
ENOC-2008, Saint Petersburg, Russia, June, 30–July, 4 2008 

 

DELAYED FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEMS: 
NUMERICAL ANALYSIS OF BIFURCATION  

 
 

 
Nastaran Vasegh 

Faculty of Electrical Engineering  
K. N. Toosi University of Technology  

Tehran, Iran.  
vasegh@eetd.kntu.ac.ir 

Ali Khaki Sedigh 
Faculty of Electrical Engineering  

K. N. Toosi University of Technology 
Tehran, Iran.  

sedigh@ kntu.ac.ir 
 
 
 
 

Abstract 
  In this paper, we consider the problem of controlling 
chaos in scalar delayed chaotic systems. It is revealed 
that delayed feedback in the form proposed by 
Pyragas may cause delay in bifurcation. Also, it is 
shown that many choice of feedback gain and time 
delay make stable periodic solution for chaotic system 
which is fictitious. Finally, the period of these 
fictitious periodic orbits are estimated. 
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1     Introduction 
 The delayed feedback control (DFC) method has 
received considerable attention recently since it was 
proposed [Pyragas, 1992]. It provides an alternative 
effective method for feedback control of chaos 
[Pyragas, 1993,94,95, 2002].  
 It was a well established fact for decades that time 
delay reduces the efficiency of a control scheme. 
Therefore, it was quite a surprise and has been 
pointed out that delay may be suitable to generate 
control force for stabilizing periodic solutions. The 
main idea of these methods relies on the fact that 
unstable periodic orbits (UPOs) embedded in a 
chaotic attractor can be stabilized by applying a time-
dependent perturbation in the form of feedback to 
some accessible system parameters. These schemes 
have been successfully utilized to control chaos in 
various dynamic systems [Pyragas 1993; Bielawski, 
1994; Hikahira, 1996]. The basic idea of DFC method 
is to realize an active continuous control of a dynamic 
system by applying a feedback signal which is 
proportional to the difference between the dynamical 
variable )(tx and its delayed value: 

)( xxku T −=  (1)

where, T  is the delay time and k  is the feedback 
gain and )( TtxxT −= . If the delay time T coincides 
with the period of UPO, then the feedback vanishes 
on this UPO. This means that the feedback in the 
form (1) does not change the solution of the system.  
 The task of stability analysis and controller design 
for delayed feedback systems is not easy. 
Nevertheless, some analytical results have been 
obtained recently. The task of stability analysis and 
controller design of DFC is not easy. Nevertheless, a 
full analytical eigenmode expansion of the linear 
delayed systems and a weakly nonlinear analysis has 
been given in [Amann 2007]. In [Giannakopoulos 
1999] local and global Hopf bifurcation of scalar 
delayed model is studied. DFC with multiple delays 
has also been considered in [Ahlborn 2004, 2005]. 
Also, [Schuster 1999] contains a large number of 
relevant articles. 
 More recently, the DFC method has been used to 
control the time delay chaotic systems, where the 
controller time delay can be different from the system 
time delay [Gaun 2003; Park 2004; Sun 2004]. 
However, almost all of the aforementioned works 
only provide methods of determining the feedback 
gain k  to stabilize the unstable fixed points UFPs. In 
fact, the control signal depends on both the feedback 
gain k  and the controller time delay. As a parameter 
of the delayed feedback controller, T  should also be 
considered in the controller design. To the best of our 
knowledge, there is a few results in the current 
literature to adjust T  [Guan 2007] for stabilizing 
UPFs and in the existing methods the controller time 
delays is usually chosen adaptively and not 
analytically.  
 In this paper, we use analytical and numerical 
approach to study the behavior of delayed chaotic 
system under DFC. The areas of the parameter plane 



where no stable oscillations occur, i.e., where an 
unstable fixed point is stabilized, are found. It reveals 
that the bifurcation diagram has not the leaf structure 
as obtained in [Balanov, 2005] for Rossler system. 
Also it is shown that a cascade of period doubling 
occurs when the parameter of controller are varied. 
Finally, we estimate how the parameters of delayed 
feedback influence the periods of limit cycles in the 
closed loop system. 
 
