
CYBERNETICS AND PHYSICS, VOL. 9, NO. 2, 2020, 107–116

A NUMERICAL APPROACH FOR THE STOCHASTIC
CONTROL OF A TWO-LEVEL QUANTUM SYSTEM

Cutberto Romero-Meléndez
Basic Sciences Department

Metropolitan Autonomous University
Mexico

cutberto@azc.uam.mx

Leopoldo González-Santos
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Abstract
The aim of this paper is to study the problem of con-

trolling the stochastic evolution of a two-level quantum
system in the presence of two randomly fluctuating elec-
tromagnetic fields, given by a Wiener process. The sys-
tem is modeled by the stochastic Schrödinger equation
dependent on time. We set up the quantum optimal con-
trol problem by choosing a cost functional type Bolza.
By applying the Pontryagin Maximum Stochastic Princi-
ple to an extended Hamiltonian, we express the stochas-
tic optimal controls in terms of the co-state of the sys-
tem. To solve numerically the resulting stochastic differ-
ential equations we propose an iterative algorithm using
the Euler-Maruyama method. Finally, we obtain the op-
timal trajectories on the Bloch sphere.

Key words
Stochastic Optimal Control, Pontryagin Maximum

Stochastic Principle, Euler-Maruyama method.

1 Introduction
Studying the motion of a 1

2 -spin particle in a two-level
system and the interaction with its surronding, some-
times is necessary to introduce a stochastic model. We
consider the Brownian motion of the spin represented by
a randomly fluctuating electromagnetic field [Kubo and
Hashitsume, 1970]. The efficient computation of numer-
ical solutions of quantum stochastic diffusion equations,
computing quantum trajectories in heterodyne measure-
ment [Campagne-Ibarcq, P. et al., 2016], tracking opti-
mal quantum trajectories in Bloch sphere [Weber, S.J.
et al., 2014] and controlling the stochastic evolution of

quantum system in presence of random perturbations or
fluctuations [De Vega, 2005] are the motivations for the
present work.

Stochastic simulation algorithms are used to study
many phenomena with stochastic noise present, as the
dynamics of stock prices or the motions of a atomic par-
ticle subject to external random fluctuations. Many of
the models correspondig to these phenomena, which are
described by stochastic differential equations, don’t have
analytic solutions.

There is no analytical solution to the stochastic model
studied in this paper, so numerical approximations are
required. There are several different approaches to nu-
merically solve this kind of problems, namely, the gra-
dient approach, the general Monte Carlo simulation,
the Runge-Kutta approximations, the Markov chains ap-
proximations and the Euler-Maruyama approximations,
among others. Using time discrete approximations, it
is important to considerate the efficiency of a numeri-
cal scheme, by identifying the type of convergence that
make practical sense to the model. In deterministic opti-
mal control problems within of Nuclear Magnetic Reso-
nance, several algorithms have been used, based on gra-
dient approach, which have shown high performance in
problems related to efficiency of coherence in the trans-
fer spin states. In this work, we have extended to case
stochastic, the algorithm used in the deterministic model
studied in [Romero, 2017]. So, we don’t have consid-
erate the possibility of use this gradient approach. The
Monte Carlo simulation is very general and accurate,
but it is highly sophisticated and it requires large sam-
ple sizes. Given that our stochastic model was con-
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sidered as a perturbed system in the diffusion term of
the corresponding deterministic system [Borkar, 2005],
we have used the Euler-Maruyama scheme. The Euler-
Maruyama approximation is the simplest method which
can be implemented and which converges to an appro-
priate step size, although, it is sometimes inefficient and
gives poor stability properties. In our case, this numer-
ical scheme, by its simplicity, allowed us to develop a
simple program in MATLAB to simulate sample paths
close to those of the solution of the deterministic sys-
tem. The simplicity of the program developed allows
fast convergence of the trajectories.

