SWITCHED SINGULAR LINEAR SYSTEMS AND REACHABILITY

J. Clotet
Dep. Matemàtica Aplicada I
Universitat Politècnica de Catalunya
Spain
josep.clotet@upc.edu

M.D. Magret
Dep. Matemàtica Aplicada I
Universitat Politècnica de Catalunya
Spain
maria.dolors.magret@upc.edu

Abstract

We consider switched singular linear systems and conditions for such a system to be reachable/controllable in the cases where some hypotheses hold.

Key words

Switched linear system, controllability.

1 Introduction

Switched singular linear systems arise from various fields such as electrical and electronic engineering, aeronautical or automotive. [Sun and Ge, 2005] is a nice and complete survey on these systems. A very complete survey of the methods which are required to study singular systems (traditional approaches are not suitable for their study) is [Dai, 1989] . Switched singular linear systems have been studied by B. Meng and F.J. Zhang ([Meng and Zhang, 2006], [Meng and Zhang, 2007]), who provided necessary conditions and sufficient conditions for reachability.
Our goal is, under the assumption of some special conditions, the algebraic characterization of reachability.

2 Preliminaries

First, we recall the concept of switched singular linear systems.

Definition 2.1. A switched singular linear system Σ is a system which consists of several linear singular subsystems and a piecewise constant map σ taking values into the index set M which determines the switching between them.

In the continuous case, such a system can be mathematically described by

$$
\left\{\begin{aligned}
E_{\sigma} \dot{\mathbf{x}}(t) & =A_{\sigma} \mathbf{x}(t)+B_{\sigma} u(t) \\
\mathbf{y}(t) & =C_{\sigma} \mathbf{x}(t)
\end{aligned}\right.
$$

where $E_{\sigma}, A_{\sigma} \in M_{n}(\mathbb{R}), B_{\sigma} \in M_{n \times m}(\mathbb{R}), C_{\sigma} \in$ $M_{p \times n}(\mathbb{R})$, rk $E_{\sigma}<n$.

Definition 2.2. Given an initial time t_{0}, a switching path is a function of time $\theta:\left[t_{0}, T\right) \longrightarrow M$, with $t_{0}<T \leq \infty$ and the index set $M=\{1, \ldots, \ell\}$.

In the continuous-time case, two switching paths θ_{1} and θ_{2} over $\left[t_{0}, T\right)$ are said to be indistinguishable if the time set

$$
\left\{t \in\left[t_{0}, T\right) \mid \theta_{1}(t) \neq \theta_{2}(t)\right\}
$$

is a set of isolated real numbers.
Definition 2.3. A switching path θ is said to be welldefined on $\left[t_{0}, T\right)$ if it is defined on $\left[t_{0}, T\right)$ and for all $t \in\left[t_{0}, T\right)$, both $\lim _{s \longrightarrow t^{+}} \theta(s)$ and $\lim _{s \longrightarrow t^{-}} \theta(s)$ exist and the set

$$
\left\{t \in\left[t_{0}, T\right) \mid \lim _{s \longrightarrow t^{+}} \theta(s) \neq \lim _{s \longrightarrow t^{-}} \theta(s)\right\}
$$

is finite for any finite sub-interval of $\left[t_{0}, T\right)$ (in the case where $t=t_{0}$, we will consider $\left.\lim _{s \longrightarrow t_{0}^{-}} \theta(s)=\theta\left(t_{0}\right)\right)$.

Time $t \in\left(t_{0}, T\right)$ such that $\lim _{s \longrightarrow t^{+}} \theta(s) \neq \lim _{s \longrightarrow t^{-}} \theta(s)$ is called a switching time. Let $t_{1}, t_{2}, \ldots, t_{\ell}$ be the ordered switching times of θ. The sequence of ordered pairs

$$
\left\{\left(t_{0}, \theta\left(t_{0}^{+}\right)\right),\left(t_{1}, \theta\left(t_{1}^{+}\right)\right), \ldots,\left(t_{\ell}, \theta\left(t_{\ell}^{+}\right)\right)\right\}
$$

is said to be the switching sequence of θ over $\left[t_{0}, T\right)$. Note that a switching sequence $\left\{\left(t_{i}, k_{i}\right)\right\}_{i=0}^{\ell}$ uniquely determines a switching path (up to possibly rearranging the value at the switching times) by the re-
lationship:

$$
\theta(t)= \begin{cases}k_{0} & t \in\left[t_{0}, t_{1}\right) \\ k_{1} & t \in\left[t_{1}, t_{2}\right) \\ \vdots & \\ k_{\ell} & t \in\left[t_{\ell}, T\right)\end{cases}
$$

