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Abstract
The paper studies a novel adaptive identifier proposed

in IFAC World Congress 2020 for nonlinear time-delay
systems composed of linear, Lipschitz and non-Lipschitz
components. To begin with, an identifier is designed for
uncertain systems with a priori known delay values, and
then it is generalized for systems with unknown delay
values. The algorithm ensures the asymptotic parameter
estimation and state observation by using gradient algo-
rithms. The unknown delays and plant parameters are
estimated by using a special equivalent extension of the
plant equation. The algorithms stability is presented by
solvability of linear matrix inequalities. Simulation re-
sults are invoked to support the developed identifier de-
sign and to illustrate the efficiency of the proposed syn-
thesis procedure.
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1 Introduction
Since the mid-1980s, the definition of synchronization

has been used as the coincidence of the coordinates of
subsystem state vectors [Fujisaka and Yamada (1983)].
This definition became especially popular after the pub-
lication of an article by L. Pecora and T. Carroll on the
control of synchronization of chaotic systems [Pecora
and Carroll(1990)]. Adaptive synhronization of free-
delay physical systems is studied in [Fradkov (2007)].

The investigation focuses on adaptive/on-line identifi-
cation of unknown time-invariant plant parameters. The
existing literature suggests many design methods for
plants with lumped model and known structure, see, e.g.
[Landau(1979); Goodwin and Sin(1984); Astrom and
Wittenmark(1989); Narendra and Annaswamy(1989);

Sastry and Bodson(1989); Ioannou and Sun(1995);
Ljung(1999)]. These methods demonstrate acceptable
robustness in the presence of small input and output
disturbances or small perturbations of model param-
eters. Due to this, the methods have found practi-
cal applications in electrical vehicle application [Flah
et. al.(2014)], robotics [Farza et al.(2009)], chemi-
cal industry [Ekramian et al.(2013)], etc. However,
there are only few results applicable to synthesis of
plants with time-delays, see, e.g. [Nakagiri and Ya-
mamoto(1995); Verduyn(2001); Orlov et al.(2001);
Belkoura and Orlov(2002); Orlov et al.(2002); Orlov et
al.(2003); Orlov et al.(2009)].

In [Nakagiri and Yamamoto(1995); Verduyn(2001)]
the identification of time-delay systems demonstrated
complexity of the problem, particularly, the identifiabil-
ity of a delay system was shown to place a restrictive
condition on the structure of the system. This condition
was defined through the characteristic matrix of the func-
tional differential equation of the plant whereas no indi-
cation was given on how to attain this condition using
some accessible inputs.

In [Orlov et al.(2001); Belkoura and Orlov(2002);
Orlov et al.(2002); Orlov et al.(2003); Orlov et
al.(2009)], the adaptive identifiers were developed step
by step, for systems with the complete state information
and for single input single output (SISO) linear time de-
lay systems, given in the canonical form of a differential
equation of an arbitrary order. Necessary and sufficient
conditions for a linear delay system to be identifiable
have been given in terms of weak controllability prop-
erty and nonsmooth input signals. In [Orlov et al.(2009)]
the proposed results were experimentally confirmed in
an application to a port-fuel-injected internal combustion
engine.

Recently, [Furtat and Orlov (2020)] addressed the
identification of time delay systems in the nonlinear set-
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ting. The present investigation continues that of [Furtat
and Orlov (2020)] to collect both theoretical and numer-
ical studies yielding a model-synchronization-based ap-
proach to identification of parameters of nonlinear sys-
tems with unknown time delays. The proposed model
mimics the underlying plant with model parameters
which are dynamically adjusted in such a manner to en-
sure their convergence to the unknown plant parameters.
The resulting closed-loop system utilizes the entire state
measurements and it can be viewed as an on-line identi-
fier of the nonlinear time delay system in question.

The rest of the paper is outlined as follows. The prob-
lem statement is given in Section 2. In Sections 3 and
4, two algorithms are developed side by side for a priori
known and unknown delays, accompanied with the con-
vergence conditions of the proposed algorithms, given in
terms of specific LMIs feasibility. In Section 5, the capa-
bility of the proposed synthesis is illustrated in a simula-
tion study to additionally support the analytical results.
Finally, Section 7 collects some conclusions.