We consider a two-level open quantum system inter-
acting with an environment, althought an electromag-
netic field. When a sample is placed in a constant and
longitudinal static magnetic field with magnitude B0 in
the direction of the Z axis, the magnetic moments of
this sample are aligned. Then, if it is exposed to a ran-
domly time varying radio frequency (r.f.) electromag-
netic field with magnitude u1(t) along the X , and a r.f
electromagnetic field with magnitude u2(t) along the Y
axes, varying also in a random way, the sample absorbs
the energy through a sequence of transverse magnetic
pulses. The total magnetic field to which the sample
is subjected is B(t) = u1(t)~ı+ u2(t)~+B0

~k. When
the magnetic moment vector of the system is transferred
to the XY plane, the sequence of transverse magnetic
pulses is stopped, causing the magnetic moment vector
to precess. Repetitions of this process produce fluctua-
tions in B0 and eventually, decoherence. The pulse se-
quence should be as short as possible to minimize the
effects of relaxation, to optimize the sensitivity to the
experiment and the contrast of the obtained image. This
is achieved by controlling the sequence of pulses that
create a unitary transformation in the shortest possible
time. For Control Theory the minimization in time of a
sequence of pulses equals the minimization of lengths of
trajectories of vector states (in homogeneous spaces).

We study the simplest control system of a - 12 spin par-
ticle interacting with a electromagnetic field, neglecting
other interactions with the system. This quantum control
system describes the dynamics of a system like a 2-level
quantum system, governed by the Schrödinger equation
for a pure state (we set ~ = 1)

d

dt
~ψ(t) = −iH(u(t))~ψ(t) (1)

where the state ~ψ : [0, T ] → C2 is a vector representing
the unitary ket |ψ〉, T ∈ R is the duration of the process,
u : [0, T ] → R, u(t) = u1(t) + u2(t) is the control and
the energy of the system is represented by the Hamilto-
nian H(t) that, in our case, is the interaction of the total
spin angular momentum, including the interaction with
the external electromagnetic fields ~B(t), which plays the
role of the control u(t). The Hamiltonian satisfies

H(t) = −γ~S · ~B(t) (2)

where ~S = S1~ı + S2~ + S3
~k is the spin angular mo-

mentum operator and γ is the gyromagnetic ratio of the
system or constant of proportionality between the mag-
netic momentum and the angular momentum. The state
vector in (1) is written as |ψ(t)〉 = α|+〉 + β|−〉,
where |+〉 and |−〉 are the orthonormal eigenvectors
corresponding to eigenvalues +~

2 and −~
2 , respectively,

of S3. So, in the {|+〉, |−〉} basis, the matrix repre-

senting S3 is S3 =

(
−i 0
0 i

)
. In the same way, we

have S1 =

(
0 −i
−i 0

)
, S2 =

(
0 −1
1 0

)
. The ma-

trices {S1, S2, S3} are the Pauli matrices, they form
a basis for su(2), Lie{Sz, Sx, Sy} = su(2), mak-
ing sense of the controllability problem for the system
(1), [D’Alessandro, 2001]. Unlike our previous paper
[Romero, 2017], we introduce disturbance in the sys-
tem (1), considering the components Bx(t) = u1(t) and
By(t) = u2(t) of the electromagnetic field varies ran-
domly in time, andB0(t) is the constantB0 = 1. So, us-
ing the 1

2S1,
1
2S2,

1
2S3 Pauli matrices, representing the

operators S1, S2, S3, we write

H(t) = −γS3B0 − γS2u2(t)− γS1u1(t) (3)

We can separate the Hamiltonian H(u(t)) into
H0(u(t)), corresponding to

B0(t) = B0
~k (4)

and H1(u(t)), corresponding to

B1(t) = u1(t)~ı+ u2(t)~ (5)

Therefore

H0(u(t)) = −γ(S1u1(t) + S2u2(t) + S3B0) (6)

H1(u(t)) = −γS1u1(t) (7)

H(t) contains deterministic and stochastic interactions
so, we can separate them as

H(t) = H0(t) +H1(t) (8)

where H0(t) is the free system Hamiltonian corre-
sponding to the external electromagnetic field (4) and
the random Hamiltonian H1(t) of the system under
the influence of one stochastic perturbation (S1u1(t) +
S2u2(t))s(t), with s(t) assumed a stationary and Gaus-
sian process, acting by means of the field (5)

Rescaling time, considering B0 = 1 and denoting
S1 = − 1

2γS1, S2 = − 1
2γS2 and S3 = − 1

2γS3, we
have

H(t) = S3 + (S2u2(t) + S1u1(t))s(t) (9)



