
 1

On Fractional Fourier Analysis in Ultra-distributional set-up and Image 
processing 

 

B. N. Bhosale 

Principal, S. H. Kelkar College of Arts, Commerce & Science, Devgad (Sindhudurg), University 

of Mumbai, M.S. India. E-mail: bnbhosale@rediffmail.com 

ABSTRACT:The fractional Fourier analysis is used for investigations of fractal 

structures; which in turn are used to analyze different physical phenomena. With 

the advent of Fractional Fourier Transform (FrFT) and related concepts, it is seen 

that the properties and applications of the conventional Fourier Transform are 

special cases of those FrFT. The intimate relationship of FrFT to time-frequency 

representation leads to many applications in signal analysis and processing for 

which the Fourier transform fails to work.  

In this paper, the fractional Fourier analysis is carried out in Ultra-distributional 

set-up. Its important connection with Radon-Wigner transform  and Wigner 

Distribution of Ambiguity functions in the context of its applicability in image 

processing is  discussed. Analogous results to that of  Paley-Wiener theorems are 

obtained  for ultra-differentiable functions and ultra-distributions. 

 

1 Introduction: 

The Fractional Fourier Transform (FrFT) is a generalization of Fourier transform 

(FT) and depends on a parameter α that is associated with the angle in phase plane. 
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This leads to the generalization of notion of space (or time) and frequency domain 

which are central concepts of signal processing [7]. A signal is uniquely defined in 

the position domain, f(x) (α = 0), or as its FT in frequency domain, Fπ/2 ( y). 

It follows from the additive property that if one produces the FrFT, Fα (ξ) of a 

signal f(x), then its FT, Fα+π/2 (kξ) is the FrFT for the parameter α  of Fπ/2 ( y). 

Thus the FrFT is a signal representation along an axis ξ rotated at an angle α in the 

phase plane:  

       ξ          =         cos α       sin α              x                                            (1.1) 

       kξ                    -sin α      cos α              kx 

In this paper, FrFT is extended to the spaces of ultra-distributions and studied it in 

ultra-distributional set up. Its relationships with the Ambiguity Function (AF), 

Wigner Distribution (WD) and Radon-Wigner Transform (RWT) are discussed and 

in the end the potent applications are indicated. 

For this purpose we consider the test function space E (Mp; Ω) and define the 

fractional FT under suitable conditions.  

 

2. The spaces E(Mp; Ω), E’ (Mp; Ω): 

Let {Mp}p∈ IN0 be an increasing sequence of positive numbers. Then a               
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C∞- function φ on an open set Ω in IRn  is called as ultra-differentiable function of 

class Mp (of Roumieu type)  if on each compact set K in Ω its derivatives are 

estimated as follows: there are positive constants C and A such that 

Sup      Dβ φ (x)  ≤ C Aβ M β, β  = 0,1,2...             (2.1) 
x∈K 

where     Dβ  =  D1
β,…Dn

β and  β  =  β1+β2+…+βn , 

The space of ultra-differentiable functions is denoted by E(Mp; Ω).  

Here the increasing sequence {Mp} p∈IN0 is imposed of certain conditions (M.1)-

(M.3): for the constants R> 0 and H> 1, 

(M.1) Mp
2 ≤ Mp-1 Mp+1, p∈ IN  (Logarithmic convexity), 

(M.2) Mp ≤ RHp min0≤ q≤ p MqMp-q, p∈IN0 (Stability under differentiable operators), 

(M.3) ∑j=0
∞ Mj/Mj+1 < ∞ (Non-quasi-analyticity). 

In some problems (M.2) may be replaced by the weaker condition (M.2)’: 

(M.2)’ Mp+1 ≤ RHpMp, p∈ IN0, R>0   (Stability under differentiation).   

The conditions (M.1) and (M.2) ensure that the products of ultra-differentiable 

functions and the derivatives of ultra-differentiable functions belong to the same 

class; and the condition (M.3) guarantees that there exists an infinitely 

differentiable function φ (x) ≠ 0, of compact support that satisfies the inequalities 

Sup      Dβ φ (x)  ≤ C Aβ M β, β  = 0,1,2...                                                         
x∈K 
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3. The fractional FT:  

The one dimensional fractional FT with parameter α of a signal f(x) denoted 

by Rα f(x) [1], performs a linear operation, given by the integral transform 

                                       ∞ 
[Rα f(x)] (ξ) = Fα (ξ) = ∫  Kα (x, ξ) f(x) dx                                     (3.1) 