Notations. Throughout the paper, the superscript T
stands for the matrix transposition; Rn denotes the n di-
mensional Euclidean space with vector norm | · |; Rn×m

is the set of all n×m real matrices; the notation P > 0
for P ∈ Rn×n means that P is symmetric and positive
definite; I is the identity matrix of an appropriate dimen-
sion; diag{·} is used for a block diagonal matrix.

2 Problem Formulation
Consider a plant model in the form

ẋ(t) =
∑k

i=0

[
Aix(t− τi) +Diϕ(x(t− τi))

+Giψ(y(t− τi)) +Biu(t− τi)
]
,

y(t) = Cx(t),

(1)

where t ≥ 0, x(t) ∈ Rn is the state vector, u(t) ∈ R is
the control input which is assumed to be piece-wise con-
tinuous bounded function, y(t) ∈ R is the output signal,
available for the measurement. For certainty, the time-
delay values τi are ordered as follows 0 = τ0 < τ1 <
... < τk.

The function ϕ(x) ∈ Rl is globally Lipschitz contin-
uous with an a priori known Lipschitz constant L. The
nonlinear function ψ(y(t)) ∈ Rm is a piece-wise con-
tinuous. The well-posedness of system (1) is thus en-
sured in the open-loop. Along with the above functions,
the matrix C ∈ R1×n is also known a priori whereas
the matrices Ai ∈ Rn×n, Di ∈ Rn×l, Gi ∈ Rn×m and
Bi ∈ Rn are unknown. Due to the duality of control syn-
thesis and observer design, the measured output is pre-
determined with no measurement delays to ensure the
identifiability of uncertain matrix parameters (see As-
sumption 4). Since some matrices might be zero, with-
out loss of generality system (1) has been assumed to
possess the same state and input delays.

The delay-free model (1), formally coming with τ1 =
. . . = τk = 0, is considered for feedback control and

for observation of x in [Farza et al.(2009); Ekramian et
al.(2013)]. In these papers it is noted that such free de-
lay model can describe a number of technical systems
and technological processes. For instance, the estima-
tion of the state and kinetic parameters is addressed in
[Farza et al.(2009)] for a bioreactor whereas in [Farza et
al.(2009)], the estimation is investigated for a single-link
manipulator with revolute joints actuator. In [Kumar et
al.(2019)] the model of chemical and biochemical reac-
tors have input and state delays which arise due to delays
in the reception and transmission of data and technolog-
ical cycles. While controlling electrical equipment, de-
lays are caused by the remote control via digital commu-
nication channels. However, for model with delays (1)
the identification problem has not been addressed so far.

The following technical assumptions are made
throughout.

Assumption 1. System (1) is a BIBO (bounded input
— bounded output) system in the sense that while be-
ing driven by a bounded input, the system generates a
bounded solution regardless of wherever it is initialized.

Assumption 2. The input signal u(t) is uniformly
bounded and periodic, and persistently excites system
(1) in the sense that there exist constants C > 0 and
α > 0 such that

∫ t+C

t
Φ(s)Φ(s)Tds ≥ αI with Φ(t) =

col{x(t−τ0), ..., x(t−τk), ϕ(t−τ0), ..., ϕ(t−τk), ψ(t−
τ0), ..., ψ(t − τk), u(t − τ0), ..., u(t − τk)} , computed
along an arbitrary system solutions x(t).

Assumption 3. The following matching conditions hold

Ai = A0
i + T0κ

A
i , Di = D0

i + T0κ
D
i ,

Gi = G0
i + T0κ

G
i , Bi = B0

i + T0κ
B
i , i = 0, ..., k,

where A0
i , D0

i , G0
i , B0

i , and T0 ∈ Rn are known and
CT0 6= 0, whereas κAi ∈ R1×n, κDi ∈ R1×l, κGi ∈
R1×m, and κBi ∈ R are unknown.

Assumption 4. System (1) is identifiable in the sense
that there exists a persistently exciting input u(t) such
that the unknown parameters in (1) are uniquely de-
termined from the measured output y(t) [Orlov et
al.(2003)].

