
Design and implementation of coupled chaotic

maps in watermarking

S. Behnia a,∗, S. Ahadpour b, P. Ayubi c,

aDepartment of Physics, IAU, Urmia, Iran.
b Department of Physics, Mohaghegh Ardabili University, Ardabil, Iran.

c Department of computer, IAU, Iran.

Abstract

We propose a multidimensional coupled chaotic map as a pseudo random number
generator. Based on the introduced dynamical systems, a robust watermark scheme
for copyright protection is proposed. By modifying the original image in transform
domain and embedding a watermark in the difference values between the original
image, the proposed scheme overcomes the weak robustness problem of embedding a
watermark in the spatial domain. Besides, the watermark extraction does not require
the original image so, it is more practical in real applications. This algorithm tries
to improve the problem of failure of encryption in small key space, encryption speed
and level of security.
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1 Introduction

The development of compression technology allows the widespread use of
multimedia applications. Protection of multimedia information, especially its
copyright, is of extensive interest. There is a strong need to keep the distri-
bution of digital multimedia works profitable for the owner as well as reliable
for the customer. In this way, digital watermarking emerges as one possible
and popular solution. Watermarking, also called tamper-proofing or content
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verification, hides a secret and personal message to protect the copyright or to
demonstrate the data integrity. In contrast with cryptography, which immedi-
ately arouses suspicion of something secret or valuable, the watermark hides a
message within digital media without noticeable changes to the host. The ma-
jority of watermarking schemes proposed to date, use watermarks generated
from pseudo random number sequences [13]. Chaotic functions such as Markov
Maps, Bernoulli Maps, Skew Tent Map, Logistic Map have been widely used
to generate watermark sequences [3,20,21]. These types of watermark genera-
tion schemes require two values,( the initial value and the function seed), to
recreate the same watermark at a later stage. An advantage of these water-
marks is the possibility to analyze and control their spectral properties. In
this paper, we concentrated on the security (key space) [9,16].
We propose a secure watermarking scheme based on spatiotemporal chaos.
In order to enhance the security, spatiotemporal chaos is employed to select
the embedding positions for each watermark bit and for watermark encryp-
tion. In this article, a watermarking algorithm based on a multidimensional
coupled chaotic map is proposed. The dimension of the introduced dynamical
system by considering the level of the security selected, also the extra dimen-
sion can be used to apply many logo in watermarking process. We have also
verified that the proposed scheme is robust against various attacks using com-
mon signal processing and geometric transformations. The rest of the Letter
is organized as follows. Section 2 describes chaotic maps and the location of
embedding position of watermark. Section 3 presents the synchronization con-
dition and the ergodicity of the introduced model, Also the chaotic domain
of the introduced model studied via Lypaunov exponents in order to generate
the key space. The watermarking scheme based on chaotic maps is proposed
in Section 4. Also, the selected example and simulation results are discussed
in Section 4 and Section 5. Section 6 concludes the Letter.

2 Definition of model

The chaotic sequences exhibit some important characteristics. Some chaotic
maps such as Logistic and Chebyshev maps can produce white-noise-like se-
quences whatever the controlling parameter takes [16,6,17]. For enhancing the
security of discrete chaotic watermarking we introduce for the first time, the
concept of using multidimensional coupled chaotic map with an invariant mea-
sure in watermarking [12]. Some points make this new watermark distinctive
and advantageous compared to the other schemes.

• A very large number of fully developed chaotic maps defined in two intervals
xε[0, 1] and xε[0, 1).

• High complexity due to high dimensionality and chaoticity.
• Large key space; It is obvious that the attack complexity is determined by
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the size of the key space and the complexity of the verification of each key.
• The flexibility of attributing different values to the control parameters and

coupling parameter.

The multidimensional coupled chaotic map can be defined as:

Φ =





X1 = F (x1, ..., xn) = ε1f1(x1) + ε2f2(x2) + ... + εNfN(xN)
...

XN = F (x1, ..., xn) = ε1f1(xN) + ε2f2(x1) + ... + εNfN−1(xN−1)

(1)

where, ε is the strength of the coupling {ε1 + ... + εn = 1}. We introduce
our map ensemble {f} based on the one-parameter families of chaotic maps
ΦN(x, α) of the interval [0, 1] with an invariant measure, which can be defined
as the ratio of polynomials of degree N (See Appendix A ). Obviously, We have
a multidimensional dynamical system associated with the coupled map with
the property of possessing an invariant measure at synchronized state [12,11].