3 Our set-up

We will assume from now that $M=\{1,2\}$ (an analogous reasoning might be applied to the case of more subsystems) and that the matrix pencils $\lambda E_{1}+A_{1}$, $\lambda E_{2}+A_{2}$ are regular and in the form

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{ll}
I_{n_{1}} & \\
& \mathcal{N}_{1}
\end{array}\right), A_{1}=\left(\begin{array}{ll}
G_{1} & \\
& I_{n-n_{1}}
\end{array}\right) \\
& E_{2}=\left(\begin{array}{ll}
I_{n_{2}} & \\
& \mathcal{N}_{2}
\end{array}\right), A_{2}=\left(\begin{array}{ll}
G_{2} & \\
& I_{n-n_{2}}
\end{array}\right)
\end{aligned}
$$

where $\mathcal{N}_{1}, \mathcal{N}_{2}$ are nilpotent matrices with nilpotent indices h_{1}, h_{2}. Let us denote by h the maximum of these nilpotent indices. We will finally assume that the function $u(t)$ is a h times piecewise continuous differentiable function.
We will write

$$
B_{1}=\binom{B_{1,1}}{B_{1,2}}, B_{2}=\binom{B_{2,1}}{B_{2,2}}
$$

Then we introduce the following notation, for $i=$ 1,2 :

$$
\bar{G}_{i}=\left(\begin{array}{rr}
G_{i} & 0 \\
0 & 0
\end{array}\right) \in M_{n}(\mathbb{R})
$$

Let us denote by $\Phi\left(t, t_{0}, x_{0}, u, \sigma\right)$ the state trajectory at time t of the continuous-time switched singular linear system Σ starting from t_{0} with initial value x_{0}, input u and switching well-defined path σ.

4 Reachable states

Let us remember the notion of reachability.
Definition 4.1. System Σ is (completely) reachable if for any given initial time $t_{0} \in \mathbb{R}$ and state $x_{f} \in \mathbb{R}^{n}$, there exists a real number $t_{f}>t_{0}$, a switching welldefined path $\sigma:\left[t_{0}, t_{f}\right] \longrightarrow M=\{1,2\}$ and an input $u:\left[t_{0}, t_{f}\right] \longrightarrow \mathbb{R}^{m}$, such that:

1. $\left(I_{n_{i}} \mid 0\right) x_{f}=\left(I_{n_{i}} \mid 0\right) \Phi\left(t_{f}, t_{0}, 0, u, \sigma\right), \quad i=$ $\lim _{s \longrightarrow t_{f}^{-}} \sigma(s)$.
2. $\left(0 \mid I_{n-n_{i}}\right) x_{f}=-\sum_{j=0}^{h-1} \mathcal{N}_{i}^{j} B_{i, 2} u^{(j)}\left(t_{f}\right), \quad i=$ $\lim _{s \longrightarrow t_{f}^{-}} \sigma(s)$.

5 A previous result

In [Clotet, Ferrer and Magret, 2009], the authors determined the space of controllable and the space of reachable states and characterized (completely) controllable and (completely) reachable switched singular systems satisfying the "equisingularity condition" ($n_{1}=n_{2}$).
Theorem. (see [Clotet, Ferrer and Magret, 2009]) For system Σ, the following conditions are equivalent:
(a) Σ is (completely) controllable.
(b) Σ is (completely) reachable.
(c) $\mathbb{R}^{n}=\Re \oplus<\mathcal{N}_{1} \mid B_{1,2}>\quad$ or $\mathbb{R}^{n}=\Re \oplus<$ $\mathcal{N}_{2} \mid B_{2,2}>$.
where $\Re=\sum_{p=1}^{n_{1}} \Re_{p}$, being

$$
\begin{aligned}
\Re_{1}= & \operatorname{Im}\left[B_{1,1}, B_{2,1}\right] \\
\Re_{2}= & \Re_{1}+G_{1} \Re_{1}+G_{2} \Re_{1}+\cdots+ \\
& G_{1}^{n_{1}-1} \Re_{1}+G_{2}^{n_{1}-1} \Re_{1} \\
\ldots & \\
\Re_{p+1} & =\Re_{p}+G_{1} \Re_{p}+G_{2} \Re_{p}+\ldots \\
& +G_{1}^{n_{1}-1} \Re_{p}+G_{2}^{n_{1}-1} \Re_{p}
\end{aligned}
$$