Assumption 5. System (1) is locally observable in
the sense that the difference ∆x(t) of arbitrary
solutions x(t), x̂(t) of (1) asymptotically escapes
limt→∞∆x(t) = 0 to zero provided that these solutions
generate the same output Cx(t) = Cx̂(t) for all t ≥ 0.

The above assumptions are made for technical reasons.
Assumption 1 is well-recognized from the linear theory
to be imposed on a system for its on-line identification
in open-loop [Orlov et al.(2002)].

Assumption 2 is an extension of the well-known
Persistency-of-Excitation (PE) condition (see definition
of PE condition in [Shimkin and Feuer(1987); Mareels
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and Gevers(1988); Ioannou(1996)]) to the underlying
time-delay system. Such an assumption is typically in-
voked to prove the identifier convergence to the nominal
system parameters (cf. that of Theorem 1 where the in-
put periodicity is particularly utilized to apply the invari-
ance principle).

Assumption 3 is inspired from a finite-dimensional
matching condition counterpart used to ensure the iden-
tifiability of the unknown parameters. A similar iden-
tifiability problem is repeatedly discussed in the adap-
tive control [Tao(2003); Hovakimyan and Cao(2010)]
and adaptive identification of free-delay linear plants in
[Tao(2003)].

Assumptions 4 and 5, coupled together, ensure that re-
lation

limt→∞ CT0

∑k
i=0

[
∆κAi x(t− τi)

+∆κDi ϕ(x(t− τi))
+∆κGi ψ(y(t− τi)) + ∆κBi u(t− τi)

]
= 0

(2)

can only be satisfied for the trivial parameter errors

∆κAi = 0, ∆κDi = 0, ∆κGi = 0,
∆κBi = 0, i = 0, 1, . . . , k

(3)

where ∆κAi = κAi − κ̂Ai , ∆κDi = κDi − κ̂Di , ∆κGi =
κGi − κ̂Gi , ∆κBi = κBi − κ̂Bi , i = 0, ..., k, are the devi-
ations of the nominal parameters κAi , κDi , κGi , κBi from
their estimates κ̂Ai , κ̂Di , κ̂Gi , κ̂Bi . To reproduce this con-
clusion it suffices to equate the outputs Cx(t) = Cx̂(t)
of system (1), generated with the nominal parameters
κAi , κDi , κGi , κBi and their estimates κ̂Ai , κ̂Di , κ̂Gi , κ̂Bi ,
and after that differentiate the resulting equality along
the corresponding solutions of (1), taking into account
the local observability of the system.

If confined to SISO time-delay systems, Assumption
4 is well-known [Orlov et al.(2009)] to hold true. The
identifiability of the system parameters and delays can
then be enforced by applying to the system a sufficiently
nonsmooth signal that persistently excites the system.
These signals are constructively introduced by impos-
ing the state of the system and the system input to have
different smoothness properties [Orlov et al.(2003)]. In
general, Assumption 4, roughly speaking, requires that
not only the solutions x(t− τi) and the inputs u(t− τi),
but in addition to [Orlov et al.(2003)], also ϕ(t − τi)
and ψ(t− τi), viewed in combination with x(t− τi) and
u(t − τi), present different behaviour. For MIMO sys-
tems, this topic however calls for further investigation
and remains beyond the scope of the paper.

In the sequel, Assumption 4 is simply postulated, and
only numerical evidences are given in Section 5 to sup-
port it in a nontrivial academic example, illustrating the
theory developed.

For later use, let us introduce the estimation errors

∆κAi (t) = κAi − κ̂Ai (t), ∆κDi (t) = κDi − κ̂Di (t),
∆κGi (t) = κGi − κ̂Gi (t), ∆κBi (t) = κBi − κ̂Bi (t),
i = 0, ..., k,
ε(t) = x(t)− x̂(t),

where κ̂Ai (t), κ̂Di (t), κ̂Gi (t), κ̂Bi (t), and x̂(t) are dynamic
estimates of the nominal values κAi , κDi , κGi , κBi , and
x(t) accordingly.

