
PHYSCON 2011, León, Spain, September, 5–September, 8 2011

ON THE NUMERICAL SYNTHESIS OF OPTIMAL
FEEDBACK CONTROLLERS

Jorge Estrela da Silva
Electrical Engineering Department

Institute of Engineering of Porto

Portugal

jes@isep.ipp.pt

João Borges de Sousa
Electrical and Computer Engineering Department

Faculty of Engineering of Porto University

Portugal

jtasso@fe.up.pt

Abstract

We investigate the performance of feedback control

laws obtained via dynamic programming techniques

for deterministic continuous-time systems with contin-

uous state-space R
n. The control law relies on a value

function which is calculated numerically with a semi-

Lagrangian (SL) scheme. Both the numerical solver

and the control law require interpolation. We propose

a new algorithm that minimizes the impact of the dis-

continuities introduced by the state constraints for finite

and infinite horizon optimal control problems.

Key words

Dynamic programming, feedback control, numerical

methods.

1 Introduction

The design of optimal feedback controllers for

continuous-time systems with continuous state-space is

not a trivial task. This is mostly because, in general, it

is not possible to find the appropriate solution in closed

form, either by using the Pontryagin’s maximum prin-

ciple (PMP) (Pontryagin et al., 1962) or dynamic pro-

gramming (DP) (Bellman, 1957). The alternative is to

use numerical methods. However, numerical methods

pose their own problems and, most important, the ac-

curacy of the employed method impacts the level of

(sub-)optimality of the computed control law.

This paper focuses on the DP approach. The DP ap-

proach is based on the concept of the value function.

The value function gives the optimal cost of the associ-

ated optimal control problem as a function of the initial

state. The main appeal of the dynamic programming

approach resides in the fact that the optimal control can

be easily computed from the value function, by appli-

cation of the DP (or, more specifically, the Verification

Theorem). The crux of the problem resides in the com-

putation of the value function.

The numerical computation of the value function is a

very demanding task, specially as the system dimen-

sion grows. However, we remark that the value func-

tion must be computed only once for each optimal con-

trol problem and that such computation can be made

at the design stage (i.e., offline), when more process-

ing power is generally available. On the other hand,

given the value function, the determination of the op-

timal control is a very amenable task for on-line com-

putation. This is in contrast with receding horizon ap-

proaches, that may have to perform very demanding

optimizations on each control cycle.

For continuous-time systems, the DP approach leads

to the Hamilton-Jacobi-Bellman partial differential

equation (HJB PDE), if a single control input is con-

sidered, or to the Hamilton-Jacobi-Isaacs partial dif-

ferential equation (HJI PDE), if two adversarial in-

puts are considered (differential games framework

(Krasovskii and Subbotin, 1988)). The value func-

tion is the viscosity solution of the HJB(I) PDE (see

(Bardi and Capuzzo-Dolcetta, 1997) or (Fleming and

Soner, 2006)). This fact is appealing given the large

body of research on numerical schemes for PDE’s.

Numerical methods for the solution of dynamic

programming equations can be characterized as La-

grangian (based on following the system trajectories),

Eulerian (computations are performed at fixed grid

nodes) and semi-Lagrangian (a combination of the Eu-

lerian and Lagrangian approaches). In general, these

methods must perform interpolations of the value func-

tion or numerical approximations of the gradient of

the value function (e.g., see (Mitchell et al., 2005),

(Cristiani and Falcone, 2009) and reference therein).

Higher order methods have the potential to produce

more accurate solutions. However, only those schemes

that do not introduce oscillations in the solution should

be used. Such oscillations could induce spurious sta-

ble equilibrium points or limit-cycles in the closed loop

system preventing it from following the optimal trajec-

tory. First order schemes do not introduce oscillations.

However, their main drawback is the lower accuracy.

The main contribution of this paper is a new algo-

rithm for state constrained optimal control problems

over a given time horizon. We extend a typical semi-

Lagrangian scheme (Cristiani and Falcone, 2009) with

ideas from receding horizon control. The main advan-

tage of this algorithm is the reduction of diffusive ef-

fects near the boundary of the constrained region of

operation (more specifically, near the boundary of the

maximal controlled invariant set (Blanchini and Mi-

ani, 2008)).

