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Abstract
An observer for a nonlinear biological system —

biomass production in a bioreactor —is proposed. The
specific growth rate is estimated. The key point of the
observer design is finding a solution of a certain partial
differential equation. Conditions guaranteeing existence
of its solution are presented. The solution is approxi-
mated using finite element method. The results are illus-
trated by a numerical example.
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1 Introduction
Observer problem for biological systems form a large

part of practical applications of observer theory. One
reason for this is enormous importance of biotechnol-
ogy in nowadays, the other one being a consequence
of the fact that many systems in biotechnology contain
quantities that cannot me directly measured or, in some
cases, measurement of these quantities is difficult or pro-
hibitively expensive.

Let us mention few examples of observers used for
control of processes in biotechnology. Due to a sheer
number of results we can pick a small number of them.
The first possibility is to use the so-called high-gain ob-
servers. These are in fact linear observers with gain de-
signed sufficiently large to deal with nonlinear systems.
High-gain adaptive observer for a biological system -
waste water treatment - was presented in Čelikovský
et al. (2018) with estimation of the specific growth rate.

Unfortunately, the common drawback of high gain ob-
servers for nonlinear systems is a strong sensitivity to
noise. A discontinuous (sliding-mode) observer was de-
rived in Daaou and Dochain (2017); De Battista et al.
(2010); Vargas et al. (2014) etc. Finally, let us note
Rehák and Papáček (2013) where the nonlinearity was
treated as robustness which, however, allows only a
rough approximation of the nonlinearity. This observer
has a particular feature that it uses a combination of
continuous and discrete measurements. These examples
cover applications of three main directions of the ob-
server theory: robust observers, sliding-mode observers
and high-gain observers. For a thorough overview of ob-
servers for chemical and biological processes, see e.g.
Mohd Ali et al. (2015).

A different approach to state observation of nonlin-
ear systems was proposed by Kazantsis and Kravaris in
Kazantzis and Kravaris (1998), further modified to sys-
tems with delayed measurement in Kazantzis and Wright
(2005). Here, an equation - a counterpart of the Sylvester
equation known from the observer problem of linear sys-
tems - was derived. This equation is a partial differential
equation (PDE) of first order. Originally, expansion of
all expressions into Taylor polynomials and seeking an
approximation of the aforementioned PDE also in the
form of Taylor polynomials was proposed as a viable
method for solution. This method has rather restrictive
assumptions: the approximation is guaranteed to exist if
the linearization of the observed system has all eigenval-
ues in the left complex half-plane or all eigenvalues in
the right half-plane.

This assumption was removed in Sakamoto et al.
(2014) by proposing alternative method for approxima-
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tion of the PDE. This method is based on successive
computation of trajectories of certain system of ordinary
differential equations followed by interpolation of the re-
sults. Observe that this method is based on analogous
method for the solution of the regulator equation aris-
ing from the nonlinear output regulation problem as de-
scribed in Sakamoto and Rehák (2011). This observer
construction was successfully applied to practical con-
trol problems, e.g. in Horibe and Sakamoto (2018).

The regulator equation known from the nonlinear out-
put regulation problem is also a PDE of first order. Solu-
tion of this equation using finite-element method (FEM)
was studied in Rehák and Čelikovský (2008), Rehák
et al. (2009) with proof of existence of FEM approxima-
tion of the solution given in Rehák (2011). As this equa-
tion is closely related to the PDE derived in Kazantzis
and Kravaris (1998), the idea of application of FEM to
the observer problem is straightforward. First attempt
was presented in Rehák, B. (2018), in this case for sys-
tems with delayed measurements.

Let us mention that a related problem - estimation of
parameters of a system - was successfully solved via the
approach using similar PDEs for the case of a biological
system (algae growth) in Papáček et al. (2010); Rehák
et al. (2008). Hence also motivation for our research.

Motivated by the previous positive experience with ap-
plications of the observer design based on Kazantzis and
Kravaris (1998) in connection with a successful applica-
tion of FEM to the solution of PDEs arising from this or
related problems, we propose to adopt this approach to
the observer design to a biological process - to be spe-
cific, to the problem of estimation of the specific growth
rate in a bioreactor.

