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Abstract
Problems concerned with an analysis of stochastic

differential equations with various forms of delays
and fluctuations are considered. There are nonlinear
difference-differential and linear neutral delay differ-
ential equations with multiple constant lags and lin-
ear equations with a variable delay perturbed by con-
tinuous fluctuations and linear parametric system un-
der white noise and Poisson excitations among them.
The main idea of study consists of an extension of the
phase space. Chains of deterministic equations with-
out delays satisfied by moments of phase vectors with
increasing length are presented. At the end of paper
the technique is applied to study a sensitivity of lin-
ear stochastic system response to deterministic param-
eters.

Key words
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bra.

1 Introduction
Difference-differential equations (DDEqs) [Bellman,

Cooke, 1962; Hale, 1977] have been attracting an
increased interest both from theoretical and practical
viewpoints since the middle of the last century. Such
equations are encountered in those areas where the
properties of an object depend on the hereditary effect,
and serve as models for different processes, viz., au-
tomatic control for technical devices and engineering
procedures, development of economic and social sys-
tems, combustion in liquid jet engines, neutron moder-
ation, effects of radiations, a radio-location, radar and
radio-navigation, autonomous vessel course stabiliza-
tion, oscillations in vacuum-tube generators, struggle
for existence in biology, etc.
Such phenomena arise as a result of transport, tech-

nological, information, and inertial delays (in long-
distance transmission of matter, energy, signals, infor-
mation), finiteness of speed of charge carriers, and a

lag of response delay in man-machine systems. De-
lays in systems induce new effects, for example, self-
excitation of oscillations, increased readjustment, and
instability of objects, etc.
As developments of methods for deterministic sys-

tems have become important for theory and practice
as nowadays significant interest is paid to stochastic
DDEqs (SDDEqs) of various types.
Our scheme for study of such systems is based on an

extension of the phase space [Poloskov, 2002]. We
apply this scheme to nonlinear stochastic difference-
differential equations with multiple constant delays
[Poloskov, 2006] (Section 2). An example (Section 3)
shows the scheme afoot. A tool in our calculations is
the computer algebra systemMathematica[Wolfram,
2003], a well-known powerful instrument for different
sciences. Some other recent results are examined in
Section 4.

2 Systems with Multiple Constant Delays
Let us consider a system of the Stratonovich SDDEqs

ẋ(t) = fν(x(t),xτ (t),x2τ (t), ..., xντ (t), t) +

+Gν(x(t), xτ (t), x2τ (t), ..., xντ (t), t) ξ(t), (1)

t > tν = t0 + ν τ.

Herex ∈ Rn is the phase vector,ξ ∈ Rm is a vector
of independent Gaussian white noises (M[ξ(t)] = 0,
M[ξ(t)ξT (t′)] = E · δ(t − t′)), τ is a constant delay,
ν > 0 is an integer,f = {fi}T : Rn × [t0,∞) → Rn

and G = {gij} : Rn × [t0,∞) → Rn × Rm are
deterministic vector- and matrix-function respectively,
xqτ = xqτ (t) = x(t− qτ), T is a symbol of the trans-
position,M stands for the mathematical expectation,E
is the identity matrix.
We suppose that the phase vectorx(t) being char-

acterized by the probability density function (PDF)
p(x, t) on the intervals(t0, t1], (t1, t2], ..., (tν−1, tν ]
satisfies the following systems of stochastic differential
equations (SDEqs)



ẋ = f0(x, t) + G0(x, t) ξ(t), (2)

ẋ = f1(x,xτ , t) + G1(x, xτ , t) ξ(t), (3)

... ... ... ... ... ... ... ...

ẋ = fν−1(x,xτ ,x2τ , ..., x(ν−1)τ , t) + (4)

+Gν−1(x, xτ , x2τ , ..., x(ν−1)τ , t) ξ(t),

f q = {fqi}T , Gq = {gqij},
q = 1, 2, ..., ν − 1.