In section 2 we present some background on dynamic

programming. In section 3 we discuss some limitations

of typical semi-Lagrangian algorithms. In section 4 we

describe the proposed algorithm. The conclusions and

final remarks are presented on section 5.

2 Dynamic programming based controller synthe-

sis

Consider the cost functional

J(t0, x0, a) = Ψ(x(tf))

+

∫ tf

t0

L(y(x0, τ, a), a(τ))dτ (1)

and the optimal control problem (OCP)

min
a

J(t0, x0, a) (2)

subject to:

ẋ(t) = f(x(t), a(t)) (3)

x(t0) = x0 (4)

x(t) ∈ X (5)

where y(x0, t, a) is the state of the system at time t
when subject to the input sequence a(.) and initial state

x(t0) = x0; L(x, a) and Ψ(x) are the running and ter-

minal costs, respectively; (3) describes the system dy-

namics, i.e., the system flow at state x(t) when subject

to input a(t); a(.) is drawn from Ua, the space of mea-

surable input sequences such that a(t) ∈ Ua; X defines

the state constraints.

Consider also the following variation of the OCP pre-

sented above where

tf = min{t : x(t) ∈ T } (6)

and T is a given target set. This version of the OCP has

a static solution, in the sense that it not depends on t0.

The dynamic programming framework defines the

concept of value function. The value function asso-

ciated to the OCP composed by (2)–(5) is defined as

follows:

V (t, x) = min
a∈Ua

J(t, x, a) (7)

For the static OCP the value function is independent of

t and simply designated by V (x).
The dynamic programming principle (DPP), also

known as principle of optimality, for deterministic

continuous-time system is expressed as follows:

V (t, x) = inf
a∈Ua

{

∫ ∆

0

L(y(x, τ, a), a(τ))dτ

+ V (t+∆, y(x,∆, a))
}

, x 6∈ T , t < tf (8)

where y(x, t, a) is the state of the system at time t when

subject to the input signal a and initial state x(0) =
x. For the time-dependent case we define the terminal

condition

V (tf , x) = Ψ(x) (9)

while for the static case we define the boundary condi-

tion

V (x) = Ψ(x), x ∈ T (10)

Consider the discrete-time version of the DPP:

V (t, x) = min
a∈Ua

{

∫ ∆

0

L(y∆(x, τ, a), a)dτ

+V (t+∆, y∆(x,∆, a))
}

, x 6∈ T , t < tf (11)

where y∆(x, t, a) = y(x, t, [0,∆]× a), i.e., the system

trajectory for a constant input a during a period ∆. The

solution of the discrete time dynamic programming

problem converges to the solution of the continuous-

time problem as ∆ approaches zero (see (Fleming and

Soner, 2006, Theorem 8.1)).

For static (time-invariant) problems, the discrete-time

DPP can be simply cast as

V (x) = min
a∈Ua

{

∫ ∆

0

L(y∆(x, τ, a), a)dτ

+ V (y∆(x,∆, a))
}

, x 6∈ T , t < tf (12)

One of the main appeals of the dynamic programming

approach is that, given a value function V (x), the op-

timal control can be determined in state feedback form

fc(x) . For the discrete-time case, this is given by:

fc(x) =argmina∈Ua

{

∫ ∆

0

L(y∆(x, τ, a), a)dτ

+ V (y∆(x,∆, a))
}

(13)

The same idea can be applied to the time-dependent

value function. However, the dependence on the time

variable is undesirable if the objective is to optimize

the performance of the system for a large and un-

defined period of time or, ultimately, for the infinite

horizon case. Since, in general, numerical solutions

are employed, the extra dimension incurred by the

time variable would lead to increased storage require-

ments. In what concerns the infinite horizon optimal

control problem, we remark that, under certain con-

ditions (see, e.g., (Bardi and Capuzzo-Dolcetta, 1997)

and (Mitake, 2008)), the solution V (t, x) converges to

V (x) − ct as t → −∞, where c (the ergodic cost) is

related to the average cost of the large-time behaviour

of the optimal trajectories. One such example is the

well known Linear Quadratic Regulator (LQR) prob-

lem. For a stabilizable system, the standard LQR prob-

lem leads to optimal trajectories converging to the ori-

gin; in this case, the ergodic cost is c = 0, since we are

assuming the usual zero running cost at the origin.