2 Biomass Growth Equations
The biomass growth in a bioreactor can be described

by the following differential equations (see e.g. De Bat-
tista et al. (2010)):

ẋ =(µ−D(x, t))x, (1)
µ̇ =ρ(x, µ, t). (2)

Equation (1) describes changes in the biomass concen-
tration x dependent on the dilution rate D. The second
equation, Eq. (2) shows how the specific growth rate
changes. The function ρ attains a specific form accord-
ing to the kinetic model used. In most cases, the kinetics
is reformulated using the Monod or Haldane curves: µ is
a function of a variable s given by the equation

ṡ =ρ̄(x, µ(s), t) (3)

where the specific growth rate is expressed as

µ(s) =
µms

ks + s+ s2

ki

(4)

in case of the Haldane curve used in this paper or as

µ(s) =
µms

ks + s
(5)

(called the Monod curve). The parameters µm, ks and
ki are assumed to be known. The biomass concentra-
tion is supposed to be continuously measured, however
the variables µ or s (after using the Monod or Hal-
dane curves) are not measurable. Hence the need for
an observer. Also, the dilution rate it is continuous and
bounded, moreover, this function is known. Naturally,
the biomass concentration is supposed to be strictly pos-
itive.

3 Nonlinear Observer
Consider a nonlinear system (the plant)

ẋ =F (x), x(0) = x0, (6)
y =h(x) (7)

where F : Rn → Rn, h : Rn → R are smooth functions
such that F (0) = 0, h(0) = 0. Equation (7) describes
the output of the plant, the other quantities are supposed
not to be measurable.

For system (6,7) we construct an observer adopting
the approach proposed in Kazantzis and Kravaris (1998).
First, define matrix Ã ∈ Rn×n, a vector b ∈ Rn chosen
so that the pair (Ã, b) is observable. Then, one constructs
mapping Φ : Rn → Rn such that it obeys the following
equation

∂Φ(x)

∂x
F (x) = ÃΦ(x) + bh(x). (8)

Then, the observer for system (6,7) is defined as

˙̂x = F (x̂) + L(x̂)(h(x)− h(x̂)), x̂(0) = x̂0 (9)

with the observer gain L(x̂) defined as

L(x̂) =
(∂Φ(x̂)

∂x̂

)−1
b. (10)

Proposition 3.1. (Kazantzis and Kravaris (1998)) If a
solution of Eq. (8) exists, then the observation error e =
x− x̂ satisfies limt→∞ e(t) = 0.

Remark 3.2. Kazantsis and Kravaris prove existence of
a solution of equation (8) under rather restrictive as-
sumptions: the observed system must be either exponen-
tially stable around the origin or all eigenvalues of the
Jacobi matrix ∂F

∂x (0) have positive real parts. This is
since the proof of existence of a solution of Eq. (8) relies
upon the so-called Lyapunov auxiliary theorem which
was used for construction approximations of Φ by Taylor
polynomials. This restrictive assumption was removed in
Sakamoto et al. (2014) where the solution was found us-
ing an iterative method. FEM was applied to solution of
a related equation in Rehák, B. (2018), under milder as-
sumptions than those required in Kazantzis and Kravaris
(1998).
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To improve numerical properties of the proposed
method, the linear case is treated separately. If there ex-
ist matrices A, C so that system (6,7) is linear, that is

ẋ =Ax, x(0) = x0, (11)
y =Cx, (12)

Eq. (8) attains the form of the Sylvester equation:

Φ̄A = ÃΦ̄ + bC. (13)

Here, Φ̄ ∈ Rn×n is an unknown matrix. Note that for its
solution suffices to assume

max Re eigÃ < min Re eigA. (14)

Let us turn our attention to the original nonlinear prob-
lem. Define matrices A, C as

A =
∂F

∂x
(0), C =

∂h

∂x
(0). (15)

Moreover, denote also the remaining higher-order terms
in F and h by ϕ, κ:

ϕ(x) = F (x)−Ax, κ(x) = h(x)− F (x). (16)

Lemma 3.3. Let A, C, ϕ κ be defined as above, let ma-
trix Ã is chosen so that (14) holds and the pair (Ã, b) is
observable. Let Φ̄ solve Eq. (13) and assume there exists
a smooth function φ : Rn → Rn satisfying

∂φ(x)

∂x
(Ax+ ϕ(x)) = Ãφ(x) + bκ(x)− Φ̄ϕ(x). (17)

Then Φ̄(x) + ϕ(x) solves Eq. (8).

4 Solution of the Nonlinear Equation
Eq. (17) is a partial differential equation of first order

and, moreover, it is of rather unusual form. It must be
solved numerically as, in general, one cannot expect to
be able to find an exact solution analytically.