Let’s assume that the PDF ofx is equal top̄0(x) at
t = t0.
If to look at Eqs (1)-(4) from the point of view of

general theory for stochastic processes, one can draw
a conclusion that the random vectorsx, which satisfy
these Eqs, aren’t the Markovian vector random pro-
cesses due to presence of delay. Hence to calculate
probabilistic characteristics of the vectorsx such as
the mean value vector, the matrix of covariances etc.,
the well-known analytical apparatus of the Markovian
processes [Dimentberg, 1980; Gardiner, 1985; Risken,
1996] based on the Fokker–Planck–Kolmogorov Eqs
(FPK Eqs) [Malanin and Poloskov, 2001; Malanin and
Poloskov, 2005] can not be applied.
To study a random change of the vectorx(t) for

t > t0, we use our scheme for analysis of different SD-
Eqs with delay which is based on the idea of a transfor-
mation of the non-Markov vector process to a Marko-
vian one. For this purpose, we expand the phase space
of the system and introduce the following notation:

s ∈ [0, τ ], tq = t0 + q · τ, q = 0, 1, 2, ...,

sq = s + tq, xq(s) = x(sq), ξq(s) = ξ(sq),

pq(xq, s) = p(xq, sq), p0(x0, 0) = p̄0(x0),

∆q = [tq−1, tq], z0 = x0, z1 = col(x1, x0),

z2 = col(x2, x1,x0), ..., ξq(0) = ξq−1(τ),

yq ≡ xq(0) = xq−1(τ), pq(xq, 0) = pq−1(xq, τ),

col(xN , xN−1, ..., x0) = {xN1, xN2, ..., xNn,

xN−1,1, xN−1,2, ..., xN−1,n, ..., x01, x02, ..., x0n}T .

Using this notation, we construct a chain of FPK-like
Eqs for the PDFs of the vectorsz0, z1, z2, ..., zN ,
... belonging to the family of embedded phase spaces
Rn ⊂ R2n ⊂ R3n ⊂ ... ⊂ Rn(N+1) ⊂ ....
Let’s consider a sequence of segments{∆i}.
00. Let’s start from the segment∆0. The random vec-

tor x0(s) defined on∆0 satisfies the system

ẋ0(s) = f0(x0(s), s0) + G0(x0(s), s0) ξ0(s). (5)

The PDFp0(z0, t) of the vectorz0(t) is governed by
the equation

∂p0

∂s
= L0p0, (6)

where

L0p0 =
1
2

n∑

i,j=1

∂2(b∗0ijp0)
∂z0i∂z0j

−
n∑

i=1

∂(a∗0ip0)
∂z0i

,

a∗0i = f∗0i +
1
2

n∑

j=1

m∑

k=1

∂g∗0ik

∂z0j
g∗0jk,

b∗0ij =
m∑

k=1

g∗0ikg∗0jk,

f∗0(z0, s) = f0(z0, s0), G∗0(z0, s) = G0(z0, s0).

10. Let’s consider the intervals∆0 and∆1. It is pos-
sible to present the system of SDEqs for calculation of
the vectorcol(x1, x0) as follows

ẋ0(s) = f0(x0(s), s0) + G0(x0(s), s0) ξ0(s),

ẋ1(s) = f1(x1(s), x0(s), s1) + (7)

+G1(x1(s), x0(s), s1) ξ1(s).

Therefore the PDF for the vectorz1 satisfies the FPK
Eq

∂p1

∂s
= L1p1, (8)

with

L1p1 =
1
2

2n∑

i,j=1

∂2(b∗1ijp1)
∂z1i∂z1j

−
2n∑

i=1

∂(a∗1ip1)
∂z1i

,

a∗1i = f∗1i +
1
2

2n∑

j=1

2m∑

k=1

∂g∗1ik

∂z1j
g∗1jk,

b∗1ij =
2m∑

k=1

g∗1ikg∗1jk,

f∗1(z1, s) = col
(
f0(x0, s0),f1(x1,x0, s1)

)
,

G∗1(z1, s) = diag
(
G0(x0, s0), G1(x1, x0, s1)

)
.

... ... ... ... ... ... ... ...

ν0. Now let’s pay attention to the time intervals∆0,
∆1, ...,∆ν and construct the set of SDEqs for the vector
zν by the way

ẋ0(s) = f0(x0(s), s0) + G0(x0(s), s0)ξ0(s),

ẋ1(s) = f1(x1(s), x0(s), s1)+



+G1(x1(s), x0(s), s1)ξ1(s),

... ... ... ... ... ... ... (9)

ẋν−1(s) = fν−1(xν−1(s), ..., x0(s), sν−1) +

+Gν−1(xν−1(s), ..., x0(s), sν−1)ξν−1(s),

ẋν(s) = fν(xν(s), xν−1(s), ..., x0(s), sν) +

+Gν(xν(s), xν−1(s), ..., x0(s), sν)ξν(s).