The objective is to design an identification algorithm
that ensures

lim
t→∞

∆κAi (t) = 0, lim
t→∞

∆κDi (t) = 0,

lim
t→∞

∆κGi (t) = 0, lim
t→∞

∆κBi (t) = 0,

i = 0, ..., k,
lim
t→∞

ε(t) = 0.

(4)

In what follows, such an identification algorithm is de-
veloped for the nonlinear time-delay system in question.

3 Adaptive identifier design under a priori known
delay values

Consider a plant model

˙̂x(t) =
∑k

i=0

[
A0

i x̂(t− τi) +D0
iϕ(x̂(t− τi))

+G0
iψ(y(t− τi)) +B0

i u(t− τi)− Yiε(t− τi)
+T0

∑k
i=0

[
κ̂Ai (t)x̂(t− τi) + κ̂Di (t)ϕ(x̂(t− τi))

+κ̂Gi (t)ψ(y(t− τi)) + κ̂Bi (t)u(t− τi)
)]
,

ŷ(t) = Cx̂(t),

(5)

of the same structure as that of (1) with Hurwitz matrices
Yi ∈ Rn×n at the designer disposition. Let the model
parameters be updated as ˙̂κAi (t)T = −ΓA

i e(t)x̂(t − τi),
˙̂κDi (t)T = −ΓD

i e(t)ϕ(x̂(t−τi)), ˙̂κGi (t)−ΓG
i e(t)ψ(y(t−

τi)), ˙̂κBi (t) = −ΓB
i e(t)u(t−τi), i = 0, 1, . . . , k, e(t) =

y(t)− ŷ(t), so that the parameter errors are governed by

∆κ̇Ai (t)T = −ΓA
i e(t)x̂(t− τi),

∆κ̇Di (t)T = −ΓD
i e(t)ϕ(x̂(t− τi)),

∆κ̇Gi (t)T = −ΓG
i e(t)ψ(y(t− τi)),

∆κ̇Bi (t) = −ΓB
i e(t)u(t− τi).

(6)

The matrices ΓA
i , ΓD

i , ΓG
i , and ΓB

i > 0 are positive
definite and of appropriate dimensions. Then the plant
deviation ε(t) from the model variable is computed ac-
cording to (1) and (5), and it is therefore governed by

ε̇(t) =
∑k

i=0

[
Aiε(t− τi) +Di[ϕ(x(t− τi)

− ϕ(x̂(t− τi)]− Yiε(t− τi)
+ T0

∑k
i=0

[
∆κAi (t)x̂(t− τi)

+ ∆κDi (t)ϕ(x̂(t− τi))
+ ∆κGi (t)ψ(y(t− τi)) + ∆κBi (t)u(t− τi)

]
,

e(t) = Cε(t).

(7)
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The result, stated below, relies on the notation

Ψ̄11 = AT
0 P + PA0 − Y0 +

∑k
i=0 Si,

Ψ11 =


Ψ̄11 P (A1 − Y1) ... P (Ak − Yk)
∗ −S1 − Y1 ... 0
...

...
. . .

...
∗ ∗ ... −Sk − Yk

 ,

Ψ12 =


PD0 PD1 ... PDk

∗ 0 ... 0
...

...
. . .

...
∗ ∗ ... 0

 ,
Ψ =

[
Ψ̄11 + L2I Ψ12

∗ −I

]
.

(8)

Here the notation ” ∗ ” means a symmetric block of a
symmetric matrix.

Theorem 1. Let the delay values τj , j = 1, ..., k be
known a priori, and let Assumptions 1–5 hold. More-
over, let there exist matrices P = PT > 0, Si > 0,
i = 0, ..., k such that the relations

Ψ < 0 and PT0 = CT (9)

hold true. Then the over-all error system (6), (7) is
asymptotically stable so that the above objective (4) is
achieved with identifier (5), updated according to (7).

The proof of Theorem 1 is considered in [Furtat and
Orlov (2020)].