-∞  
 

where the kernel  

Kα (x,ξ) = (2πi Sinα) -1/2 exp ( iα/2) exp (i/2Sinα ((x2+ξ2) Cosα - 2xξ ))       

 

Kα (x,ξ) is the propagator of the non-stationary Schrodinger equation for a 

harmonic oscillator, which is well known in quantum mechanics (where α = 

ωt relates to time t and classical frequency ω, and ξ is a position at the 

moment t). Changing gradually the angle α the fractional FT permits to look 

at the continuous transformation of an input function f(x) to its Fourier 

image Fπ/2 ( ξ) for α= π/2, then to f(-x) for  α= π  and to Fπ/2 (-ξ) for α= 3π/2   

Thus, the FrFT for α= π/2 and α= -π/2 reduces to ordinary and inverse 

Fourier transform. 

For α = 0 the transform kernel reduces to the identity operator: 

 [R0 f(x)] (ξ) = F0 (ξ) =  ∫  δ(ξ−x) f(x) dx f(x). 
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With respect to parameter α, the FrFT is continuous, periodic 

 [Rα+2π n f(x)] = [Rα f(x)] with n an integerand additive Rα+β = Rα + Rβ. 

 

It is possible to recover the function f by means of the inversion formula: 

                       ∞ 
f(x)  =   1       ∫  Fα (ξ)   Kα (x, ξ) dξ                                        (3.2) 
            2π    -∞ 
where    

Kα (x, ξ) = (1/Sinα) (2πi Sinα ) 1/2 exp ( -iα/2) exp (-i/2Sinα ((x2+ξ2) Cosα  

- 2xξ)) 

We eventually have 

                                         ∞ 
f(x)  =  R−α [Fα (ξ)](x) =  ∫  Fα (ξ)   K−α (x, ξ) dξ                                       
                             -∞ 
 
 
We also establish the following relationship of FrFT with that of Fourier 

transform: 

Rα[f(x)] = exp(iC2αξ2Cos α)F [f(x)C1αexp( iC2αx2Cos α)] (2 C2α ξ)    (3.3) 

 where  C1α = (2πi Sinα ) -1/2 exp ( iα/2) and C2α = 1/2Sinα. 

 

We note here that defining FrFT via this integrand at (3.1), we can say that FrFT 

exists for f∈ L1(IR) (and hence in L2(IR) ) or when it is a generalized function[3]. 
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Indeed, in that case the integrand is also in L1(IR) or  in L2(IR) ) or is a 

generalized function. Thus the FrFT exists under exactly the same conditions as 

under which the Fourier transform exists and analogous results can be obtained.  

 

4. The fractional Fourier transform of ultra-differentiable functions: 

The fractional Fourier transform (fractional FT) Rα  is an extension of the Ordinary 

Fourier transform and depends on a parameter α. For α = π/2, fractional FT 

reduces to the ordinary Fourier transform; changing α from 0 to π/2, we get a 

continuous transformation of a function to its Fourier image. Thus, using analogy, 

we can state the Paley-Wiener theorem  [5, p.82] for ultra-differentiable functions, 

as follows: 

Theorem 4.1: Suppose that Mp satisfies (M.1) and that K is a compact convex set 

in IRn. For x restricted to compact set K, an entire function φ∧(ζ ) on Cn  is the 

fractional FT for parameter α of an ultra-differentiable functions φ(x)  in E (Mp;K), 

i.e. 

φ∧(ζ )  =  Rα [φ(x)]    =  ∫       φ (x) Kα (x,  ζ)  dx                                       (4.1) 
                                    IRn 

where the kernel  

Kα (x, ζ) = (2πi Sinα) -1/2 exp ( iα/2) exp (i/2Sinα ((x2+ζ2) Cosα  - 2xζ ))  

  if and only if there are constants A and C such that  
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 φ∧(ζ )     ≤   (1/(2π Sin α)1/2 C exp { -M( η /A) + HK(η)  }               (4.2) 

where HK(ζ) =  Sup   (-Im(x, η)),  η =   2 C2α ζ    is the support function. 
                         x∈K  

A subset B of D (Mp; K) is bounded if and only if we can choose constants A and 

C independent of φ ∈ B such that (4.2) holds. 

 

We have the following definition: 

Definition 4.1: The space of fractional FT of elements of φ in D (Mp, A; IRn) is the 

space Z (Mp, A; IRn) of functions satisfying the inequality (4.2). 