3 Key space

key space could be generated by considering the initial condition, coupling
and control parameter. Many properties of the chaotic systems have their
corresponding counterparts in traditional cryptosystems, such as: ergodicity
and confusion, sensitivity to initial conditions, control parameter, and diffu-
sion [19,18]. Here in this section we study the ergodicity condition by regard-
ing the invariant measure and the chaotic domain for coupled map studied
by lyapunov exponent. By transfer the multidimensional coupled chaotic map
to chaotic domain the key space arranged. One possibility to have a ergodic
coupled map is to synchronize the model.
Synchronization of two (or more) chaotic dynamical systems (starting with
different initial conditions) means that their chaotic trajectories remain in
step with each other during the temporal evolution. In this field, the key con-
cept of complete synchronization refers to a state where the trajectories of
dynamical systems approach each other[2,22]. In this study, we introduce the
system has fast speed and robust synchronization properties.

3.1 Invariant measure

For multidimensional coupled chaotic map, we have tried to describe ergodicity
from the invariant measure point of view [10,7]. The measure which describes
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the ergodic properties with respect to the typical initial conditions is usually
called SRB measure [10,8]. The difficulty in proving rigorously that a given
coupled map exhibits spatio-temporal chaos lies in the finding of such an SRB
measure. Each symmetric transformation for generic model Eq. (1) should be
satisfying in the invariant measure. The suitable condition for the presenta-
tion of the invariant measure of the synchronized coupled map is choosing
a one-dimensional map with an invariant measure as we introduced in our
previous work [12]. We could rewrite the Frobenius-Perron (FP) integral for
multidimensional coupled chaotic map as follows [10,8]:

µ(x1(n+1), ..., xN(n+1)) =
∫

dx1...
∫

dxNδ (x1(n + 1)− F1(x1(n), ..., xN(n)))

...δ(xN(n + 1)− FN(x1(n), ..., xN(n)))µ(x1(n), .., xN(n)),

We will show that the invariant measure at synchronized state has the follow-
ing form:

µ(x1, ..., xN) = δ(x2 − x1)....δ(xN − x1)µ(x1) (2)

Relation 2 shows invariance under the permutation of synchronization coor-
dinate (x1, x2, ...), therefore, The measure is invariant at transverse direction
and the stable direction follows µ(x1). By considering the complete synchro-
nization condition in (FP) integral for multidimensional coupled chaotic map:

µ =
∫

dx1..
∫

dxN δ (x1(n + 1)− F1(x1(n), .., xN(n))) δ(xN(n+1)−FN(x1(n), .., xN(n)))

×δ(x2(n)− x1(n))....δ(xN(n)− x1(n))µ(x1),

which reduces to:

µ = δ(x2(n + 1)− x1(n + 1))..., δ(xN(n + 1)− x1(n + 1))

×
∫

dx1δ(x1(n + 1)− F1(x1(n), .., x1(n)))µ(x1(n)),

Now, if the one-dimensional map x(n + 1) = F (x1(n), ..., x1(n)) possesses the
invariant measure µ(x1(n)), that is, it satisfies:

µ(x(n + 1)) =
∫

δ(x(n + 1)− F (x1(n), ..., x1(n))dµ(x1), (3)

Then, we have:

µ(x1(n + 1), ..., xN(n + 1)) =

δ(x1(n + 1)− x2(n + 1)), ..., δ(xN(n + 1)− x1(n + 1))µ(x1(n + 1)). (4)
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3.2 Lyapunov exponent spectra

The following properties make a deterministic algorithm suitable to generate
a pseudo random sequence of numbers: high value of entropy, high dimension-
ality of the parent dynamical system, and very large period of the generated
sequence [15,14,5]. There is a close correlation between the Lyapunov expo-
nent of the underlying chaotic map and the “randomness”. Since randomness
is desired to be seen on a random number generator clearly, it must be cor-
related to the diverging nature of the trajectories of a chaotic map, which is
tied to the existence of a positive Lyapunov exponent.
A spectrum of all the Lyapunov exponents with respect to the synchroniza-
tion solution, can be evaluated in a fashion similar to that of one-dimensional
local maps [11,10]. At synchronized state, the Lyapunov exponents Λk of mul-
tidimensional coupled chaotic map described by the Eq. (1) are defined as,
limn−→∞ 1

n
|λk(x1, ..., xN)|, where λk =

∑N
k=1 hk(x1, ..., xN) are eigen states of

the matrix:




∂

n︷ ︸︸ ︷
FoFo...F (x1(0),...,xN (0))

∂x1(0)
... ∂

n︷ ︸︸ ︷
FoFo...oF (x1(0),...,xN (0))

∂xN (0)
...