4 Case of unknown time-delays
In the present section, the number k of time-delays τi,

i = 1, ..., k of the plant dynamics (1) are no longer as-
sumed to be known a priori. The identifier design in
such a frame calls for another interpretation of equation
(1). To formally apply the developed identifier let us in-
troduce the following notations

k̄ ≥ k, 0 = τ̂0 < τ̂1 < ... < τ̂k̄,
Āi ∈ Rn×n, D̄i ∈ Rn×l,
Ḡi ∈ Rn×m, B̄i ∈ Rn, i = 1, ..., k̄,
Ξ = {τ1, ..., τk},
Ξ̄ = {τ̂1, ..., τ̂k̄},
Λ = {Ai, Di, Gi, Bi, i = 1, ..., k},
Λ̄ = {Āi, D̄i, Ḡi, B̄i, i = 1, ..., k̄},

(10)

and impose the following assumptions.

Assumption 6. The values of k̄ and τ̂i, i = 1, ..., k̄ are
known a priori whereas the matrices Āi, D̄i, Ḡi, B̄i,
i = 1, ..., k̄ are unknown.

Assumption 7. The implications Ξ ⊆ Ξ̄ and Λ ⊆ Λ̄
are in force and the sets Ξ̄ \ Ξ and Λ̄ \ Λ contain zero
elements.

The above assumptions presume that unknown plant
delays belong to an a priori known finite set as it hap-
pens, e.g., in computer networks where transmission de-
lays are commensurate a specific precision. Thus, the
identification of unknown delay values is reduced to
identifying fictitious delay values, which are associated
with zero matrix multipliers to be identified along with
other nonzero parameter values. Indeed, using notations
(10) and Assumptions 6, 7, rewrite plant equation (1) in
the form

ẋ(t) =
∑k̄

i=0

[
Āix(t− τ̂i) + D̄iϕ(x(t− τ̂i))

+ Ḡiψ(y(t− τ̂i)) + B̄iu(t− τ̂i)
]
,

y(t) = Cx(t).

(11)

It is worth noticing that model (11) has been obtained
based on the modifications of Assumptions 2 and 3,
given below.

Assumption 8. The input signal u(t) is uniformly
bounded and periodic, and persistently excites system
(11) in the sense that there exist constants C > 0

and α > 0 such that
∫ t+C

t
Φ(s)Φ(s)Tds ≥ αI with

Φ(t) = col{x(t− τ̄0), ..., x(t− τ̄k̄), ϕ(t− τ̄0), ..., ϕ(t−
τ̄k̄), ψ(t − τ̄0), ..., ψ(t − τ̄k̄), u(t − τ̄0), ..., u(t − τ̄k̄)},
computed along an arbitrary system solution x(t).

Assumption 9. The following matching conditions hold
Āi = Ā0

i +T0κ
Ā
i , D̄i = D̄0

i +T0κ
D̄
i , Ḡi = Ḡ0

i +T0κ
Ḡ
i ,

B̄i = B̄0
i + T0κ

B̄
i , i = 0, ..., k̄, where Ā0

i , D̄0
i , Ḡ0

i , B̄0
i ,

T0 ∈ Rn are known matrices and vectors, and CT0 6= 0,
whereas κĀi ∈ Rn×1, κD̄i ∈ R1×l, κḠi ∈ R1×m, and
κB̄i ∈ R are unknown.

The basic idea behind the representation of model (1)
in form (11) is as follows. If x(t − τ̂l) = x(t − τj) for
some l ∈ {i, ..., k̄} and j ∈ {i, ..., k}, then Āl = Aj .
Otherwise, x(t − τ̂l) 6= x(t − τj) for any l ∈ {i, ..., k̄}
and j ∈ {i, ..., k}, and Āl = 0. Similar comments are
also in order for other terms in (11). Thus, identifying
nonzero matrices among of Āi, D̄i, Ḡi, B̄i, i = 1, ..., k̄
yields corresponding (non-fictitious) time-delays.