The PDF ofzν is governed by the equation

∂pν

∂s
= Lνpν , (10)

where

Lνpν =
1
2

n(ν+1)∑

i,j=1

∂2(b∗νijpν)
∂zνi∂zνj

−
n(ν+1)∑

i=1

∂(a∗νipν)
∂zνi

,

a∗νi = f∗νi +
1
2

n(ν+1)∑

j=1

m(ν+1)∑

k=1

∂g∗νik

∂zνj
g∗νjk,

b∗νij =
m(ν+1)∑

k=1

g∗νikg∗νjk,

f∗ν(zν , s) = col
(
f0(x0, s0),f1(x1, x0, s1),

..., fν(xν ,xν−1, ..., x0, sν)
)
,

G∗ν(zν , s) = diag
(
G0(x0, s0), G1(x1, x0, s1),

..., G(xν , xν−1, ..., x0, sν)
)
.

... ... ... ... ... ... ... ...

N0. At this stage we consider the segments∆0, ∆1,
...,∆N and obtain the set of SDEqs for the vectorzN

ẋ0(s) = f0(x0(s), s0) + G0(x0(s), s0)ξ0(s),

ẋ1(s) = f(x1(s),x0(s), s1) +

+G(x1(s), x0(s), s1)ξ1(s),

...........................

ẋν−1(s) = fν−1(xν−1(s), ..., x0(s), sν−1) +

+Gν−1(xν−1(s), ..., x0(s), sν−1)ξν−1(s),

ẋν(s) = fν(xν(s),xν−1(s), ..., x0(s), sν) + (11)

+Gν(xν(s), xν−1(s), ..., x0(s), sν)ξν(s),

ẋν+1(s) = fν(xν+1(s),xν(s), ..., x1(s), sν+1) +

+Gν(xν+1(s),xν(s), ..., x1(s), sν+1)ξν+1(s),

... ... ... ... ... ... ... ...

ẋN−1(s) = fν(xN−1(s), ..., xN−ν−1, sN−1) +

+Gν(xN−1(s), ..., xN−ν−1(s), sN−1)ξN−1(s),

ẋN (s) = fν(xN (s), xN−1(s), ..., xN−ν(s), sN ) +

+Gν(xN (s),xN−1(s)..., xN−ν(s), sN )ξN (s).

In this case the PDF of the random vectorzN satisfies
the equation

∂pN

∂s
= LNpN . (12)

This Eq includes the FPK operator

LNpN =
1
2

n(N+1)∑

i,j=1

∂2(b∗Nij

[·])
∂zNi∂zNj

−
n(N+1)∑

i=1

∂(a∗Ni

[·])
∂zNi

with coefficients of drift

a∗Ni = f∗Ni +
1
2

n(N+1)∑

j=1

m(N+1)∑

k=1

∂g∗Nik

∂zj
g∗Njk

and diffusion

b∗Nij =
m(N+1)∑

k=1

g∗Nikg∗Njk,

where

f∗N (zN , s) = col
(
f0(x0, s0),f1(x1, x0, s1),

...,fν(xN ,xN−1, ..., xN−ν , sN )
)
,

G∗N (zN , s) = diag
(
G0(x0, s + t0), G1(x1, x0, s1),

..., Gν(xN , xN−1, ..., xN−ν , sN )
)
. ¤

To solve our task, let’s define the following case for a
classic method of steps [Bellman, Cooke, 1962] that is
based on the obtained FPK Eqs.