3 Standard semi-Lagrangian scheme

A semi-Lagrangian numerical solver was used for

the computation of the value function. The semi-

Lagrangian scheme implements a space discretization

of the discrete-time DPP. We based our implementation

on the description of (Cristiani and Falcone, 2009). In

the present case, the value function is computed at the

nodes of a regular grid covering the desired region X of

the state space. We denote by Ω the set of grid nodes. A

dimension independent algorithm was implemented as

a C++ class. This algorithm was already used to solve

problems of dimension 3 and 4. Here, for the sake of

clarity, we will limit our numerical experiments to two-

dimensional systems.

The user must write the code corresponding to

f(x, a, b) and L(x, a, b). The computational space

(limits and number of nodes along each dimension),

the initial and boundary conditions must also be de-

fined for each problem. Finally, the user must define

the input range as a finite discrete set of values.

The main procedure consists of the application of

the DPP (11) to every grid node. This procedure re-

turns an approximation of the value function and cor-

responding optimal input at every grid node. For

each considered input value a, the procedure computes
{

∫∆

0
L(y∆(x, τ, a), a)dτ+V (y∆(x,∆, a))

}

and then

chooses the minimum. This entails two main sub-

procedures:

1. The numerical solution of the augmented set

or ordinary differential equations (ẋ, ċ) =
(f(x, a), L(x, a)) in order to obtain y∆(x,∆, a)
and the cost to go from x to y∆(x,∆, a);

2. Interpolation of V (x) in order to compute

V (y∆(x,∆, a)) from the values at the neighbour-

ing nodes. More specifically, the algorithm per-

forms a multilinear interpolation (linear for one di-

mension, bilinear for two dimensions, etc.) using

the 2n vertexes of the cell containing y∆(x,∆, a).

Since the grid is regular, the cell can be determined

by simple arithmetic and truncation.

The fixed step fourth order Runge-Kutta method was

employed to solve the above mentioned set of ordinary

differential equations (ODE). Other methods can also

be easily used. Some trials were performed using a

variable step ODE solver from the GNU Scientific Li-

brary (GSL) (Gough, 2003); however, for the consid-

ered ∆, the gain in accuracy was not noticeable and, on

the other hand, the computation time was noticeably

larger.

3.1 Finite and infinite horizon problems

The finite and infinite horizon optimal control prob-

lems are associated to time-dependent value functions

V (t, x). The computation of V (t, x) starts from the ter-

minal condition V (0, x). Each posterior iteration cor-

responds to a progression backward in time. For a time-

step ∆, the result of the first iteration, V1, will be the

approximation of V (−∆, x), the result of the second

iteration, V2, will be the approximation of V (−2∆, x)
and so on. In practice, we are only interested in the fi-

nal iteration. For the infinite horizon case, we assume

that for a sufficient large number of iterations the value

function will converge to the form V (t, x) = V (x)−ct.
Therefore, for a basic implementation, only two grids

must be kept: one holding the result from the previous

iteration (for the first iteration, this will be V (0, x)) and

other for the result of the current iteration. The results

of iteration i are based exclusively on the results of it-

eration i− 1 (Jacobi iterations).

We are mainly interested in state constrained prob-

lems. This is either because the engineering problems

at hand so demand or simply due to the fact that the

computational space must be bounded so that compu-

tations are feasible. The dimensions associated to peri-

odic state variables (such as angular position, for in-

stance) are not affected by the later aspect since the

whole state space can be described by a compact set.

However, for the general case, there is no simple way

to compute V (y∆(x,∆, a)) if y∆(x,∆, a) lies outside

the defined computational space. In general, extrapo-

lation schemes will introduce large errors. The safer

approach consists of defining a sufficiently large com-

putational space such that its boundaries do not affect

the region of interest. Therefore, we assume the system

must respect the state constraint x ∈ X.

For the unconstrained case with smooth dynamics and

running cost, the value function is continuous. How-

ever, the state constraints introduce discontinuities in

the value function. By definition, V (t, x) = ∞ for

x 6∈ X. Moreover, the introduction of state-constraints

leads to the concept of maximal controlled invariant set

(MCIS). The MCIS is the set of states from which there

is a trajectory meeting the state constraints afterwards.

