 ≤ u(t) ≤ ū, then constraints
zi ≥ 0,

∑n
i=1 zi ≤ u are added to (10)-(12). Notice

that an objective restriction to wide use of this approach
is its application only to the systems (1) with matrices
B being of size n × 1. The approach below allows
removing this restriction.
The second approach provides sufficient existence

conditions of the positively superstabilizing regulator.
It is based on Theorem 4.
Theorem 6: There exists a state feedback control law

(2) for the system (1) such that the closed-loop system
becomes positive and superstable, if there exists the
solution K = (ksj), σ for the LP problem

max σ, (13)

−(aii +
∑
s

bisksi)−
∑
j ̸=i

pij ≥ σ > 0, i = 1, ..., n

(14)

0 ≤ aij +
∑
s

bisksj ≤ pij , i ̸= j, (15)

and σ > 0.
Proof. First, we get superstability conditions for

the matrix A + BK. It follows from Theorem 4
that A + BK ∈ S if there exists the solution ksj ,
s = 1, 2, ...,m, j = 1, 2, ..., n of the system of
inequalities (6). By introducing additional variables σ
and pij , i, j = 1, ..., n, we can write condition (6) in
the equivalent form [Polyak, Shcherbakov, 2002(b)].
For the diagonal entries of the matrix A + BK we
get constraints (14), and for all the others −pij ≤
aij +

∑
s bisksj ≤ pij . To provide simultaneously

A + BK ∈ S and A + BK ∈ M , we must also
take condition (7) into account. Thus we come to (15).
Finally to check the existence of solution ksj , we can
use the LP problem (13).
Like the previous one, the presented approach to the

stabilization of positive systems has its advantages and
disadvantages. Unlike the first approach, the matrix B
can be of any size (B ∈ Rn×m

+ ). It is not restricted by
the condition B = [b1 b2 ... bn]

T . Another advantage
is the possibility to get the solution (if there exists
one) of the problem output positive superstabilization.
Suppose, that the output y = Cx, C ∈ Rp×n

+ is given
for the system (1), and control is sought in the form
u = Ky. The performance check forA+BK ∈M∩S
is done similarly. We solve the problem (13), but
in constraints (14)-(15) instead of aij +

∑
s bisksj it

should be written wij(K) = (BKC)ij = biKcj ,
where bi is the i-th line of the matrix B, cj is the
j-th column of the matrix C. Notice that within the
restrictions of the first approach output stabilization
of positive systems is a complex problem, and its
solution can be obtained only for a specific case [Rami,
2011]. The second approach provides the complete
solution of the problem. Still, it must be taken into
consideration that superstability conditions are strict.
If for this particular system Theorem 6 gives negative
answer to the question about the existence of positively
superstabilizing feedback (i.e. σ ≤ 0), it doesn’t mean
that stabilization can’t be performed another way.
Example 2. Let us have the system (1) with

A =

[
3 −1
6 −5

]
, B =

[
1
1

]
. (16)

Matrix A is such that A /∈ M and A /∈ H , i.e. the
system (16) is nonpositive and unstable. Let’s demon-
sitate, how we can study the existence conditions of
feedback, that satisfies A + BK ∈ M ∩ S and obtain
the clear solution of the positive superstabilization
problem.
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Figure 3. The existence area of the positivily suprstabilizable fuzzy
regulator for the system (16).

In the first stage, for the pair A, B we check the
existence of the matrix K = [k1 k2], that provides
the solution of the superstabilization problem, i.e. A+
BK ∈ S. To do this we use the superstabilizability
condition obtained in [Polyak, Shcherbakov, 2002(b)]):
a11 − a21 + a22 − a12 < 0. It is easy to check that for
the given matrix A the inequality is performed. Hence,
superstabilizing regulator exists.
Superstability conditions (6) for the matrix A + BK

look like −(a11 + k1) > |a12 + k2|,−(a22 + k2) >
|a21 + k1|. As shown in Fig. 3, every inequality
marks a right angle in the plane (k1, k2) (first inequality
– horizontal lining, second – vertical lining). The
existence area of K, such that A + BK ∈ S, lies in
the common points of these angles. Additionally in
Fig. 3 for the system (16) there was plotted a bounded
area (a triangle), where for matrices A + BK ∈ S the
positiveness condition a12 + k2 ≥ 0, a21 + k1 ≥ 0
is performed. The resulting area allows choosing the
matrix and stabilize the system (16) so, thatA+BK ∈
M ∩ S.

4 Conclusion
A new approach to the analysis stabilization of pos-

itive linear systems based on the use of superstability
conditions is offered. Just like positiveness conditions,
superstability conditions are formulated as constraints
on the entries of the system matrix. By simultaneously
performing the conditions of positiveness and supersta-
bility we separate a special class of systems, possessing
practically useful properties. It is shown that for
superstable positive systems we can get an efficient
state estimation with and without external bounded
disturbances. Robust properties (D-superstability, con-
nective superstability) are studied. Positive super-
stabilization problem for both usual linear and pos-
itive linear systems is formulated. Two approaches
to stabilization are presented. Each of them can be

reduced to solving the linear programming problem
and generalized for the case of bounded control. The
examples demonstrating the dynamics peculiarities of
the new class of systems, as well as the study of the
existence conditions of the regulator, which provides
both positiveness and superstability of the closed-loop
system are given.
The subject of the study in this work are linear positive

systems. However, in practice positive systems can be
nonlinear. Expansion of the positive system theory to
nonlinear control systems is an important problem (see
[Churilova, 2010] where it is shown that the assump-
tion of positiveness appreciably simplifies analysis of
the absolute stability of a nonlinear Lurie system). It
is known that superstability is preserved at nonlinear
perturbations. That’s why further investigation is seen
in generalization of the achieved results to nonlinear
systems.
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