Step 0. The PDFp01(x0, s) for the vectorx0(t)
and the PDFp02(x0, s;y0, 0) for the extended vector
z+

0 = col(x0, y0) satisfy the equation (6) with the ini-
tial conditions

p01(x0, 0) = p̄0(x0),

p02(x0, 0;y0, 0) = p01(x0, 0) δ(x0 − y0)
(13)

correspondingly. Then to obtain momentsm+
0α(s) =

M
[
z+α
0

]
= M

[
z+α1
01 z+α2

02 ...z+α2n
0,2n

]
of the vectorz+

0

(α = {α1, α2, ..., α2n}, αi ≥ 0, |α| = α1 + α2 +



... + α2n ≤ K) of different orders, it is possible to
derive the following ordinary DEqs (ODEqs):

ṁ+
0α(s) =

2n∑

i=1

αiM
[
a∗0iz

+α−ei
0

]
+

+
1
2

2n∑

i=1

αi(αi − 1)M
[
b∗0iiz

+α−2ei
0

]
+ (14)

+
2n−1∑

i=1

2n∑

j=i+1

αiαjM
[
b∗0ijz

+α−ei−ej

0

]
,

where the initial conditions are defined by such rela-
tions as

m+
0α(0) =

∫

Rn

∫

Rn

z+α
0 p02(x0, 0;y0, 0) dx0 dy0 =

=
∫

Rn

x
α1+αn+1
01 ... xαn+α2n

0n p01(x0, 0) dx0. (15)

Here the required momentsmβ(t) = M
[
xβ

]
(β =

{β1, β2, ..., βn}) at t ∈ ∆0 are equal tom+
0β(t− t0).

Step 1. The PDFsp11(x1, x0, s) andp12(x1, x0, s;
y0, 0) of the vectorsz1 andz+

1 = col(z1, y0) are the
solutions of Eq (8) under the initial conditions

p11(x1,x0, 0) = p02(x1, τ ;x0, 0) (16)

and

p12(x1, x0, 0; y0, 0) = p11(x1, x0, 0) δ(x0 − y0)
(17)

correspondingly. Therefore we can obtain the follow-
ing ODEqs for the momentsm+

1α(s) = M
[
z+α

1

]
of the

expanded phase vectorz+
1 (α = {α1, α2, ..., α3n}) and

the initial conditions

ṁ+
1α(s) =

3n∑

i=1

αiM
[
a∗1iz

+α−ei
1

]
+

+
1
2

3n∑

i=1

αi(αi − 1)M
[
b∗1iiz

+α−2ei
1

]
+ (18)

+
3n−1∑

i=1

3n∑

j=i+1

αiαjM
[
b∗1ijz

+α−ei−ej

1

]
,

m+
1α(0) =

∫

Rn

∫

Rn

∫

Rn

z+α
1 ×

×p12(x1, x0, 0;y0, 0) dx1 dx0 dy0 =

=
∫

Rn

∫

Rn

xα1
11 ... xαn

1n x
αn+1+α2n+1
01 ...× (19)

×xα2n+α3n
0n p11(x1, x0, 0) dx1 dx0.

Then the required momentsmβ(t) are calculated as
m+

1β(t− t1) for t ∈ ∆1.

... ... ... ... ... ... ... ...

Step N. The main characteristics of the vectorszN (s)
and z+

N = col(zN , y0), i.e. the PDFspN1(xN ,
xN−1, ..., x0, s) andpN2(x0,x1, ..., xN , s; y0, 0), sat-
isfy Eq (12) under the initial conditions

pN1(xN , xN−1, ..., x0, 0) =

= pN−1,2(xN ,xN−1, ..., x1, τ ; x0, 0) (20)

and

pN2(xN , xN−1, ..., x0, 0; y0, 0) =

= pN1(xN , xN−1, ..., x0, 0)δ(x0 − y0). (21)

Then at this step, the momentsm+
Nα(s) = M

[
z+α

N

]
of the vectorz+

N (α = {α1, α2, ..., α(N+2)n}) can be
found from ODEqs and the initial conditions in the
form

ṁ+
Nα(s) =

(N+2)n∑

i=1

αiM
[
a∗Niz

+α−ei

N

]
+

+
1
2

(N+2)n∑

i=1

αi(αi − 1)M
[
b∗Niiz

+α−2ei

N

]
+ (22)

+
(N+2)n−1∑

i=1

(N+2)n∑

j=i+1

αiαjM
[
b∗Nijz

+α−ei−ej

N

]
,

m+
Nα(0) =

∫

Rn

(N + 2)
∫

Rn

z+α
N ×

×pN2(xN , ..., x0, 0;y0, 0) dxN ...dx0dy0 =

=
∫

Rn

(N + 1)
∫

Rn

xα1
N1... x

αn

Nn ...× (23)

×x
αNn+1+α(N+1)n+1
01 ... x

α(N+1)n+α(N+2)n

0n ×
× pN1(xN , ..., x0, 0) dxN ... dx0.