Let us now consider the identifier in the form

˙̂x(t) =
∑k̄

i=0

[
Ā0

i x̂(t− τi) + D̄0
iϕ(x̂(t− τi))

+ Ḡ0
iψ(y(t− τi)) + B̄0

i u(t− τi)
]

+ T0

∑k̄
i=0

[
κ̂Ai (t)x̂(t− τi)

+ κ̂Di (t)ϕ(x̂(t− τi)) + κ̂Āi (t)x̂(t− τ̂i)
+ κ̂D̄i (t)ϕ(x̂(t− τ̂i)) + κ̂Ḡi (t)ψ(y(t− τ̂i))
+ κ̂B̄i (t)u(t− τ̂i)

]
− Yiε(t− τ̂i),

ŷ(t) = Cx̂(t),

(12)

Computing the time derivative of ε(t) = x(t) − x̂(t)
along the trajectories (11) and (12), one obtains
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ε̇(t) =
∑k̄

i=0

[
Āiε(t− τ̂i)− Yiε(t− τ̂i)

+ D̄i[ϕ(x(t− τ̂i)− ϕ(x̂(t− τ̂i)]
]

+ T0

∑k̄
i=0

[
∆κĀi (t)x̂(t− τ̂i)

+ ∆κD̄i (t)ϕ(x̂(t− τ̂i))
+ ∆κḠi (t)ψ(y(t− τ̂i)) + ∆κB̄i (t)u(t− τ̂i)

]
,

e(t) = Cε(t).

(13)

According to model (13), the corresponding matrices
in (4) are represented as

Ψ̄11 = ĀT
0 P + PĀ0 − Y0 +

∑k̄
i=0 Si,

Ψ11 =


Ψ̄11 P (Ā1 − Y1) ... P (Āk − Yk̄)
∗ −S1 − Y1 ... 0
...

...
. . .

...
∗ ∗ ... −Sk̄ − Yk̄

 ,

Ψ12 =


PD̄0 PD̄1 ... P D̄k̄

∗ 0 ... 0
...

...
. . .

...
∗ ∗ ... 0

 .
The structure of Ψ is the same as in (4).

Theorem 2. Let Assumptions 1, 4–9 hold and let there
exist matrices P = PT > 0, Si > 0, i = 1, ..., k̄ such
that

Ψ < 0 and PT0 = CT. (14)

Then the identification algorithms

˙̂κĀi (t)T = ΓĀ
i x̂(t− τ̂i)e(t),

˙̂κD̄i (t)T = ΓD̄
i ϕ(x̂(t− τ̂i))e(t),

˙̂κḠi (t)T = ΓḠ
i ψ(y(t− τ̂i))e(t),

˙̂κB̄i (t)T = ΓB̄
i u(t− τ̂i)e(t)

(15)

ensure objective (4), where ΓĀ
i , ΓD̄

i , and ΓḠ
i are positive

definite matrices with appropriate dimensions and ΓB̄
i >

0.

The proof of Theorem 2 is considered in [Furtat and
Orlov (2020)].

Remark 1. Model (11) has a rough approximation rel-
atively to value of k̄. Thus, an overestimated number
of estimated parameters is in play, and hence, a larger
transient time is obtained. However, using the model

ẋ(t) =
∑k̄1

i=0 Āix(t− τ̂i) +
∑k̄2

i=0 D̄iϕ(x(t− τ̂i))
+
∑k̄3

i=0 Ḡiψ(y(t− τ̂i)) +
∑k̄4

i=0 B̄iu(t− τ̂i),
y(t) = Cx(t).

(16)

with smaller numbers k̄j < k̄, j = 1, ..., 4 of esti-
mated parameters allows one to reduce the number of
adjustable parameters, thereby reducing the transient
time of estimation of unknown parameters. It is clear
that the algorithm for model (16) remains similar to the
algorithm for model (11).