CYBERNETICS AND PHYSICS, VOL. 9, NO. 2, 2020 109

where s(t) can be represented as a Brownian motion
process or a Wiener process W (t) by dW (t) = s(t)dt.
Therefore, the stochastic linear Schrödinger equation for
pure states corresponding to equation (1) is:

d~ψ(t) = S3
~ψ(t)dt+ (S1u1(t) + S2u2(t))~ψ(t)dW (t)

(10)
For a better visual description of the evolution of the
trajectory of the controlled states ~ψ = (ψ1, ψ2) ∈ C2

we will use the surface of the Bloch sphere SB ⊂ R3.
An adequate projection of the space of the pure states
over the Bloch sphere is given by the Hopf projection
Π : S3 ⊂ C2 → SB,

Π :

(
ψ1

ψ2

)
7→

 −2Re(ψ∗1ψ2)
2Im(ψ∗1ψ2)
‖ψ1‖2 − ‖ψ2‖2

 (11)

with ψ∗1 the conjugate of ψ1 in C, [Boscain, 2006].

2 The Quantum Optimal Control Problem
We consider the model describing a spin 1

2 -particle
in an electromagnetic field fluctuating in the X, Y-
directions by white noise. The optimal control problem
for this quantum system is the following:
To find controls u1(t), u2(t) ∈ L1([0, T ],R) which
steers the initial state ~ψ(0) of the stochastic system

d~ψ(t) = S3
~ψ(t)dt+ (u2(t)S2 + u1(t)S1)~ψ(t)dW (t)

~ψ(0) =

(
1
0

) 
(12)

to the final state ~ψ(T ) in C2 and minimizes over 0 ≤ t ≤
T the energy cost functional of Bolza type, following:

J(u) = E
(
〈ψ>(T )|O |ψ(T )〉+

∫ T

0

(
u21(t)+u22(t)

)
dt
)

(13)
where E(f) denotes the conditional expectation with re-
spect to f , T = π√

2
and O is the observable operator

with the target information O = ~ψ(T )~ψ>(T ), which
will allow an optimal evolution of the system.

We split into real and imaginary parts of ~ψ = (~ψ1, ~ψ2)

and we set ~x = (Re ~ψ>1 , Re
~ψ>2 , Im

~ψ>1 , Im
~ψ>2 )>,

S3 =

(
ReS3 ImS3

ImS3 ReS3

)
and also for S1, S2. We obtain

the whole dimensional extended system:

d~x(t) = S3~x(t)dt+ (u2(t)S2 + u1(t)S1)~x(t)dW (t)
~x(0) = ~x0

}
(14)

where, again S1, S2 and S3 are denoted by the real ma-
trices:

S1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , S2 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



S3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , ~x0 = (1, 0, 0, 0)>

2.1 Adjoint Process
To find optimal controls in the quantum optimal

stochastic problem (14), subject to a cost functional
(13), we will use the stochastic Pontryagin maximum
principle, which is formulated following the pseudo-
Hamiltonian or Stochastic Control Hamiltonian

H(t, x, u, λ, q) = 〈λ(t), b(t, x, u)〉
+ 〈q(t, x, u), σ(t, x, u)〉
+ u21(t) + u22(t) (15)

associated with the stochastic general system

d~x(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t)) dW (t)
(16)

and his adjoint stochastic linear system

d~λ(t) = a(t, x, u)~λ(t)dt+ q(t, x, u)~λ(t)dW (17)

where ~λ(t) ∈ T ∗~xRn is the adjoint state of ~x(t).

Definition 1. A stochastic linear system

d~λ(t) = a(t, x, u)~λ(t)dt+ q(t, x, u)~λ(t)dW

is called the stochastic adjoint system associated to (16)
if the scalar product ~x(t) ·~λ(t) is a global stochastic first
integral of (16), namely, if d(~x(t) · ~λ(t)) = 0

The adjoint process has the following characterization:

Theorem 1. Associated to the time-dependent
Schrödinger linear equation in the stochastic con-
trol problem (14) and the corresponding variational
stochastic system

d~ξ(t) = S3
~ξ(t)dt+ (u2(t)S2 + u1(t)S1)~ξ(t) dW (t),

(18)
with ~ξ(t) ∈ T~ψR

n, is the following adjoint backward
stochastic linear system

d~λ(t) = (−S3 + (u2(t)S2 + u1(t)S1)2)~λ(t)dt

−(u2(t)S2 + u1(t)S1)~λ(t)dW

~λ(T ) = ~λT (19)

where ~λ(t) ∈ T ∗~xR
n is the adjoint vector of ~x(t) and

~λT = (0, 0, 0, 1)>
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Proof In general, we write the adjoint backward stochas-
tic linear system

d~λ(t) = a(t, x, u)~λ(t)dt+ q(t, x, u)~λ(t)dW (20)

Applying the transversality conditions of the Pontryagin
Maximum Principle and the Itô product formula we ob-
tain from (18) and (20) the following

0

= d(~λ(t) · ~ξ(t))
= ~λ(t)d~ξ(t) + ~ξ(t)d~λ(t) + q(t, x, u)~ξ(t)~λ(t)(u2(t)S2

+ u1(t)S1) dt

= ~λ(t)~ξ(t)(S3 + a(t, x, u)) dt~ξ(t)~λ(t)(u2(t)S2

+ u1(t)S1)

+ q(t, x, u)) dW + q(t, x, u)~ξ(t)~λ(t)(u2(t)S2 dt

+ u1(t)S1) dt

= ~λ(t)~ξ(t)
(

(S3 + a(t, x, u) + q(t, x, u)(u2(t)S2 dt

+ u1(t)S1)) dt

+ (u2(t)S2 + u1(t)S1 + q(t, x, u)) dW
)

(21)

and then,

a(t, x, u) = −S3 + (u2(t)S2 + u1(t)S1)2

q(t, x, u) = −(u2(t)S2 + u1(t)S1)

proving equation (19) �

We use Theorem 1 to get the following expression for
the Hamiltonian:

H(t, x, u, λ, q) = ~λ>(t)S3~x(t)− ~λ>(t)(u2(t)S2

+ u1(t)S1)2~x(t) + u21(t) + u22(t)

The necessary conditions of optimality for the controls,
according to the Pontryagin Maximum Principle,

∂H(t)

∂u1
= 0

∂H(t)

∂u2
= 0 (22)

meaning

2u1(t)(1 + ~λ>(t) · ~x(t)) = 0 (23)

2u2(t)(1 + ~λ>(t) · ~x(t)) = 0 (24)

so, if u1(t) 6= 0 and u2(t) 6= 0, the condition reads

1 + ~λ>(t) · ~x(t) = 0 (25)

and the Hamiltonian results

H(x(t), u(t), p(t), q(t)) = ~λ>(t)S3~x(t) (26)

Definition 2. An admissible control ū(t) is called a sin-
gular control on the control region V, if V ⊂ U is
nonempty and for a.e., t ∈ [0, 1] and ∀v ∈ V, a.s., we
have

H(t, x(t, ū(t)), ū(t), λ(t, ū(t)), q(t, ū(t)))

= H(t, x(t; ū(t)), v, p(t, ū(t)), q(t, ū(t))) (27)

So, if the Hamiltonian does not depend on the con-
trol, this is a singular control. In our case, any control
u(t) 6= 0 is a singular control on U . Looking for op-
timal controls, when the Hamiltonian is invariant with
respect to the control variables on some admissible con-
trol region, further necessary optimality conditions are
needed aside from the Pontryagin Maximum Principle,
namely the Second-Order Maximum Principle [Tang,
2010], [Yong-Zhou, 1999].

3 The Second-Order Stochastic Maximum Princi-
ple

Let U be a nonempty Borel subset of Rm and K0 a
positive constant. We assume:

(A1) The functions f : [0, 1] × Rn × Ū → Rn,
σ : [0, 1] × Rn → Rn, l : [0, 1] × Rn × Ū → R,
and h : Rn → R are Borel measurable, continuous in
u, continuously differentiable in x, for each fixed (t, u),
fx(t, x, u), σx(t, x), lx(t, x, u), hx(x) are Borel measur-
able and continuous in x and for K0, ∀i = 1, . . .m