 
2     Free System Analysis 
 In this paper we consider a class of delayed systems 
described by the following equation: 

)( τxfxx b+−=&  (2)

where, Rx∈  is state variable and 0, >τb  are system 
parameters. This class of systems has been studied by 
many authors [Tian 1998 and References therein]. It 
has been observed that such delayed systems behave 
chaotically when the nonlinear function )(xfb  
satisfies a set of conditions. Some of these conditions 
are as follows: 
i. 0)0( =bf , or 0eq1 =x  is an unstable equilibrium 
point of (1); 
ii. ( ) 0 eq2eq2 >= xfx b  , where eq2x   is another 
unstable equilibrium point of (1); 
iii. 0)(      ≥∀ xfxx b ; 
iv. .)()(0],0[ eq2 Mrfxfxxr bb =≤≥∀∋∈∃  

v. 1−<μ , where 
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Other conditions are given in [Tian, 1998]. Fig. 1 
illustrates the conditions on the function )(xfb  
graphically. Some typical models that satisfy the 
above conditions are logistic, Ikeda and Mackey-
Glass models. These systems may have chaotic 
attractors for some values of parameters.  
 If we linearize free system (2) around eq2x , we have 
the following characteristic equation 

01)( =−+= − λτμλλΔ e  (3)

By simple calculation one can find that for  
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system (2) undergoes to a sequence of Hopf 
bifurcation and 0iωλ ±=  are roots of (3). So eq2x  is 
an unstable saddle focus. The changes in the 
qualitative behavior of the attractor as the parameter 

τ  is varied are as follows. The instability occurs at 
0ττ = ; for 10 τττ <<  there is a stable limit cycle and 

for 1ττ >  a period-doubling bifurcation sequence, 
which routs to chaos is observed [Giannakopouls,  
1999]. 

 
 

 
Fig1. A plot of )(xfb .  

 
 
3      Behavior of Controlled System 
 In this section, we analyze the delayed model (5) 
under DFC described by  

)()( xxkxfxx Tb −++−= τ&  (5)

3.1    Analytical results 
 The linearization of (2) around eq2x  is obtained as 

Txkxxkx +++−= τμ)1(&  

and also the characteristic equation is  

0)1(),,(Δ =−−++= −− λλτμλλ TekekTk  (6) 

If we choose τ=T , then we have the following 
theorem. 
Theorem 1. The equilibrium point eq2x  is stable if  

τ=T  and )1(2 μ+−>k . 
Proof: It is straightforward from a theorem in [Hu, 
2002]. 
 Now, it is shown that the closed system (5) is 
stabilizable for enough small T . If one chooses  

1<<T , then xTxxT &−≈  and the closed loop 
equation can be rewritten as 

τμ xxxkT +−=+ &)1(  (7)

By the following characteristic equation 

λτμλλ −−++= ekTTk 1)1(),,(Δ  (8)



Then the following theorem is obtained. 
 
Theorem 2: All roots of (8) are on the left half plane if 

1−> τμkT  . 
Proof: Let ωλ i+= s be a root of (8). Putting it into 
(8) and separating real and imaginary parts, it yields: 

)cos(1)1()ΔRe( τωμ τ seskT −−++=

)sin()1()ΔIm( τωμω τ sekT −++=  

Without lost of generality assume 0≥ω . Obviously  
0=ω  is a root of (8). Let 

ωτμτ
ω

ω τ cos 1)ΔIm()( sekTP −++=
∂

∂
=  

So 0)( >ωP  if  1−> τμkT , )ΔIm(  is a strictly 
increasing function of ω  and it has no root except 

0=ω . Similarly )ΔRe(  is a positive strictly 
increasing function of s  for 0≥s . Therefore (8) has 
no root in the right half plane.  
 
Similarly one can obtain that for large T , if 

01 <+ τμ , the equilibrium point eq2x  is unstable for 
all value of k .  
 
 
3.2    Numerical analysis of bifurcation 
 We use the logistic model as a paradigmatic chaotic 
model to which we apply delayed feedback control. It 
exhibits chaotic oscillations born via a cascade of 
period-doubling bifurcations: 

)()1( xxkxbxxx T −+−+−= ττ&  (9)

 Consider the parameter 4.8=b . Where 0=k , by 
using Poincare section 0=x& , the bifurcation diagram 
versus τ  is represented in Fig. 2.  The instability 
occurs at 27.00 ≈τ , for 47.00 << ττ , there is a 
stable limit cyclic. A periodic doubling bifurcation 
sequence and chaos are observed at 47.0>τ . The 
chaotic attractor, mentioned in [Jiang, 2006] for 

5.0=τ , is shown in Fig. 3. Unstable periodic orbits 
embedded into the chaotic attractor with period 
two(green), four (red) and eight (blue) are shown, too. 
 To adjust controller parameters T  and k , we use 
this fact that the period of periodic orbits (stable or 
unstable) born at bifurcation critical value jττ =  is 

0/2 ωπmTT m == . Also,  if  0iωλ =  is a root (3) for 

jττ =  , then it is a root of (6) if mTT =  for any 
integer m . So we propose to choose such T  to 
stabilize UPO.  
 It is easy to show that if jττ =  is a Hopf bifurcation 
critical value for (2), one can choose k  such that the 
periodic solution born from this Hopf bifurcation 
became stable. This means that if for jττ =  system 

(2) has an UPO, the closed loop system (5) has a 
stable periodic orbit. 
 