Depending on the system dynamics, state constraints

and input constraints, some of the trajectories begin-

ning on X cannot be kept inside it for all times. There-

fore, the cost associated to the respective initial state is

defined as infinity. This is well captured by the infinite

horizon problem. In this sense, the MCIS is defined as

{x : limt→−∞ V (t, x) 6=∞}.

The discontinuities create difficulties for the interpo-

lation scheme. If one or more vertexes of the cell con-

taining y∆(x,∆, a) are defined as infinity, special care

has to be taken when performing the interpolation. One

possibility, for these cases, is to define V (t, x) = ∞.

This is a conservative approximation. Only trajecto-

ries passing through well defined cells (i.e., not con-

taining vertexes defined as infinity) will be accepted as

feasible. However, for certain systems and grid resolu-

tions, this may lead to useless solutions. The forbidden

nodes will tend to absorb nodes corresponding to even-

tually valid trajectories. Moreover, the absorption of

nodes will have a cascading effect, i.e., nodes marked

as forbidden will tend to absorb other nodes in their

neighbourhood. This will happen if the reach set from

node x, over the defined time-step, does not intersect

a well defined cell. This effect is more pronounced

as the Courant number decreases. After some itera-

tions, the computed value function may be finite only

on a small region or even infinite everywhere. There-

fore, this method will produce a sub-approximation of

the MCIS. Whenever the intersection of the reach set

from x with the MCIS is a very narrow region (less

than one grid cell), the method will disregard x and

will converge to a sub-approximation of the MCIS. As

explained, this will have a cascading effect. Moreover,

some of the resulting trajectories will be sub-optimal in

order to escape from the absorbing grid cells.

On the other hand, we may relax the definition of in-

finity and, instead, consider a very large value Kinf

when performing the interpolation. This will produce

an over-approximation of the MCIS. The cost near the

boundary of the MCIS will be higher than the optimal,

due to the introduction of Kinf . This diffusive effect is

informally designated as smearing. The extent of the

smearing is analogous to the absorption effect of the

previous method. It will also depend on the reach set

from each node and on the grid resolution. The higher

the grid resolution, the smaller the region affected by

the smearing. Analogously to the previous case, the re-

gion affected by the smearing will produce sub-optimal

results. This happens because the system tries to escape

at all costs from the regions with the artificially higher

value introduced by the smearing effect.

This method retains all the feasible trajectories but,

on the other hand, it may exhibit ”false positives”. In

this context, a false positive is a state x marked as fi-

nite (i.e., Vi(x) < Kinf) for which no feasible trajec-

tory can be generated by the resulting control law. This

means that a false positive can either correspond to a

state outside the exact MCIS or to a state belonging to

the MCIS for which the synthesized controller cannot

produce a feasible trajectory. If the system is known to

have a nonempty equilibrium set Se or a nonempty set

Ss of cells free of smearing effects with finite values at

their vertexes, these false positives can be identified by

exhaustive simulation of the system trajectories. The

trajectories are simulated until they either reach Ss or

Se. However, this is a time consuming procedure.

3.2 Numerical Example

Consider the infinite horizon optimal control of the

continuous time linear system (state x ∈ R
2 and in-

put u ∈ R)

ẋ(t) =

[

0 1
0 −1

]

x(t) +

[

0
1

]

u(t) (14)

with cost functional

min J(x0, u) =

∫ ∞

0

(xT (τ)x(τ) + u2(τ))dτ (15)

for any given x(0) = x0. It is well known that the opti-

mal control for this problem is given by a time-invariant

linear state feedback control law, i.e., u(t) = −Kx(t).
The associated value function, V (x) = minu J(x, u),
can also be derived in closed form. For the current ex-

ample, we have

V (x) = xT

[

2 1
1 1

]

x (16)

and K =
[

1 1
]

. The closed loop system is exponen-

tially stable with a single equilibrium point at the ori-

gin.

In what follows, consider the state-constraint x(t) ∈
X, where X = {x ∈ R

2 : ‖x‖∞ ≤ 10}, and the input

constraint |u(t)| ≤ umax, umax > 0 with umax = 40.