∂

n︷ ︸︸ ︷
FoFo...F (xN (0),..,xN−1(0))

∂x1(0)
... ∂

n︷ ︸︸ ︷
FoFo...F (xN (0),..,xN−1(0))

∂xN (0)



|x1(0)=,...,=xN (0)

=




∂X1

∂x1
... ∂X1

∂xN

...

∂XN (k)
∂xN

... ∂XN

∂xN−1



|x1=...=xN

=




h1(x1, ..., xN) h2(x1, ..., xN) ... hN(x1, ..., xN)

h2(x1, ..., xN) h3(x1, ..., xN) ... h1(x1, ..., xN)
...

hN(x1, ..., xN) h1(x1, ..., xN) ... hN−1(x1, ..., xN)




and xk =

k︷ ︸︸ ︷
FoFo..F (x0, x0, ..., x0). Now, in the case of ergodic one-dimensional

map X = F (x, x, ...x), the Lyapunov exponents can be written as:

Λk(syn) = lim
n→∞

1

n
ln |λk(xn)|

= lim
n→∞

1

n
ln |λk(

n︷ ︸︸ ︷
FoFo..F (x10 , x10 , ..., x10))| = lim

n→∞
1

n

n∑

k=0

ln(|
N∑

i=1

hi(x1k
, ..., xNk

)|)

Λk(syn) =
∫

dxµ(x) ln(|
N∑

i=1

hi(x10 , ..., xN0)|). (5)
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Therefore, the ergodicity of one-dimensional map X = F (x, x, ..., x) implies
the ergodicity of symmetric multidimensional coupled chaotic map ( Eq. (1) )
at unstable synchronized state ( synchronized state is stable for negative crit-
ical exponent Λk). Obviously, the non-ergodic choice of X = F (x, x, ..., x) will
lead to the non-ergodicity at synchronized state. There is a close correlation
between the Lyapunov exponent sign of the maps and the efficiency of the
extracted data in forming a good set of pseudo random numbers.

4 Watermark embedding and extraction

Watermark provides a natural link between chaotic dynamics and informa-
tion theory on which, the recent idea of utilizing chaotic systems in encoding
digital information is based. The proposed Watermarking consists of multidi-
mensional coupled chaotic maps which are used along with a single chaotic
map.
In order to clarify the performance of the introduced model (Eq. (1)) in wa-
termarking process by considering our improved model of logistic map [12],
the simple two-dimensional model for watermarking is built, as follows. At
synchronized state x1 =, ..., = xN = x, the coupled map Eq. (2) regarding
(A.4), reduces to:

X = F (x, ..., x) = ā(ε1, ..., εN , a1, ..., aN) tan2(N arctan(
√

x)) (6)

with ā(ε, a1, a2, ..., aN) = (
∑N

i=1 εiai). As it is shown in (See Appendix B), this
map possess the invariant measure of the following form:

µ(x1, x2, ..., xN) = δ(x2 − x1)...δ(xN − x1)

√
β√

x(1 +
√

βx)
. (7)

provided that we choose the constant β as one of the positive roots of the
following equation:

ā(ε1, ε2, ..., εN , a1, a2, .., aN) =




∑[N
2

]

k=0 CN
2kβ

−k

∑[N−1
2

]

k=0 CN
2k+1β

−k




2

(8)

In our introduced example, the Lyapunov exponents are (See Appendix B):

Λk = lim
n→∞

1

n
ln |λk(x1,k, ..., xN,k)|
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= ln |(1− ε)a1 − εa2|+ ln |
N∑

k=1

εkω
k−1ak|+ Λ

[
(

N∑

k=1

εkak)g
′(x1,k, ..., xN,k)

]
(9)

Noting N = 2, Eq. (6) reduces to the following two-dimensional chaotic maps:

X = F (x, x) = ā(ε, a1, a2) tan2(2 arctan(
√

x)). (10)

which is used in watermarking process. The last part of the encryption is
followed by:

X =
1

a2
3

tan2(2 arctan
√

x). (11)

At the second stage, we select the key. A positive way to describe the key
space [4] might be in terms of positive Lyapunov exponents. Since it was
proved that the introduced map has an invariant measure, by refereing to
analytically calculated Lyapunov exponents, we select a suitable control pa-
rameter domain for the key space (see Fig. 1(a) and (b)). Key space size in
our introduced example, (Eqs. (10) and (11)) consists of coupling parameter
and three-control parameters and three initial conditions.
Watermark embedding process is described as follows. We assume that the
original image of the size n×n be denoted as Φ = {Φ(x1, x2), 1 ≤ x1, x2 ≤ n}
and the binary watermark (logo) of size m×m be denoted by φ = {φ(i, j), 1 ≤
i, j ≤ m}, where (i, j)((x1, x2)) represent the pixel coordinate of binary wa-
termark image and the original host image.
Watermark bits (1 bit per pixel) are embedded to the host image according
to the following process. Using the coordinate (i, j) of watermark pixel as
the initial condition and the control parameter of the coupled map (see Fig.
(1)), the coupled map is iterated after which, the embedding position of pixels
from watermark image to host image can be obtained. The watermark pixels
will get different embedding positions, so the embedded watermark pixels will
spread in host image randomly.
This process follows the iteration of the third map ( Eq. (11)) to determine
the bit of host image pixels in watermark embedding. Accounting for the
chaotic domain of the third map, (See Fig 1(b)) the truly random sequence
is generated which is distributed in the interval ([0, 1] or [0,∞)) then, the
interval can be divided into several subintervals ([0, x́1], [x́1, x́2], . . .) which
correspond to different pixel bits for watermark embedding [1,23]. As it was
discussed by dividing the sub domain corresponding to the kth bit of host
image, ([0, x́1] → k3,[x́1, x́2] → k4, . . . ) the watermark pixel is embedded to
the kth bit of pixel (x́1, x́2) in host image.
The embedded watermark pixel is denoted as Φ(x1, x2). If φ(i, j) is the same
as the kth bit of Φ(x1, x2), then φ(x1, x2) = Φ(x1, x2), i.e., the pixel value is
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kept unchanged; otherwise, the kth bit of Φ(x1, x2) is substituted by φ(i, j).
The flowchart of the overall solution algorithm is shown in figure 2. Water-
mark extraction is just the inverse process of the above embedding algorithm.
In the process of extraction, one needs to know the key parameters. Since
both decryption and encryption procedures have similar structure, they have
essentially the same algorithmic complexity and time consumption.

5 Experimental results

This section will present and discuss the experimental results of our proposed
scheme. To demonstrate the effectiveness of the proposed algorithm, MATLAB
simulations are performed by using 256×256 pixel gray level “MADINEH” im-
age and 64× 64 pixel binary watermark logo “FATIMA”. Fig. 3 demonstrates
the invisibility of watermark. Figs. 3(a) and 3(b) show the original host image
and watermark logo ,respectively. Figs. 3(c) and 3(d) show the water-marked
image and the extracted watermark logo “FATIMA”, respectively. The water-
mark embedding process is said to be imperceptible if the original data and
watermarked data cannot be distinguished . To quantitatively evaluate the
performance of the proposed scheme, the peak signal-to-noise ratio (PSNR)
was adopted to measure the image quality of a watermarked image which is
given by:

PSNR = 10× log10
2552

MSE
(dB),

MSE = 1
M×N

∑M
i=1

∑N
j=1(Hi,j − H́i,j).

(12)

Where Hi,j and H́i,j indicate the pixel values in the location (i, j) of the
original host image and the watermarked image, respectively, while M × N
is the image size. In this study, reliability was measured as the bit error rate
(BER) of extracted watermark through this formula:

BER =
B

M ×N
× 100 (13)

Where, B is the number of erroneously detected bits, and M × N is the ex-
tracted watermark image dimensions. The PSNR for the watermarked image
is 48.82 dB, and the BER of the extracted watermark is zero. Therefore, there
is no obvious perceptual distortion between watermarked image and original
one; the embedded watermark does not degrade the quality of original host im-
age. To test the robustness of our proposed method, we applied several attacks