(1 + |x|+ |u|)−1|f |+ |fx| ≤ K0

(1 + |x|)−1|σi|+ |σix| ≤ K0

(1 + |x|2 + |u|2)−1|l|+ (1 + |x|+ |u|)−1|lx| ≤ K0

(1 + |x|)−1|hx| ≤ K0

(A2) The first-order derivatives above are continuous
in u on Ū . The functionsf , σ, l y h have continuous
second-order derivatives in x. The second-order deriva-
tives are Borel measurable with respect to (t, x, u), are
bounded by the constant K0, that is,

|fxx|+ |σixx|+ |lxx|+ |hxx| ≤ K0 (28)

In this context we define:

H(s) = H(s, y(s), u(s), p(s), q(s))

Hx(s) = Hx(s, y(s), u(s), p(s), q(s))

Hxx(s) = Hxx(s, y(s), u(s), p(s), q(s))

∆H(s; v) = H(s, y(s), v, p(s), q(s))

− H(s, y(s), u(s), p(s), q(s))

∆f(x, v) = f(x, v)− f(x, u)

∆bx(t, x, v) = bx(t, x, v)− bx(t, x, u) (29)

and now, we have the fundamental result:
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Theorem 2 (Second-Order Maximum Principle (Tang)).
Assume that (A1) and (A2) are satisfied. Let (y(·), u(·)
be an optimal pair and u(·) be singular on the control
region V . Then, there is a subset I0 ⊂ [0, 1] which is
of full measure, such that at each t ∈ I0, (y(·), u(·)
satisfy, in addition to the first-order maximum condition
(22), the following second-order maximum condition
∀v ∈ V, a.s.:

∆Hx(t, v)∆f(t, v) + ∆f>(t, v)P (t)∆f(t, v) ≥ 0
(30)

To apply the second-order maximum principle, we
consider the second order adjoint equation, [Yong-Zhou,
1999]:

dP (t) = −[bx(t, x, u)>~x(t)P (t) + P (t)bx(t, x, u)

+ bx(t, x, u)>~x(t)P (t)bx(t, x, u)

+ σx(t, x, u)>~x(t)Q(t) +Q(t)σx(t, x, u)]dt

+ Q(t) dW (t)

P (0) = I (31)

where

b(t, x, u) = S3x(t) (32)
σ(t, x, u) = (u1(t)S1 + u2(t)S2)x(t) (33)

From (26) and (32) we have

∆Hx(t, v) ∆bx(t, x, u) = 0 (34)

and

∆b>x (t, x, u)P (t) ∆bx(t, x, u) = 0 (35)

so, the second order necessary minimum condition (30),
∀v ∈ U

0 ≥ ∆Hx(t, v) ∆bx(t, x, v)

+ ∆b>x (t, x, v)P (t) ∆bx(t, x, v) (36)

means that any control u(t) 6= 0 satisfies the second-
order maximum principle, that is to say, that each singu-
lar control u(t) 6= 0 is a candidate for optimal control.
Otherwise, the second-order maximum condition would
not be satisfied and the constant control u(t) would nec-
essarily not be optimal.

We propose the following design for the control
fields, based on the last considerations and according to
[Romero, 2017]:

u1(t) =
−1

2 + ~λ>(t) · ~x(t)
~λ>(t) · S1~x(t)

u2(t) =
−1

2 + ~λ>(t) · ~x(t)
~λ>(t) · S2~x(t) (37)

Replacing the equations (37) into equations (14) and (19)
we obtain a coupled two-point boundary value prob-
lem of stochastic differential equations, whose analytic
solutions can not be found, so numerical solutions are
needed.

4 Numerical Approximation
Several facts have motivated the increasing interest

in the development of computational techniques related
with optimal quantum control and, recently, with the
stochastic optimal quantum control in the context of
the magnetic resonance theory. Among them is the
fact that in very few cases analytical solutions of the
Schrödinger equation can be found, so numerical so-
lutions are needed. In particular, the evolution of the
Stochastic Schrödinger Equation numerically can be a
useful tool by understanding the quantum systems inter-
acting with the environment, namely, the open quantum
systems. In this section we describe the proposed algo-
rithm and prove its monotonic convergence. We focus in
this work the monotonic iterative scheme.