As the result, the required momentsmβ(t) are calcu-
lated asm+

Nβ(t− tN ) for t ∈ ∆N .

3 Example
The scheme was applied to study a system in the form
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Figure 1. Time evolution of the mean value.
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Figure 2. Time evolution of the covariance.

ẋ(t) + k1 x(t) = g0 ξ(t), t ∈ (0, τ ], x(0) = x̄0,

ẋ(t) + k2 x(t) + k3 xτ (t) = g1 ξ(t), t ∈ (τ, 2τ ],

ẋ(t) + k2 x(t) + k3 xτ (t) + k4 x3
2τ (t) = g2 ξ(t),

t > 2τ,

whereki (i = 1, 2, 3, 4), gj (j = 0, 1, 2) are constants.
Moments until the forth order were calculated to take

into account nonlinearity of the system. As it is known
[Dimentberg, 1980], a finite subset of ODEqs satisfied
by moments of the phase vectors of such objects aren’t
closed ones. To generate and to close these Eqs at each
step, the cumulant closure was applied with the help of
ourMathematicacode packageProbRel. An algorithm
of task solution has been implemented with the help of
packageMathematicatoo.
Calculations were produced in assumption that the ini-

tial displacement̄x0 has the Gaussian distribution with
the mean valueα0 and the covarianceD0. Parameters
were as follows:

N = 4, k1 = 2, k2 = 1.25, k3 = −1.5,

k4 = 1/3, g0 = g1 = g2 = 0.1, τ = 0.5,

α0 = 2, D0 = 0.25.

Notice that 209 nonlinear ODEqs were generated and
integrated at the last step.
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Figure 3. Time evolution of the mean value a = -3, b = -2, c = 0.1.
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Figure 4. Time evolution of the mean value for a = -5, b = 2, c =

0.1.

Behavior of the mean valuem and covarianceD for
the displacementx is shown in Figs.1 and 2.

4 Additional Models
The scheme considered above was applied to analyze

a number of systems with single and multiple constant
delays. Moreover this scheme is extendable for study
of new classes of stochastic equations.

4.1 Linear SDEqs with a Single Variable Delay
In our research, systems of such equations had the fol-

lowing form

ẋ(t) = P(t)x(t) + Q(t) x(t− τ) + (24)

+c(t) + R(t) ξ(t), t > t0, x(t0) = x0,

ẏ(t) = P0(t)y(t) + c0(t) + R0(t) ξ(t), (25)

t ∈ (t̄0, t0), t̄0 ≤ min
t≥t0

(t− τ), y(t̄0) = y0,

wherex ∈ Rn; P(t), Q(t), R(t), P0(t), R0(t) andc(t),
c0(t) are known matrix- and vector-functions;τ(t) ≥
0.
The scheme presented in Section 2 was applied for

Eqs (24)-(25) after some modification. This modifi-
cation is based on replacement ofτ(t) by a piecewise
constant function̄τ(t) with steps of an equal lengthτ∗

which is selected to get a necessary accuracy. This re-
placement allows to transform the source system to the
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Figure 5. Time evolution of the covariance for a = -3, b = -2, c =

0.3.
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Figure 6. Time evolution of the covariance for a = -5, b = 2, c = 0.3.

other one with constant multiple delays but without any
regular structure.
As an example, a random transient behaviour de-

scribed by SDEq of a pantograph in the form

ẋ(t) = a x(t) + b x(q t) + c ξ(t), 0 < t ≤ T,

x(0) = x̄0, a, b, c, q = const, 0 < q < 1

(τ = t− q t = (1− q) t ≥ 0) was considered. The first
moments ofx are shown in Fig.3–6.
It is easy to see that the initial set for this equation

consists of one pointx = 0. 3004 linear ODEqs were
numerically integrated at the last step.