First issue is that one needs to search the approxima-
tion of the solution of Eq. (17) on a bounded open set
(a domain) Ω ⊂ R2 rather than on the whole Euclidean
space. It is required that this domain contains the ori-
gin: 0 ∈ Ω. Moreover, it is assumed the domain Ω has
Lipschitz boundary: the boundary of the domain Ω (de-
noted by ∂Ω) can be locally described as a graph of a
Lipschitz-continuous function (for every point x′ ∈ ∂Ω
there exists a neighborhood of x′ so that an open subset
of the boundary containing the point x′ can be described
as a graph of a Lipschitz-continuous function).

Existence conditions of a solution of Eq. (17) on a
domain Ω are formulated in Lemma 1.6 in Roos et al.
(1996). For the reader’s convenience, this lemma is re-
peated here as theorems guaranteeing existence of a so-
lution of this type of equations are not easy to find in
literature. As an alternative, the reader can find details in
Rehák (2011); Rehák, B. (2018).

Lemma 4.1. Let Ω ⊂ Rn be a bounded domain with
Lipschitz boundary, 0 ∈ Ω and n(x) be the outward nor-
mal vector defined at the point x ∈ ∂Ω. Assume a > 0,
β ∈ (C1(Ω̄))n and g ∈ L2(Ω).

Let Γ− = {x ∈ ∂Ω|n(x).β(x) < 0}. Further, let there
exists a positive scalar ω > 0 such that

a− 1

2
divβ(x) > ω. (18)

Then equation

β(x)∇ϕ̃(x) + aϕ̃(x) = g(x)

has a unique solution ϕ̃ ∈ L2(Ω) which satisfies ϕ̃(x) =
0, x ∈ Γ−.

As one can see, Lemma 4.1 guarantees existence of a so-
lution for scalar equations. How to apply this lemma to
the two-dimensional equation (17) shows the subsequent
result:

Lemma 4.2. Let Ã = diag(−a1,−a2). Assume the fol-
lowing holds for i = 1, 2:

ai −
1

2
TraceA > 0. (19)

Then there exists a neighborhood of the origin U ⊂ R2

so that condition (18) is satisfied in U .

Proof. First, observe that divβ(x) = TraceA+divϕ(x).
Denote ωi = ai − 1

2TraceA. Moreover, note that all
derivatives of function ϕ are continuous and ∂ϕ

∂x (0) = 0,
there exists a neighborhood of the origin denoted by U
so that for all x ∈ U holds ‖f(x)‖ < ωi. This implies
validity of (18). �

The main result can be summarized as follows

Theorem 4.3. Let Ineq. (14) hold, Ã =
diag(−a1,−a2) and Ω ⊂ R2, 0 ∈ Ω is a bounded
domain such that the following inequality is satisfied:

0 <a1 −
1

2

(
TraceA+ divϕ(x)

)
,

0 <a2 −
1

2

(
TraceA+ divϕ(x)

)
for all x ∈ Ω. Let also Φ̄ solve (13) and
Γ− = {x ∈ ∂Ω|n(x).(Ax+ ϕ(x)) < 0}. Then we infer

1. There exist functions φ1, φ2 ∈ L2(Ω) (uniquely de-
termined), φ1 = 0, φ2 = 0 on Γ−, such that func-
tion φ = (φ1, φ2)T solves (17).

2. The observer gain L defined by (10) with Φ(x) =
Φ̄x + φ(x) is such that observer (9) guarantees
limt→∞ ‖e(t)‖ = 0.
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5 Remarks About the Numerical Approximation of
the Partial Differential Equation

The theorems in the previous section form a basis for a
numerical approximation of the function φ. As a method
of this approximation, FEM was chosen thanks to its
good approximation properties as well as availability of
software capable of handling such problems.

The boundary conditions cause some undesired error.
Fortunately, as numerical experiments show, if the mesh
covering the domain Ω is sufficiently fine, this error is
concentrated on a small area around the boundary. An-
other issue crucial for the precision of the results is suf-
ficiently fine discretization in the area around the origin.

Note that since matrix T is invertible, as follows from
properties of the Sylvester equation (see Birkhoff and
Lane (2017)), inversion (T + ∂φ

∂x (x̂))−1 at the origin al-
ways exists as ∂φ

∂x (0) = 0. Nevertheless, invertibility of
the expression (T + ∂φ

∂x (x̂))−1 for x̂ 6= 0 is not guaran-
teed. Even if this matrix is nonsingular but the condition
number of this matrix is small, computation of the ob-
server gain is difficult.

As a remedy, a modified term was used in place of the
inversion of the matrix (T + ∂φ

∂x (x̂)). Let us define

T ′(x̂) = (T +
∂φ

∂x
(x̂))T (T +

∂φ

∂x
(x̂)).