The Euler scheme is the simplest effective computa-
tional method used in deterministic differential equa-
tions and the Euler-Maruyama scheme is it’s analogue
for stochastic differential equations. We have used this
method to develop the next algorithm to determine the
optimal controls to steer a two-level quantum system
from an ground state, represented by the north pole of
the Bloch sphere to an excited state, represented by the
south pole of the Bloch sphere.

4.1 Algorithm outline
We extend the ideas in [Maday, 2003] and [Romero,

2017] to the stochastic case.
Given four constants δ1, δ2, η1, η2,∈

(0, 2), λ0(t), v0(t), w0(t) real valued functions and a
natural number k ≥ 1, we define the following iterative
functions:

u
(k)
1 (t) = (1− δ2)w(k−1)(t)−

δ2
2 + λ>(k−1)(t)x(k)(t)

λ>(k−1)S1x
(k)(38)

u
(k)
2 (t) = (1− δ1)v(k−1)(t)−

δ1
2 + λ>(k−1)(t)x(k)(t)

λ>(k−1)S2x
(k)(39)

v(k)(t) = (1− η1)u
(k)
2 (t)−
η1

2 + λ>(k)(t)x(k)(t)
λ>(k)S2x

(k) (40)

w(k)(t) = (1− η2)u
(k)
1 (t)−
η2

2 + λ>(k)(t)x(k)(t)
λ>(k)S1x

(k) (41)
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and the following forward stochastic differential system:

dx(k)(t) =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

x(k)(t) dt+


0 −u(k)2 0 −u(k)1

u
(k)
2 0 −u(k)1 0

0 u
(k)
1 0 −u(k)2

u
(k)
1 0 u

(k)
2 0

x(k)(t) dW

x(k)(0) =


1
0
0
0

 (42)

the backward stochastic differential system:

dλ(k)(t) = −(w(k))2 + (v(k))2)Id

+


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

λ(k)dt

−


0 −v(k) 0 −w(k)

v(k) 0 −w(k) 0
0 w(k) 0 v(k)

w(k) 0 −v(k) 0

λ(k)dW

with condition

λ(k)(
π√
2

) =


0
0
0

x
(k)
4 ( π√

2
)


The Euler-Maruyama method is obtained by truncating

Itô’s formula of the stochastic Taylor series after the first
terms. It computes approximations xi ≈ x(i∆t). We
will apply this method to solve the former Itô equations.

To solve the forward and backward processes (42) and
(43) we select a grid of [0, T ]:

0 < t0 < · · · < tN = T

defining

∆ti = ti+1 − ti, ∆Wi = Wi+1 −Wi

So, we have, for i = 1, . . . N :

xi+1 ≈ xi + S3xi∆ti + (u1(ti)S1 + u2(ti)S2)xi∆Wi

(43)

λi+1 ≈ λi + (−S3 + (u2(ti)S2 + u1(ti)S1)2)λi∆ti

− (u2(ti)S2 + u1(ti)S1)λi∆Wi (44)

where xi = x(ti), λi = λ(ti) and we can consider

∆Wi =
√

∆ti si (45)

with si a random real number in [0, 1].
We have the following algorithm:

Algorithm 1. The following quantum control algorithm
allows to steer the system (14) from an initial(2019) state
~ψ(0) to a target state ~ψ(T ), finding the optimal controls
u1(t), u2(t) that minimize the cost functional J(u1, u2):

1. Set initial constant parameters δ1, δ2, η1, η2 ∈
[0, 2], initial co-state function λ0(t) and initial in-
termediate control functions v0(t), w0(t).

2. Replace δ1, λ
0(t), v0(t) in equation (39) to get

u
(1)
2 (t).

3. Replace δ2, λ
0(t), w0(t) in equation (38) to get

u
(1)
1 (t).

4. Replace u(1)2 (t) and η1 in equation (40).
5. Replace u(1)1 (t) and η2 in equation (41).
6. Solve integrating the forward stochastic differential

system (42) to get x(1)(t), using u(1)2 (t) and u(1)1 (t).
7. Solve integrating the backward stochastic differen-

tial system (43) to get λ(1)(t), using u
(1)
2 (t) and

u
(1)
1 (t).