4.2 Stochastic Neutral Differential Equations
We consider a full system of equations in the form

ẋ(t) = Pν(t)x(t) + (26)

+Qν1(t)xτ (t) + Hν1(t) ẋτ (t) + ... +

+Qνν(t) xντ (t) + Hνν(t) ẋντ (t) +

+cν(t) + Rν(t) ξ(t), t > tν ;

ẋ(t) = Pν−1(t) x(t) + (27)

+Qν−1,1(t)xτ (t) + Hν−1,1(t) ẋτ (t) +

+ ... + Qν−1,ν−1(t) x(ν−1)τ (t) +

+Hν−1,ν−1(t) ẋ(ν−1)τ (t)+
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m

Figure 7. Time evolution of the mean value for neutral system.

+cν−1(t) + Rν−1(t) ξ(t), tν−1 < t ≤ tν ;

... ... ... ... ... ... ... ...

ẋ(t) = P1(t)x(t) + (28)

+Q11(t) xτ (t) + H11(t) ẋτ (t) +

+c1(t) + R1(t) ξ(t), t1 < t ≤ t2;

ẋ(t) = P0(t)x(t) + c0(t) + R0(t) ξ(t), (29)

t0 < t ≤ t1, x(t0) = x0.

As before, herex ∈ Rn is the phase vector;Pij(t),
Qij(t), Ri(t) andci(t) are known matrix- and vector-
functions;τ = const > 0.
An application of our technique has allowed to obtain

ODEqs for all necessary moments ofx. Notice that a
system of these equations isn’t in a normal form.
To demonstrate the scheme, the simple system

ẋ(t) = −p1 x(t)− q1 x(t− τ)− h1 ẋ(t− τ) +

+r1 ξ(t), t > 0; (30)

ẋ(t) = 0, t ≤ 0; (31)

m(−τ) = m0, D(−τ) = D0.

is under consideration. A form ofm(t) for the system
is shown in Fig.7 (m0 = 5, D0 = 0.25, τ = 0.5,
p1 = q1 = h1 = 1, r1 = 0.4).

4.3 Stochastic Systems under Continuous and Dis-
crete Fluctuations

Our scheme was applied to a difference-differential
system excited by continuous and discrete fluctuations
[Poloskov, 2007a]

ẋ(t) = α(t) x(t) + β(t)x(t) ξ(t) + (32)

+γ(t)x(t− τ) + ν(t)x(t− τ) η(t) +

+r(t), t > t1 = t0 + τ,

ẋ(t) = ᾱ(t) x(t) + β̄(t)x(t) ξ(t) + r(t), (33)

t0 < t ≤ t1, x(t0) = x0,



whereξ(t) andη(t) are independent white noises,r(t)
is a Poisson noise,α(t), β(t), ᾱ(t), β̄(t), γ(t), ν(t)
are known functions. As before, ODEqs of the first
moments were obtained but in contrast to previous re-
sults, a derivation of these Eqs was founded on a chain
of Kolmogorov–Feller Eqs. In the case of absence of
the Poisson noise, such equation has got the following
form:

∂p(x, t)
∂t

=
1
2

∂2
[
β2 x2 p(x, t)

]

∂x2
−

− ∂

∂x

[(
α +

β2

2
)
x p(x, t)

]−µ(t) p(x, t) + (34)

+µ(t)

+∞∫

−∞
w(x− x′, t) p(x′, t) dx′

]
,

p(x, t0) = p0(x), (35)

whereµ(t) is an intensity of jumps,w(·, t) is a function
describing a jump distribution,

+∞∫

−∞
w(x− x′, t) dx′ = 1.

Calculations were produced for a number of values of
parameters and forms of the functionw.

4.4 Stochastic Sensitivity of Linear Dynamic Sys-
tems with Delay

As for study of indicated systems, the technique was
applied to derive equations for the first moments of the
phase vector and its functions of sensitivity with re-
spect to a vector of deterministic parametersπ ∈ Rp

at the pointπ0 for a system in the form

ẋ(t; π) = P(t;π)x(t;π) +

+Q(t; π)x(t− τ ;π) + c(t; π) + (36)

+R(t; π) ξ(t), t > t0 + τ,

ẋ(t; π) = P0(t;π)x(t; π) + (37)

+c0(t; π) + R0(t; π) ξ(t), t0 < t ≤ t0 + τ,

x(t0;π) = x0
0(π) (38)

(π0 is nominal values of parameters).

5 Conclusion
We presented the scheme that was developed to esti-

mate characteristics of stochastic systems effected by
different forms of delays. It is clear that this scheme
can be used for different types of system with afteref-
fect.
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