This will have the following consequences:

1. The set S of initial states from which there is a

trajectory confined to X (maximal invariant set) is

a subset of X; by simple arguments and manip-

ulation of the system equations, it can be easily

seen that the minimum distance to the boundary

of X along the x1 dimension, in the first and third

quadrants of the x1 − x2 phase plane, is given by

|x2| − umax ln
(

umax+|x2|
umax

)

. See Fig. 1 for details

of the boundary set, assuming different values for

umax.

2. For certain regions of S , the optimal control law

for the constrained problem will be different from

the one computed for the unconstrained problem.

Obviously, if umax is set too low, the control sig-

nal will be clipped on some regions of X (that hap-

pens, for instance, for umax = 10). On the other

hand, if allowed, the absolute value of the optimal

control will have to be higher than |Kx| in some

regions in order to ensure that trajectories stay in-

side S .

It is possible to see on Fig. 1 that the controlled in-

variant set for the system controlled by u = −Kx,

SLQR, is smaller than the maximal invariant set for both

umax = 20 and umax = 40. For trajectories starting

outside SLQR, the absolute value of the optimal control

will be higher than |Kx|. The main challenge in this

case, in terms of numerical scheme, resides in the fact

that the optimal trajectories are tangent to the boundary

of the invariant set in the curved segments depicted on

Fig. 1. Therefore, the interpolation is affected by the

discontinuity. However, in this particular example, the

smearing effect is not very pronounced. Both methods

present a good approximation of the MCIS.

x
1

x 2

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x 2

-10 -9 -8 -7 -6
-10

-8

-6

-4

-2

0

Figure 1. Left figure: boundary of the maximal invariant set for

umax = 40. Right figure: detail of the boundary of the invari-

ant set for different scenarios. From left to right: |u(t)| ≤ 40;

|u(t)| ≤ 20; using the unconstrained LQR; |u(t)| ≤ 10

The optimal control obtained by (13) with the numeri-

cal value function (numerical control law) converges to

the exact one in most part of the computational space.

The exceptions reside precisely on the neighbourhood

of the curved boundary of the invariant set where the

smearing occurs. As expected, in those regions, the ab-

solute value of the resulting control is higher than the

optimal. This effect can be attenuated by using a finer

grid on those regions, as illustrated on Fig. 2 and 3 us-

ing the SL scheme with the relaxed notion of infinity.

The trajectories are obtained by integration of the sys-

tem equations with input u(t) given by the numerical

control law. At each control cycle, the actuation value

is chosen from a set of 801 equally spaced values be-

tween −umax and umax.

4 Semi-Lagrangian receding horizon scheme

In order to overcome the limitations of both of the

methods previously described, we propose an algo-

rithm (SLRH) based on concepts of receding hori-

zon control. Recall that, for each x, the basic semi-

Lagrangian scheme computes the corresponding opti-

mal trajectory over one time-step. The key idea of the

proposed algorithm is to compute the optimal trajectory

for an horizon of N∆ > 1 time-steps when the trajec-

tory does not end in a well defined cell. By optimiz-

ing over a larger horizon, the endpoint of the trajectory

will have more chances of reaching a well defined cell.

Let us define Vi,N∆
≡ {Vi, Vi−1, . . . , Vi−N∆+1}, i ≥

-10
-8

-6
-4 -10

-5
0-10

0

10

20

30

x
2x

1

Figure 2. Difference between the optimal control derived from the

201 × 201 grid and the one derived from the 401 × 401 grid.

The lower resolution leads to a sub-optimal higher actuation near the

boundary of the invariant set.

0 2 4 6 8 10
-10

0

10

20

30

40

0 2 4 6 8 10
-10

0

10

20

30

40

Figure 3. Evolution of x1(t) (dash-dot line) and x2(t) (dashed

line) with u(t) (solid line) given by the numerical DP control law

for the LQR problem on a 201×201 grid (left) and a 401×401
grid (right)

N∆ − 1 and Vi,N∆
≡ {Vi, Vi−1, . . . , V0}, i < N∆ − 1.

For N∆ = 1, this algorithm is equivalent to the basic

SL scheme with the strict definition of infinity.