8. Replace x(1)(t) in equation for u(1)(t).
9. Re-iterate the process.

10. {v(k+1)(t), w(k+1)(t), λ(k+1)(t)}
→ {v(k)(t), v(k)(t), λ(k)(t)}

11. {u(k+1)
y (t), u

(k+1)
x (t)} → {u(k)y (t), u

(k)
x (t)}

12. Continue until convergence

This algorithm produces ensembles of functions
{λ(k)(t), x(k)(t), u(k)(t)}k≥1 that eventually converge
to the solution of the system:

{λ(k)(t), x(k)(t), u(k)(t)}k≥1 → {λ(t), x(t), u(t)}
(46)

The efficiency of this algorithm depends on the adjust-
ment of the initial parameters. We start by choosing
δ1 = 0.01, δ2 = 0.40, η1 = 0.01, η2 = 0.40, v(0) =
0.589 sin(6 t + 0.41), w(0) = 0.589 sin(6 t + 0.41),
λ0(t) = (0, 0, 0, 4.53). The process was convergent at
k = 15 for these choices.

Figure 1 shows the stochastic optimal controls u1 and
u2. Figure 1 shows the corresponding stochastic trajec-
tory ~x = (x1, x2, x3, x4) to the optimal controls. Figure
1 shows the projection of the optimal trajectories on the
Bloch sphere and Figure 4 shows the comparative trajec-
tory for the deterministic case.
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Figure 3. One controlled stochastic trajectory starting at the north
pole |0〉 and reaching the south pole |1〉 on the Bloch sphere, using
the controls u2(t) and u1(t) with the proposed algorithm.

Figure 4. One controlled deterministic trajectory starting at the north
pole |0〉 and reaching the south pole |1〉 on the Bloch sphere, using
the controls u2(t) and u1(t) for the proposed algorithm.

Figure 1. State transfer trajectory (x1, x2, x3, x4) to steer |0〉 to
|1〉, using two controls found with the proposed algorithm.

Figure 2. The stochastic optimal controls found u2(t) and u1(t) to
steer |0〉 to |1〉, using the proposed algorithm .

5 Controlling the system only with one stochastic
control along the X-axis

Let us consider a more detailed problem of control-
ling a nuclear spin subjected to a static magnetic field
along the Z-axis and a single time varying radio fre-
quency magnetic field along the X-axis. According to
the previous equations, in this case we have

d~x(t) = S3~x(t)dt+ u1(t)S1~x(t)dW

d~λ(t) = (−S3 + (u1(t)S1)2)~λ(t)dt− u1(t)S1
~λ(t)dW

(47)
subject to the constraint:

J(u) = E
(
〈x>(T )|O |x(T )〉+

∫ T

0

u21(t) dt
)

(48)

Now, the Hamiltonian of the system (47) is:

H = u21(t) + ~λ>(t)S3~x(t)− ~λ>(t)(u1(t)S1)2~x(t)
(49)

and the necessary conditions for optimality of the con-
trols get:

u1(t) =
−1

2 + ~λ>(t) · ~x(t)
~λ>(t) · S1~x(t) (50)

Applying the algorithm adapted to this case, with
δ2 = 0.40, η2 = 0.40, w(0) = 0.59 sin(6.1 t + 0.43)
and λ0(t) = (0, 0, 0, 4.53), the process was convergent
at k = 10 for this choice. Figure 5 shows state transfer
limit trajectory (x1, x2, x3, x4) and the stochastic opti-
mal control found u1(t), that steers |0〉 to |1〉, using the
proposed algorithm. Figure 7 shows four iterations of
the algorithm of the state transfer trajectories on Bloch
sphere and the state transfer limit trajectory.

5.1 Controlling the system only with one stochastic
control along the Y -axis

Let us consider now the problem of controlling a nu-
clear spin subjected to a static magnetic field along the
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Figure 7. Iterations of state transfer trajectories (k = 4) from |0〉
to |1〉 on the Bloch sphere, using the stochastic optimal control u1(t)

for the algorithm, when u2(t) = 0.

Figure 8. State transfer limit trajectory (k = 15) from |0〉 to |1〉
on the Bloch sphere, using the stochastic optimal control u1(t) for the
algorithm, when u2(t) = 0.

Figure 9. State transfer trajectory (x1, x2, x3, x4) to steer |0〉 to
|1〉, using the proposed algorithm.

Figure 10. The stochastic optimal control found u2(t) to steer |0〉
to |1〉, using the proposed algorithm.