5. Ultra-distributions: 

Suppose that {Mp} satisfies (M.1) and (M.3) and that Ω is an open set in IRn. We 

denote by D’ (Mp; Ω), the strong dual of   D (Mp; Ω) and call its elements as ultra-

distributions of Roumieu type [6] or of class Mp. 

The dual space E’ (Mp; Ω) of E (Mp; Ω) is identified with the subspace composed 

of all f∈ D’ (Mp; Ω) with compact support. 

We note the following observations in respect of the space D’ (Mp; Ω) from  

  [5,  p.84]. 

D (Mp; Ω) is a dense subspace of D (Ω) and the injection is continuous. Therefore, 

D’ (Mp; Ω) contains the distribution space D’ (Ω) as a dense subspace.  
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The definitions of product, derivative, support and convolutions of the ultra-

distributions are natural extensions of the corresponding ones for distributions. 

 

6. The fractional FT of ultra-distributions: 

We recall that the Fourier transform of U ∈ D’ (Mp; IRn) is defined to be the 

element V ∈Z’ (Mp, A; Cn) such that the generalized Parseval relation:  

             < V,  ψ  >  =  (2 π)n  <  U , φ∨ >  holds, 

where  φ ∈ D(Mp ; IRn) and   ψ = φ∧ ∈ Z’(Mp ,A; Cn)    

Suppose that f is an ultra-distribution with compact support in IRn. For each  

ζ ∈ Cn, α being parameter,  the function Kα (x,  ζ)  in x; x restricted to the compact 

subset  K, belongs to E(Mp; IRn)  and it can be seen that  Kα (x,  ζ) depends on  ζ 

holomorphically in the topology of  E (Mp;K),. 

Hence  [Rα f(x)] (ζ) =  f ∧ (ζ)  =  Fα (ζ )    =  < f(x) , Kα (x,  ζ) >,   

defines an entire function on Cn , which we call the fractional FT of f. 

Using the analogy of the Paley-Wiener theorem for ultra-distributions due to 

Komastu  [4], we  state the following theorem in the context of the fractional FT. 

 

Theorem 6.1: Suppose Mp satisfies (M.1), (M.2)’ and (M.3)’ and that K is a 

compact set in IRn. Then the following conditions are equivalent for an entire 

function f ∧ (ζ): 
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(a) For the parameter α, x restricted to the compact subset K,  

     f ∧(ζ) (= [Rα f(x)] (ζ))   is the fractional FT of an ultra-distribution 

             f∈D’(Mp;K) with support in K; 

(b) For each L>0 there is a constant Cα such that  

      f ∧(ξ) ≤ Cαexp M ( ξ ),  ξ ∈ IRn        (6.1)           

     for each ε >0 there is a constant Cαε such that 

f ∧ (ζ)  ≤ Cαε exp { M (ε η ) + Hk (ζ)}, ζ ∈ Cn                           (6.2) 

where HK(ζ) =  Sup   (-Im(x, η)),  η =   2 C2α ζ    is the support function 
                         x∈K  

A subset B of D’(Mp;K)  is bounded in D’(Mp;K)  if and only if for each L>0 there 

exists a constant C independent of f ∈ B such that (6.1) holds. 

A sequence {fj}∈ D’(Mp;K)  converges if and only if for any L>0,                

exp{ -M (L ξ ) } fj
∧ (ξ)   converges uniformly on IRn. 

 

7. Important connection between FrFT, Wigner Distribution (WD) and 

Ambiguity Function (AF): 

The FrFT depends on a parameter α that is associated with the rotation angle in 

phase space. Thus, the FrFT produces the rotation of the AF and WD in the phase 

space. These functions can be reconstructed from the knowledge of only squared 

moduli  of FrFT related to the intensity distribution.  
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7.1 FrFT, AF and WD: 

We define the AF of a signal f(x) as, 

            Af (x, ξ) = ∫ f(x’+x/2) f*(x’-x/2) exp(-iπξx’) dx’ 

        where f* is a complex conjugate of f. 

The ambiguity function is closely related to Wigner distribution. AF is like the WD 

except the integral is over the other variable. 

Wigner distribution function is a time frequency representation that maps one 

dimensional time (or space in optics) –varying signal into two-dimensional signal 

representation of both time and frequency. 

The WD function can be interpreted as a joint time-frequency power spectrum 

distribution function under the restriction of the uncertainty principle. 

Wigner function belongs to a class of bilinear distribution and gives a 

representation of a function f(x) in a phase space: 

Wf (x, kx) = ∫ f(x+x’/2) f*(x-x’/2) exp(-iπx’ kx) dx’ 

                = ∫ Fπ/2(x+ν/2) F*
π/2 (x-ν/2) exp(iπν kx) dν 

            where Fπ/2(x) = ∫ f(x’) exp(ix’ kx) dx’  (Fourier transform). 