As for the basic scheme, for solving the optimal con-

trol problem for a time horizon T , the algorithm starts

with V0(x) = Ψ(x), ∀x ∈ Ω. It then proceeds iter-

atively, calling Algorithm 1 for i = 1, . . . , NT where

NT is the smaller integer greater than T/∆. The main

algorithm is based on the procedure ComputeVx; this

procedure is described by Algorithm 2. Ku is a con-

stant that marks the node’s value as undefined. All the

cells to which that node belongs will be identified as

not well defined.

With a sufficiently large N∆, this algorithm would

be able to avoid any distortion (i.e., sub-optimality)

introduced by the discontinuity at the boundary of

the MCIS. However, the processing time and stor-

age requirements grow exponentially with N∆. In

order to minimize these requirements, we consider

a reduced input space Ua,i for the larger horizons.

For many problems, one sensible approach is to con-

sider only extremal controls when optimizing for more

than one time-step (e.g., Ua,1 = Ua and Ua,i =
{min(Ua),max(Ua)}, i > 1). Additionally, as soon as

one valid cell is found, the procedure stops extending

the optimization horizon. This accelerates the compu-

tation but, on the other hand, it may prevent the eval-

uation of better trajectories. In general, these two op-

timizations will lead to sub-optimality near the bound-

ary.

Input: Ω, i, Vi−1,N∆
, N∆

Output: Vi,N∆

foreach x ∈ {x : x ∈ Ω ∧ Vi−1(x) 6=∞} do
{Vi(x),defined} ← ComputeVx(x,Vi−1,N∆

,

N∆);

if defined = false then

if i ≥ N∆ then

j ← i− 1;

while j > i−N∆ ∧ j > 0 do

Vj(x) =∞;

j ← j − 1;

end

else

Vi(x)← Ku;

end

end

end

Vi,N∆
← {Vi} ∪ Vi−1,N∆

\ {Vi−N∆
}

Algorithm 1: Compute Vi using the semi-Lagrangian

receding horizon scheme

The memory requirements for the proposed algorithm

may seem higher than for the classical SL scheme. In

fact, the classical SL scheme requires only the storage

of two sets of values: the values computed at each grid

node at the current iteration, Vi, and the values from

the previous iteration Vi−1. The proposed algorithm re-

quires the storage of N +1 sets of values. However, by

careful tuning the maximum optimization horizon, N∆,

and choosing a suitable Ua,i, the grid resolution can be

lower than in the basic semi-Lagrangian scheme while

still providing a better sub-approximation of the MCIS.

Nevertheless, for the real-time implementation of the

control law, the worst case optimization time should be

kept within the processing capabilities. Therefore, the

value of N∆ must be chosen with that in mind.

4.1 Numerical example

Consider the following system:

ẋ =

{

sin(x2)
a

(17)

with x =
[

x1 x2

]′
and input a ∈ Ua, where Ua is a set

of 31 equally spaced values from −0.25 to 0.25. We

define Ua,i = {−0.25, 0.25}, i > 1. The system is

constrained to [−2, 2]× [−π/2, π/2]. The grid resolu-

tion is 201 × 201. All the experiments are performed

with ∆ = 0.1.

Fig. 4 shows the contour of the approximated MCIS

for different values of N∆. For N∆ = 1, a signifi-

cant contraction of the MCIS is observed. The results

Input: x, Vi−1,N∆
, N∆

Output: Vi(x), defined

Sconsidered ← {x};
Vi(x)←∞;

level← 1;

finished← false;

defined← false;

repeat
Snew
considered ← ∅

foreach x ∈ Sconsidered do

foreach a ∈ Ua,level do

Calculate y∆(x,∆, a);

c←
∫∆

0
L(y∆(x, τ, a), a)dτ ;

v ← Vi−level(y∆(x,∆, a));
if v is well defined then

if Vi(x) > c+ v then

Vi(x)← c+ v;

defined← true;

end

else
Snew
considered ←

Snew
considered ∪ {y∆(x,∆, a)};

end

end

end

if level = N∆ ∨ i− level = 0 ∨ defined then
finished← true

else

Sconsidered ← Snew
considered;

if Sconsidered = ∅ then
finished← true

end

end

until finished;

Algorithm 2: Compute Vi(x) using up to N∆ time-

steps

improve significantly even with small values of N∆.