Figure 5. State transfer limit trajectory (x1, x2, x3, x4) that steers
|0〉 to |1〉, using the proposed algorithm.

Figure 6. The stochastic optimal control found u1(t) that steers |0〉
to |1〉, using the proposed algorithm.

Z-axis and a single time varying radio frequency mag-
netic field along the Y -axis. In this case we have the
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Figure 11. State transfer trajectory from |0〉 to |1〉 on Bloch sphere,
using the stochastic optimal control u2(t) for the algorithm, when
u1(t) = 0.

equations

d~x(t) = S3~x(t)dt+ u2(t)S2~x(t)dW

d~λ(t) = (−S3 + (u2(t)S2)2)~λ(t)dt− (u2(t)S2)~λ(t)dW
(51)

subject to constraint:

J(u) = E
(
〈x>(T )|O |x(T )〉+

∫ T

0

u22(t) dt
)

(52)

The Hamiltonian of the system (51) is:

H = u22(t) + ~λ>(t)S3~x(t)− ~λ>(t)(u2(t)S2)2~x(t)
(53)

and the necessary conditions of optimality for the con-
trols get:

u2(t) =
−1

2 + ~λ>(t) · ~x(t)
~λ>(t) · S2~x(t) (54)

In Figure 10 appears the state transfer limit trajectory
(x1, x2, x3, x4) and the stochastic optimal control found
u2(t) that steers |0〉 to |1〉, using the proposed algo-
rithm. In Figure 11 appears the state transfer limit tra-
jectory on the Bloch sphere.

6 Discussion and Conclusion
In the proposed algorithm, the initial conditions play

a very important role. On the one hand, we have the
initial condition of the system of stochastic differential
equations and, on the other hand, the initial value of the
parameters δ, ν, and the initial functions λ0(t), v0(t)
and w0(t). In the first case, small perturbations of the
initial condition (ground state (1, 0, 0, 0)), do not affect
the controls found or the corresponding optimal trajec-
tory on the Bloch sphere, namely, by changing the initial
condition slightly, the target (0, 0, 0, 1) remains still in
a small neighborhood and we have also the fast conver-
gence of the algorithm. On the other hand, conversely,

small perturbations of the values δ and ν greatly affect
the optimal trajectory, arriving, for some values, to com-
promise the convergence of the algorithm. The initial
functions, λ0(t), v0(t) and w0(t), can eventually affect
the optimality of the optimal trajectory. This algorithm
can be used to steer any two points on the sphere of
Bloch, since their convergence does not depend on the
initial point or end point, see Fig. 12.
We have discussed an Krotov-like algorithm, imple-
mented with Euler-Maruyama method, to generate the
stochastic optimal control of a state-to-state transition
that maximize the cost functional Bolza type given, by
equation (13). The advantage of this algorithm over
other approaches is their simplicity to reach the target in
few iterations. In the deterministic case, this algorithm
is called algorithm of fast convergence. This algorithm
is more related to the wave function formalism than the
density-matrix approach, from the point of view of the
optimal control time and the cost functional cost Bolza
type [Tremblay, 2011]. The disadvantages of this algo-
rithm are their high sensitive to choose of restricted pa-
rameters, the restriction of the step size and the need for a
good reference adjoint function and the pseudo controls
λ0(t), v0(t) and w0(t).

We are also interested in a kind of exponential and ro-
bust stability for the numerical scheme proposed in this
paper and in his long-time asymptotic behavior , as an
extension of stability defined in [Mao, 2015] and [Mora,
2017]. In a next paper, which is in preparation, we es-
tablish the conditions that must satisfy the algorithm to
have these types of stability.

In this paper ,we have addressed the problem of finding
one o two stochastic controls that enable to steer a quan-
tum system with two levels from an initial state given
to a final given state, minimizing the energy represented
by a functional of Bolza type. Through the application
of the Pontryagin Maximum Principle and a Stochastic
Maximum Principle of the Second Order, we obtained in
both cases that the proposed controls are optimal. These
optimal stochastic controls allowed to steer the system of
the initial position to the final position of the system, rep-
resented by the north and south pole of the Bloch sphere
(Figure 3), respectively. The trajectory obtained is simi-
lar to the found in the deterministic case (Figure 4).
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