Then, matrix T ′ is symmetric positive definite, hence its
eigenvalues are positive. Denote by u(x̂) the eigenvec-
tor corresponding to the smallest eigenvalue of T ′(x̂).
Choose also a parameter δ > 0. Then, the new observer
gain is given by

L′(x̂) =
(
T ′(x̂)+δu(x̂)uT (x̂)

)−1
(T+

∂φ

∂x
(x̂))b. (20)

Note that if δ = 0 then L′ = L.
Let us comment how to choose the matrix Ã. If its

eigenvalues are too close to eigenvalues of matrix A, the
observer will not be fast enough. On the other hand,
eigenvalues with too large absolute values of their real
parts will cause other problems. As known, the observer
will be acting too fast, resulting in high sensitivity to
noise. Moreover, the matrix T might have a small norm,
thus small changes in the term ∂φ

∂x lead to large changes
of the expression (T + ∂φ

∂x (x̂))−1 so that even the afore-
mentioned method might not be sufficient. Moreover,
this property results in the requirement of a precise ap-
proximation of the function φ, hence the mesh must be
very fine. This in turn poses high demands on the com-
putational resources.

6 Example
The example is as in the paper De Battista et al. (2010).

The system (1,2) is rewritten using the Haldane curve
and dilution rate

D(x, t) = 0.007223x (21)

in the form

ẋ =
µmsx

ks + s+ s2

ki

− 0.007223x2, (22)

ṡ =− ysµms

ks + s+ s2

ki

− 0.007223(si − s)x. (23)

The values of the parameters were chosen as in De Bat-
tista et al. (2010). For the reader’s convenience, we re-
peat them here in the following table.

µm = 0.22,

ks = 0.14,

ki = 0.4,

ys = 1.43,

si = 20.

The dilution rate is chosen so that system (22,23) has
equilibria xe = 13.84, se = 0.1996. The output equa-
tion is y = x, hence C = (1, 0). Linearization around
the equilibrium point (xe, se) yields matrix A as

A =

(
−0.1000 0.6307

0 −1.002

)
.

Observer is designed using parameters

Ã =

(
−7 0
0 −8

)
, b =

(
1
1

)
.

Solution of the linear equation (13) can be evaluated as

Φ̄ =

(
0.1449 −0.0152
0.1266 −0.0114

)
.

The function φ was approximated using finite elements
on the domain of elliptical shape with center at the equi-
librium (13.84, 0.1996) and semiaxes parallel to coor-
dinate axes. The length of the semiaxis parallel to the
x-axis is 1, semiaxis parallel to the y-axis is 0.15. Tra-
jectories of the simulated system must then remain in
this domain.

The approximation of PDE (17) was computed using
the software Comsol Multiphysics. Advantage of this
software is providing not only the values of the solution
φ(x, s) but also its first derivatives. As these are needed
for the observer construction, this is a facilitation of the
observer implementation. The resulting functions φ1 and
φ2 are depicted in Figs. 1 and 2, respectively.

Results of simulations can be seen in the following fig-
ures. Fig. 3 illustrates the state s (solid line) and its
estimate obtained by the aforementioned nonlinear ob-
server (dashed line). The observer gain L was replaced
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Figure 4. Norm of the observation error, Ã = diag(−7,−8)
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Figure 1. Function φ1, Ã = diag(−7,−8)
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Figure 2. Function φ2, Ã = diag(−7,−8)

by the gain L′ with a parameter δ = 0.0002. For a com-
parison, dotted line represents the estimate obtained by
a linear observer with observer gain L = Φ̄−1b. One
can see that the linear observer has a much larger ini-
tial undershoot. This is also visible in Fig. 4 where the
norm of the observation error of both observers is de-
picted. The solid line stands for the nonlinear observer
while the dashed line represents the linear observer. We
can see faster response of the nonlinear observer.
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Figure 3. State s and its estimate, Ã = diag(−7,−8)

Let us compare the behavior of the system in case of
two different matrices Ã: consider now

Ã =

(
−4 0
0 −5

)
.

The state s in this case is shown in Fig. 5, the norm of
estimation error is in Fig. 6. We can see a smaller initial
undershoot but the price for this is a slower convergence.
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7 Conclusion and Outlook
An observer for a biological system was presented.

The goal was to estimate the specific growth rate. The
main problem was a solution of a partial differential
equation, this was carried out using the finite element
method. Results are illustrated by a numerical example.

For the future work, observers with delay will be in-
vestigated as well as observers depending on a param-
eter. Also, the results of the present research will be
used for synchronization in complex networks (Lynnyk
et al. (2019)), multi-agent systems (Rehák and Lynnyk
(2019)) and robotics (Anderle and Čelikovský (2017)).
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