However, we remark that this is highly dependent on

the Courant number. A change in the grid resolution or

time step leads to different results. In this case, the

classical SL (using the relaxed definition of infinity)

produces a noticeably rough over-approximation of the

MCIS.

Table 1 shows the number of nodes in the approxima-

tion of the MCIS for different values of N∆. It also

shows the CPU time for 68 iterations. This is the num-

ber of iterations required by the algorithm to converge

to the approximation of the MCIS for N∆ = 1. For

N∆ ≥ 40, the computation times do not differ signifi-

cantly. This is because the extra computation time near

the boundary is negligible when compared to the com-

putation of the remaining nodes. Moreover, the num-

ber of nodes for which the entire optimization horizon

N∆∆ must be used gets smaller as N∆ increases.

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

x
1

x 2

Figure 4. Computation of the MCIS. The thicker line corresponds

to the exact MCIS. The inner contours correspond to the results of

the SLRH with different N∆: 1, 2 and 4 (from the inner to the outer

contour). The outer contour corresponds to the over-approximation

obtained with the classical SL scheme.

Table 1. Approximation of the MCIS with the SLRH algorithm

N∆ Number of nodes CPU Time (s)

1 17197 32

2 23351 38

3 23715 39

4 24303 39

10 25726 41

20 26035 42

40 26108 44

50 26120 44

60 26121 44

70 26121 45

5 Conclusions

The typical SL solver based on first order interpola-

tion leads to sub-optimal optimal control laws for non-

smooth value functions, with excessive or anticipated

action near the non-smooth regions. Moreover, the

obtained MCIS is an over-approximation of the exact

MCIS. These effects can be minimized by refining the

grid near those regions. However, memory constraints

may sometimes prevent such approach. The alterna-

tive technique of avoiding cells near the boundary of

the computed MCIS may lead to over-conservative sub-

approximations of the MCIS. The proposed algorithm

gives an accurate sub-approximation of the MCIS up to

the grid resolution. The accuracy of the value function

near the boundary of the MCIS can be adjusted by tun-

ing the optimization horizon and the considered input

space.

Acknowledgements

The first author was partially supported by the FCT

PROTEC program. The second author was partially

funded by the projects Persist and Noptilus.

References

Bardi, Martino and I. Capuzzo-Dolcetta (1997). Op-

timal control and viscosity solutions of Hamilton-

Jacobi-Bellman equations. Birkhauser Boston.

Bellman, R. (1957). Dynamic programming. Princeton

University Press. Princeton.

Blanchini, Franco and Stefano Miani (2008). Set-

Theoretic Methods in Control. Birkhauser. Boston.

Cristiani, E. and M. Falcone (2009). Fully-discrete

schemes for the value function of pursuit-evasion

games with state constraint. In: Advances in Dy-

namic Games and Their Applications: Analytical and

Numerical Developments (Pierre Bernhard, Vladimir

Gaitsgory and Odile Pourtallier, Eds.). Vol. 10 of

Annals of International Society of Dynamic Games.

pp. 178–205. Birkhäuser Boston.

Fleming, Wendell H. and Halil Mete Soner (2006).

Controlled Markov Processes and Viscosity Solutions.

Springer. New York.

Gough, Brian (2003). GNU Scientific Library Refer-

ence Manual - 2nd Edition. Network Theory Ltd.

Krasovskii, N.N. and A.I. Subbotin (1988). Game-

theoretical control problems. Springer-Verlag. New

York.

Mitake, Hiroyoshi (2008). Asymptotic solutions of

hamilton-jacobi equations with state constraints. Ap-

plied Mathematics and Optimization 58(3), 393–410.

Mitchell, I.M., A.M. Bayen and C.J. Tomlin (2005). A

time-dependent hamilton-jacobi formulation of reach-

able sets for continuous dynamic games. IEEE Trans-

actions on Automatic Control 50(7), 947–957.

Pontryagin, L. S., V. Boltyanskii, R. Gamkerelidze and

E. Mischenko (1962). The Mathematical Theory of

Optimal Processes. Interscience Publishers.