 
Fig. 2. Bifurcation diagram of free logistic model versus τ  

by using Poincare section 0=x& .  
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Fig. 3. Periodic orbits embedded into the chaotic attractor 

with period 2(green), 4 (red) and 8 (blue).  
 

 
 Calculation of bifurcation diagram of (5) with 

994.01 == TT  and 5.1=k  is plotted against time 
delay τ  to view how the delay feedback causes delay 
in bifurcation.  For example period doubling occurs in 
free system near 47.0=τ , but it occurs for  1.1≈τ  
in (9). It reveals that the period one is stabilize for a 
wide range of τ  where it was stable only for 

47.0<τ  in free system (2). Fig. 4 also shows that for 
27.0≈τ ,  which is a critical value of free system, the 

closed loop system also undergoes a Hopf bifurcation. 
This is obtained from (6): if one chooses 0/2 ωπ=T , 
then the critical values jττ =  for (6) is as the same as 
(3). It seems that other high periodic orbits can be 
stabilized by choosing suitable T  and k .  
 



 
Fig. 4. Bifurcation diagram of the closed loop model  

versus τ  for 1TT =  and 5.1=k .  
 
  

 
Fig. 5. Bifurcation diagram for closed loop model in the 
plane ( kT , ):  black area mark of a stable fixed point, grey: 
stable period one, red stable period two, blue stable period 
four, green other behaviors such as higher periods, tours and  
chaos. It is drown approximately by simulations.    
 
 In Fig. 5 the bifurcation diagram of the closed loop 
model in terms of T  and k  is shown. The black areas 
show the stability region of fixed point. From theorem 
2, a conservative lower bound 2.2 is obtained for  kT  
for enough small T .  
 By simulation stability guarantees for 75.0>kT  
and 6.0<T . This may destroy the leaf structure of 
bifurcation diagram ( kT , ). From Fig. 5 one can see 
that the delayed feedback eliminate chaos for a large 
value of T  (for example for 5.105.0 << T  for 
different k ), and it may induced new chaotic motion. 
For large k  and T  the trajectories of (9) goes to 
infinity. 
 To get general idea about the influence of feedback 
gain k , it is efficient to plot the bifurcation of x  
versus k . 
 From Fig. 5 and Fig. 7 one can find that for small k  
and some fixed T  an inverse period doubling occurs 
and chaos born from cascade period doubling. But for 
large k  or T  (right and top of Fig. 5) other dynamics 
such as tours make chaos.  
 

  
 

   
 

 
Fig. 6. Bifurcation diagram for the closed loop model  
versus T for (a) 8.0=k , (b) 5.1=k , (c) 5.2=k . 

 
   
 In Fig. 7 one can see that suitably chosen T can 
broaden the range of allowed k . In order to illustrate 
it we plot two one-parameter bifurcation diagrams 
versus k  for two values 1TT =  and 8.1=T . It is 
clear that for 3.1>k   a periodic-one solution is 
obtained with a small change in the amplitude of 
oscillation. In other words, feedback gain in a certain 
range has small effects on periodic solution if T is 
chosen appropriately. Also inverse period doubling 
can be seen for the smaller k  .    
  



 
 
 

 
Fig. 7. Bifurcation diagram for the closed loop model versus 

k  for  (a) 
1

TT =  and  (b) 8.1=T . 

 
3.3    Period of Orbits 
 
 In order to find the period of the controlled orbit 

),(Θ Tk , besides the controller parameters k  and T , 
we find it for several values of k  and T  for period 
one and two. These are shown in Fig. 8.  It seems that 

),(Θ Tk is a linear function of  T  and is a function of 

k
1 . So we use the following approximation 

hgTTk +=),(Θ  (10)

where g  and h  are functions of k
1 . It is in a good 

agreement with that mentioned in [Balanov, 2005]. 
 Eq. (10) and Fig. 8 mean that stable periodic 
solutions may not have the period of DFC and many 
fictitious periodic solutions are appeared.  
 
4     Conclusion  
 In this paper, we have studied the behavior of scalar 
delayed chaotic model under DFC. The closed loop 
model of such systems has two delays and we use 
numerical method for its analysis. A method to find 
the controller delay is proposed, which is based on 
bifurcation analysis of the open loop system.  
Numerically, it is shown that a good choice of  T  can 

reduced the effect of k . Simulations show that T  and 

k
1  effect the period of fictitious periodic solutions. 
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Fig. 8. Period of resulting stable orbit for different values of 

k  and T . 
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