5 Study of Adaptive Identifier
Let model (1) be described as

ẋ(t) =

[
0 1
a01 a02

]
x(t) +

[
0 0
a11 a12

]
x(t− τ1)

+

[
0 0
d11 d12

]
ϕ(x(t− τ2))

+

[
0
g0

]
ψ(y(t)) +

[
0
b0

]
u(t) +

[
0
b1

]
u(t− τ3),

y(t) = [1 3]x(t),

(17)

where x(t) = col{x1(t), x2(t)}, the nonlinearities

ϕ(x) = col{x
1
3
1 , x

1
3
2 } and ψ(y) = y2 are known. Only

output y(t) and input u(t) are available for measure-
ment. Assume that the value set of the system delays
is a priori known, but it is unknown which delay corre-
sponds to each component x(t), ϕ(x(t)), ψ(y(t)), u(t).
Therefore, according to model (11), rewrite (17) in the
form

ẋ(t) =
∑3

i=0

([ 0 1
āi1 āi2

]
x(t− τ̂i)

+

[
0 0
d̄i1 d̄i2

]
ϕ(x(t− τ̂i))

+

[
0
ḡi

]
ψ(y(t− τ̂i)) +

[
0
b̄i

]
u(t− τ̂i)

)
,

(18)

where τ̂0 = 0, τ̂1 = τ1, τ̂2 = τ2 and τ̂3 = τ3 due to
known values of delays. Thus, model (18) contains any
combination of delays in (17).

Let u(t) = sin(2.3t) + sin(10t) + sin(20.2t) +
sin(35.7t) + sin(51.9t) + PG, PG is the function de-
scribing pulse generator with amplitude 1, period 1 s and
pulse width 0.5%, τ1 = 1, τ2 = 1.7, and τ3 = 2.3
in (17), ΓĀ

i = 400I , ΓD̄
i = 400I , ΓḠ

i = 400I , and
ΓB̄
i = 400, i = 0, ..., 3 in (15). The simulations show

that Assumption 8 holds for C ≥ 103 and α ≤ 10−4.

Choosing Ā0
0 =

[
0 1
0 0

]
, Ā0

j =

[
0 0
0 0

]
, j = 1, 2, 3,

D̄0
i =

[
0 0
0 0

]
, Ḡ0

i = B̄0
i =

[
0
0

]
, i = 0, ..., 3, and

T0 = [0 1]T, Assumption 9 holds. Denote κĀi (t) =

[âi1(t), âi2(t)], κD̄i (t) = [d̂i1(t), d̂i2(t)], κḠi (t) = ĝi(t),
and κB̄i (t) = b̂i(t), where âi1(t), âi2(t), d̂i1(t), d̂i2(t),
ĝi(t), b̂i(t) are the estimates of āi1, āi2, d̄i1, d̄i2, ḡi, and
b̄i i = 0, ..., 3 accordingly. In Figures 1–5 the transients
of these estimates are presented.
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Figure 3. The transients of d̂i1(t), d̂i2(t), i = 0, ..., 3, where
d21 = −0.5, d22 = −0.8, d01 = d02 = d11 = d12 =
d31 = d32 = 0.
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ĝ2(t)
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Figure 4. The transients of ĝi(t), i = 0, ..., 3, where g0 = −2,
g1 = g2 = g3 = 0.
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Figure 5. The transients of b̂i(t), i = 0, ..., 3, where b0 = 1,
b1 = b2 = 0, and b3 = −1.
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Figure 1. The transients of ε(t) = col{ε1(t), ε2(t)}.
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Figure 2. The transients of âi1(t), âi2(t), i = 0, ..., 3, where
a01 = −2, a02 = −4, a11 = −0.1, a12 = 0.2, a21 =
a22 = a31 = a32 = 0.
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7 Conclusions
In the paper we study a novel adaptive identifier pro-

posed in [Furtat and Orlov (2020)] for nonlinear systems
composed of linear part, Lipschitz and non-Lipschitz
nonlinearities. The case of known time-delay values and
that of unknown delays are addressed side by side. In
contrast to the existing literature, SISO time delay sys-
tems are considered in the general form rather than in
the canonical form only. The identifiability and observ-
ability properties are coupled to the persistent excitation
of the plant model to ensure the asymptotic convergence
of estimated parameters to their real values by using the
gradient algorithm. The stability analysis is given in
terms of the feasibility of certain linear matrix inequali-

ties, relying on input and output matrices. The numeri-
cal simulations confirm theoretical results and illustrate
efficiency of the proposed algorithm for on-line simulta-
neous estimation of a large number of unknown param-
eters, including 2 state components and 24 parameters.
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