This equation shows a simple relationship between the FrFT and the WD of a 

given function through Fourier transform. 

The inverse transform can be written as  
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 f(x) = (1/(2π f*(0)) ∫ Wf (x/2, kx) exp(ix kx) dkx 

Note here that the frequency and time integrals of WD: 

   ∫ Wf (x, kx)    and          ∫ Wf (x, kx) dx   correspond to the signal’s  
 
instantaneous power | f(x)|2 and its spectral energy density | Fα(x) |2  resp. 
 
The important property of FrFT, which allows us to establish a connection 

between it and WD, and AF, is that a FrFT produces a rotation of these 

functions in the time-frequency plane: 

  

       f(x)                                               Wf (x, kx) and Af (x, ξ) 

                 FrFT                                                      rotation of WD and AF 

      [Rα f(x)] (ξ) = Fα (ξ)                    WFα(ξ, kξ) = Wf (ξ cos α - kξ sin α, 

                                                                                       ξ sin α +  kξ cos α) 

                                                            A Fα(x, ξ) = Af (x cos α - ξsin α, 

                                                                                       x sin α +  ξ cos α) 

Hence, we conclude that the WD of the FrFT for a parameter α of f(x) is the WF of 

f(x) rotated at the angle α in the phase space where the coordinates (ξ, kξ) in the 

rotated frame are related to (x, kx) via matrix relation (1.1). 

Note further that a similar relation holds for AF. 
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7.2 The Fractional Power Spectrum and Radon-Wigner Transformation 

(RWT) 

If we introduce the fractional power spectrum | Fα (x) |2 as a squared modulus of 

the corresponding FrFT, we obtain that the fractional power spectrum are the 

projection of WD upon the direction at an angle α in the time-frequency plane: 

| Fα (ξ) |2  = ∫ WFα(ξ, kξ) dkξ = ∫ Wf (ξ cos α − kξ sin α, ξ sin α +  kξ cos α) dkξ, 

and that they are related to the AF by a Fourier transform: 

| Fα (ξ) |2  = ∫ Af (kξ sin α, −  kξ cos α)  exp(-iπξ kξ) dkξ 

The set of power spectra for the angle α ∈ [0, π) is called the Radon-Wigner 

transform because it defines the Radon transform of the WD. 

Thus, RWT is the squared modulus of its FrFT: | Rα[f(x)] (ξ) |2  with α ∈ [0, π) and 

therefore corresponds to the intensity distributions at different planes of a first 

order system that provides an optical regularization of the FrFT 

The WD can be obtained by applying an inverse Radon transform. 

Note that the AF can also be reconstructed from RWT by a simple inverse Fourier 

transform. At the angle  α = 2π the RWT of a complex field amplitude corresponds 

to its intensity distribution and at α = π/2 to its Fourier power spectrum. 

8. Applications of FrFT, AF, WD, RWT 

1. FrFT has itself established as the powerful tool for analysis of time-varying 

signals for which the Fourier transform fails to work, signal processing, and 
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optics. It also leads to generalization of notion of space (or time) and 

frequency domain, which are central concepts in signal processing. 

2. The intimate relationship between the AF in quasi-polar coordinates system 

and the Fractional Power Sptectra:      

                       Af (kξ sin α, −  kξ cos α) = ∫ | Fα (ξ) |2  exp(-iπξ kξ) dkξ 

           implies that the fractional power spectrum is the Fourier transform of the 

          AF. This relationship is very important for the experimental determination of 

          the AF in optics where the fractional power spectrum related to intensity 

         distribution can be measured by a simple optical set up. 

3. The FrFT depends on a parameter that is associated with a rotation angle in 

phase space. Thus, the FrFT produces a rotation of the AF and WD in the 

phase space. These functions can be reconstructed from the knowledge of 

only squared moduli of FrFT related to the intensity distribution. 

4. The important property of the FrFT, which allows to establish connection 

between it and AF, WD and other members of the Cohen’s class of time-

frequency representations, is that a FrFT produces a rotation of these 

functions in the time-frequency plane. Moreover, the projection of WF upon 

the direction rotated at angle α is squared modulus of the corresponding 

FrFT, named the Radon-Wigner transform (RWT). Note that RWT relates 
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with the easily measured physical parameters like probability in quantum 

mechanics and intensity distribution in optics and signal processing.   
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