8



to the watermarked image including JPEG compression, Salt & Pepper noise,
Gaussian noise, Gaussian low-pass filter, gamma correction, histogram equal-
ization, sharpening, Rotation, motion blur, Complement, Cropping and Me-
dian Filtering. Fig. 4 shows an example of a watermarked image attacted with
the listed attacks. The corresponding best extracted watermarks are shown in
Fig. 5.The test results for “MADINEH” image are shown in table 1.
Key space size is the total number of different keys that can be used in the
encryption. Cryptosystem is completely sensitive to all secret keys. The or-
der of time complexity for watermark extraction in our proposed method is
computed below:

θ(ε× x3
0 × iter × a3) (14)

Where ε ε [0, 1] , x0 ε [0, 1](x0 ε [0,∞)), and a ε [ 1
N

,∞). Apparently, the key
space is large enough to resist all kinds of brute-force attacks.

6 Concluding remarks

We propose a novel watermarking scheme for image authentication based on
spatiotemporal chaos. The scheme is specially designed for image, thus, en-
abling various network multimedia applications. Spatiotemporal chaos is ap-
plied to design the selection scheme for watermark embedding. We have used
symmetric multidimensional coupled chaotic maps to increase both the num-
ber of keys (control parameters) and complexities involved in the algorithm.
This algorithm tries to address the shortcoming of watermarking such as small
key space, watermarking speed and level of security. Without the correct ini-
tial condition, the watermark cannot be successfully detected. In general, the
method is suitable for image authentication with application in law, commerce,
defence, medical databases and journalism. The security of watermarking is
greatly improved when chaos is administered. The goal is to realize a wa-
termarking method with a private code. Further studies must be started to
develop watermarking methods with a public key.
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A One-parameter family of chaotic maps

We present a brief review of one-dimensional chaotic maps which are going to
be used. One-parameter families of chaotic maps ΦN(x, a) of the interval [0, 1]
with an invariant measure, which can be defined as the ratio of polynomials
of degree N [12]:

Φ(x, a) =
a2(TN(

√
x))2

1 + (a2 − 1)(TN(
√

x))2
, (A.1)

As an example, some of these maps are given below:

Φ2(x, a) =
a2(2x− 1)2

4x(1− x) + a2(2x− 1)2
, (A.2)

Φ3(x, a) =
a2x(4x− 3)2

a2x(4x− 3)2 + (1− x)(4x− 1)2
, (A.3)

It is shown that these maps have an interesting property, that is, for even
values of N , the Φ(a, x) maps have only one fixed point attractor at x = 1
provided that their parameter belongs to the interval (N,∞) while, at a ≥ N
they bifurcate to chaotic regime without having any period doubling or period-
n-tupling scenario and remain chaotic for all a ∈ (0, N). However, for odd
values of N, these maps demonstrate a different behavior; within a ∈ ( 1

N
, N),

they have a fixed point attractor only at x = 0; they bifurcate to a chaotic
regime at a ≥ 1

N
and remain chaotic for a ∈ (0, 1

N
), but, eventually, they

bifurcate at a = N to have x = 1 as fixed point attractor for the whole
range of a ∈ ( 1

N
,∞) (See Fig. (3)). In this paper, we are concerned with their

conjugate maps which are defined as:

ΦN(x, a) = h ◦ ΦN(x, a) ◦ h−1 =
1

a2
tan2(Narctan

√
x). (A.4)

Conjugacy means that the invertible map h(x) = 1−x
x

maps I = [0, 1] into
[0,∞). In order to simplify the calculation in this paper, we denote “ tan2(N arctan

√
x)”

with g(x).

B Invariant measure & Lyapunov exponents of selected example

According to the introduced hierarchy of one-parameter families of ergodic
maps as a multidimensional coupled chaotic, in this section, we evaluate its
invariant measure and Lyapunov exponents:
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• Invariant measure:
At synchronized state x1 =, ..., = xN = x, the coupled map Eq. (2) on
account of (A.4), reduces to:

X = F (x, ..., x) = ā(ε1, ..., εN , a1, ..., aN) tan2(N arctan(
√

x)) (B.1)

with ā(ε, a1, a2, ..., aN) = (
∑N

i=1 εiai). As it is shown in Ref. [12], this map
possesses an invariant measure of the following form:

µ(x) =

√
β√

x(1 +
√

βx)
, (B.2)

provided that we choose the constant β as one of the positive roots of the
following equation:

ā(ε1, ε2, ..., εN , a1, a2, .., aN) =




∑[N
2

]

k=0 CN
2kβ

−k

∑[N−1
2

]

k=0 CN
2k+1β

−k




2

where [ ] means the greatest integer part. Now, by substituting the invari-
ant measure of one-dimensional maps (B.2) in the relation (4), we get the
following expression for the invariant measure of multidimensional coupled
chaotic map Eq. (10):

µ(x1, x2, ..., xN) = δ(x2 − x1)...δ(x2 − x1)

√
β√

x(1 +
√

βx)
. (B.3)

• Lyapunov exponents:
In order to calculate the Lyapunov exponents of multidimensional coupled
chaotic at synchronized state, we need to calculate the characteristic roots
of the matrix:

n−1∏

k=1

∣∣∣∣∣∣∣∣∣∣∣

h1(x1,k, ..., xN,k) h2(x1,k, ..., xN,k) ... hN(x1,k, ..., xN,k)
...

hN(x1,k, ..., xN,k) h1(x1,k, ..., xN,k) ... hN−1(x1,k, ..., xN,k)

∣∣∣∣∣∣∣∣∣∣∣

=




ε1a1 ε2a2 ... εNaN

...

εNaN ε1a1 ... εN−1aN−1




n+1

n∏

k=0

[
(

N∑

k=1

εkak)g
′(xk)

]
=

(F


∑

j

εjaj...


 F−1)n+1

n∏

k=0

[
(

N∑

k=1

εkak)g
′(xk)

]
=
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∑
j εjaj

∑
j εjω

j−1aj... ∑
j εjω

(j−1)(N−1)aj




n∏

k=0

[
(

N∑

k=1

εkak)g
′(xk)

]

where:

F =




1 1 . . . 1

1 ω . . . ωN−1

...
... . . .

...

1 ω
(N−1)
1 . . . ω

(N−1)
N−1




which yields:

λk(x1,k, ..., xN,k) =
n∏

k=0

[
(

N∑

k=1

εkak)g
′(x1,k, ..., xN,k)(

N∑

k=1

εkω
(k−1)ak)

]
.(B.4)

Hence, we have:

Λk = lim
n→∞

1

n
ln |λk(x1,k, ..., xN,k)| =

ln |(1− ε)a1 − εa2|+ ln |
N∑

k=1

εkω
(k−1)ak|+ Λ

[
(

N∑

k=1

εkak)g
′(x1,k, ..., xN,k)

]
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Table B.1
Simulation results of PSNR and BER under different attacks.

Attacks PSNR (dB) BER (%)

JPEG compression 63.41 11.94

Salt & Pepper noise 10% 60.79 4.96

Gaussian Noise (0,0.1) 67.59 23.17

Histogram Equalization 56.46 5.00

Median Filtering [3× 3] 66.77 45.29

Low pass filter [5× 5] 62.21 18.97

Gamma Correction 0.6 56.46 53.17

Motion Blur 45◦ 67.45 40.26

Rotation 2◦ 64.55 27.88

One quarter Cropped 66.48 3.42

Sharpening 67.19 15.75

Complement 69.08 100.00
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Fig. 1. Lyapunov exponents at synchronized state: (a)Eq.(10) while N=2 and
ε = 0.1 vs. α1 and α2 , (b) Eq.(11) vs. α.

Fig. 2: flowchart.

Fig. 3 (a) Original “MADINEH” image, (b) Watermark logo “FATIMA”, (c)
Watermarked image, (d) Extracted watermark logo.

Fig. 4 The watermarked “MADINEH” image under different attacks. (a)
JPEG compression, (b) Salt & pepper noise 10%, (c) Gaussian noise (0, 0.01),
(d)Histogram Equalization; (e) Median filter [3× 3], (f) low-pass filter [5× 5],
(g) Gamma correction 0.6, (h) motion blur (45◦), (i) Rotation (2◦), (j) Crop-
ping (25%), (k) sharpening, (l) complement.

Fig. 5 Extracted watermarks under different attacks. (a) JPEG compression,
(b) Salt & pepper noise 10%, (c) Gaussian noise (0, 0.01), (d)Histogram Equal-
ization, (e) Median filter [3×3], (f) low-pass filter [5×5], (g) Gamma correction
0.6, (h) motion blur (45◦), (i) Rotation (2◦), (j) Cropping (25%), (k) sharpen-
ing,(l) complement.
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