6 Characterization of reachable states

Let us define

$$
\begin{aligned}
& \mathcal{V}_{1}=\left(<\bar{G}_{1} \mid B_{1}>\oplus\left(\{0\} \times<\mathcal{N}_{1} \mid B_{1,2}>\right)\right)+ \\
&\left(<\bar{G}_{2} \mid B_{2}>\oplus\left(\{0\} \times<\mathcal{N}_{2} \mid B_{2,2}>\right)\right)
\end{aligned}
$$

where $<\bar{G}_{i} \mid B_{i}>(i=1,2)$ is the vector subspace spanned by

$$
\left(\begin{array}{rr}
I_{n_{i}} & 0 \\
0 & 0
\end{array}\right) B_{i},\left(\begin{array}{rr}
G_{i} & 0 \\
0 & 0
\end{array}\right) B_{i},\left(\begin{array}{cc}
G_{i}^{2} & 0 \\
0 & 0
\end{array}\right) B_{i}, \ldots
$$

and $<\mathcal{N}_{i} \mid B_{i, 2}>(i=1,2)$ is the vector subspace spanned by $B_{i, 2}, \mathcal{N}_{i} B_{i, 2}, \ldots, \mathcal{N}_{i}^{h-1} B_{i, 2}$.
Similarly, for $k>1$,

$$
\begin{aligned}
\mathcal{V}_{k}=(< & \left.\bar{G}_{1} \mid \mathcal{V}_{k-1}>\oplus\left(\{0\} \times<\mathcal{N}_{1} \mid B_{1,2}>\right)\right)+ \\
& \left(<\bar{G}_{2} \mid \mathcal{V}_{k-1}>\oplus\left(\{0\} \times<\mathcal{N}_{2} \mid B_{2,2}>\right)\right)
\end{aligned}
$$

where $<\bar{G}_{i} \mid \mathcal{V}_{k-1}>(i=1,2)$ is the vector subspace spanned by
$\left\{\left(\begin{array}{cc}I_{n_{i}} & 0 \\ 0 & 0\end{array}\right) v,\left(\begin{array}{cc}G_{i} & 0 \\ 0 & 0\end{array}\right) v,\left(\begin{array}{cc}G_{i}^{2} & 0 \\ 0 & 0\end{array}\right) v, \ldots \mid v \in \mathcal{V}_{k-1}\right\}$
Note that $\mathcal{V}_{1} \subseteq \mathcal{V}_{2} \subseteq \cdots \subseteq \mathcal{V}_{n_{0}}=\mathcal{V}_{n_{0}+1}=\ldots$ where $n_{0}=\max \left\{n_{1}, n_{2}\right\}$.
B. Meng and F.J. Zhang found necessary and sufficient conditions for a switched singular linear system to be (completely) controllable / (completely) reachable. Concretely, they obtained (adapted to our case) the following results.
Theorem. ([Meng and Zhang, 2007]) For system Σ,
(a) if Σ is (completely) controllable then $\mathcal{V}_{n}=\mathbb{R}^{n}$.
(b) if Σ is (completely) reachable, then $\mathcal{V}_{n}=\mathbb{R}^{n}$.

Theorem. ([Meng and Zhang, 2007]) For system Σ,
(a) if $\mathcal{V}_{n}=\mathbb{R}^{n}$ and $<\mathcal{N}_{i} \mid B_{i, 2}>=\mathbb{R}^{n-n_{i}}$ for all $i \in M$, then Σ is (completely) controllable.
(b) if $\mathcal{V}_{n}=\mathbb{R}^{n}$ and $<\mathcal{N}_{i} \mid B_{i, 2}>=\mathbb{R}^{n-n_{i}}$ for all $i \in M$, then Σ is (completely) reachable.

The main result is the following one.
Theorem 6.1. Let us assume that $\mathcal{V}_{1}=\mathbb{R}^{n}$ and there exists $i_{0} \in M$ such that $<\mathcal{N}_{i_{0}} \mid B_{i_{0}, 2}>=\mathbb{R}^{n-n_{i_{0}}}$. Then the switched singular linear system Σ is (completely) reachable.

Proof. For a given switching sequence

$$
\sigma=\left\{t_{i}, i+1\right\}_{i=0}^{1}, t_{0}<t_{1}<t_{2}
$$

we consider

$$
\mathcal{R}_{i}=\left\{x=\Phi\left(t_{i}, t_{0}, 0, u, \sigma\right) \mid u:\left[t_{0}, t_{2}\right] \longrightarrow \mathbb{R}^{m}\right\}
$$

$1 \leq i \leq 2$.
Let $\ell_{i}=t_{i}-t_{i-1}, i=1,2$. Then

$$
\mathcal{R}_{1}=<G_{1}\left|B_{1,1}>\oplus<\mathcal{N}_{1}\right| B_{1,2}>
$$

according to [Dai, 1989]. On the other hand,

$$
\mathcal{R}_{2}=\binom{e^{G_{2} \ell_{2}}\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1}+<G_{2} \mid B_{2,1}>}{<\mathcal{N}_{2} \mid B_{2,2}>}
$$

because \mathcal{R}_{2} is the set

$$
\left\{x=\binom{x_{1}(u, \sigma)}{x_{2}(u)}, u:\left[t_{0}, t_{2}\right] \longrightarrow \mathbb{R}^{m}\right\}
$$

where $x_{1}(u, \sigma)$ is $e^{G_{2} \ell_{2}}\left(I_{n_{2}} \mid 0\right) \Phi\left(t_{1}^{-}, t_{0}, 0, u, \sigma\right)+$ $\int_{t_{1}}^{t_{2}} e^{G_{2}\left(t_{2}-\tau\right)} B_{2,1} u(\tau) d \tau$, and
$x_{2}(u)=-\sum_{j=0}^{h-1} \mathcal{N}_{2}^{j} B_{2,2} u^{(j)}\left(t_{2}\right)$. Then \mathcal{R}_{2} is equal to

$$
\begin{gathered}
\left(e^{G_{2} \ell_{2}}\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1}+<G_{2} \mid B_{2,1}>\right) \oplus<\mathcal{N}_{2} \mid B_{2,2}> \\
\left.=\binom{I_{n_{2}}}{0} e^{G_{2} \ell_{2}}\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1}+\binom{I_{n_{2}}}{0}<G_{2} \right\rvert\, B_{2,1}> \\
\left.+\binom{0}{I_{n-n_{2}}}<\mathcal{N}_{2} \right\rvert\, B_{2,2}>
\end{gathered}
$$

Using a Lemma by Meng-Zhang, the dimension of \mathcal{R}_{2} is greater or equal than

$$
\begin{aligned}
& \operatorname{dim}\left(\left.\binom{I_{n_{2}}}{0}\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1}+\binom{I_{n_{2}}}{0}<G_{2} \right\rvert\, B_{2,1}>\right. \\
& \left.\left.\quad+\binom{0}{I_{n-n_{2}}}<\mathcal{N}_{2} \right\rvert\, B_{2,2}>\right) \\
& =\operatorname{dim}\left(\left(\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1}+<G_{2} \mid B_{2,1}>\right) \oplus<\mathcal{N}_{2} \mid B_{2,2}>\right) \\
& =\operatorname{dim}\left(\left(\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1} \oplus<\mathcal{N}_{2} \mid B_{2,2}>\right)\right. \\
& \left.\quad+\left(<G_{2}\left|B_{2,1}>\oplus<\mathcal{N}_{2}\right| B_{2,2}>\right)\right)
\end{aligned}
$$

Since $\mathcal{R}_{1} \subseteq\left(\left(I_{n_{2}} \mid 0\right) \mathcal{R}_{1} \oplus<\mathcal{N}_{2} \mid B_{2,2}>\right)$ (MengZhang),

$$
\begin{aligned}
\operatorname{dim} \mathcal{R}_{2} \geq & \operatorname{dim}\left(\mathcal{R}_{1}+\left(<G_{2}\left|B_{2,1}>\oplus<\mathcal{N}_{2}\right| B_{2,2}>\right)\right) \\
= & \operatorname{dim}\left(\left(<G_{1}\left|B_{1,1}>\oplus<\mathcal{N}_{1}\right| B_{1,2}>\right)\right. \\
& \left.\quad+\left(<G_{2}\left|B_{2,1}>\oplus<\mathcal{N}_{2}\right| B_{2,2}>\right)\right) \\
= & \operatorname{dim} \mathcal{V}_{1}=n
\end{aligned}
$$

Therefore, $\mathcal{R}_{2}=\mathbb{R}^{n}$ and Σ is (completely) reachable.

7 Conclusion

In this paper a similar characterization of reachable switched singular linear systems to that in [Clotet, Ferrer and Magret, 2009] is obtained. Note that the hypothesis of "equisingularity" in [Clotet, Ferrer and Magret, 2009] is no longer in the statement. The controls are not assumed to be in the set of admissible controls, as in [Meng and Zhang, 2006].

8 Acknowledgements

This work was partially supported by MTM2010-19356-C02-02.

References

Clotet, J., Ferrer, J., Magret, M. D. (2009) in Switched singular linear systems. Proceedings of the 17th Mediterranean Conference on Control and Automation. Thessaloniki, Greece, Jun. 24-26, pp. 13431347.

Dai, L. (1989). Singular Control Systems. Springer. New York.
Meng, B., Zhang, F. J. (2006) Reachability conditions for switched linear singular systems IEE Trans. Autom. Control, 51-3, pp. 482-488.
Meng, B., Zhang, F. J. (2007) Controllability conditions for switched linear singular systems Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications \& Algorithms, 14, pp. 641-657.
Sun, Z., Ge, S. S. (2005). Switched Linear Systems. Springer. London.

