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Abstract 
We consider a comparison of the phase control 

technique when applied as a sinusoidal or square pulsed 

periodic perturbation. We explore the effect of such 

perturbations to the different terms of the Duffing 

oscillator. In both cases, the effects are specially 

effective when they modulates the cubic and the linear 

term and ineffective when applied to the driving term 

although their role is exchanged. 

Our results highlight the highly nontrivial role of the 

phase when applying a second periodic perturbation to 

a chaotic system. 
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1 Introduction 

   Chaos is characterized by the sensitive dependence 

on the initial conditions, which implies also that small 

but accurately chosen perturbations of a chaotic system 

can lead to substantial changes in the dynamics, and 

even to its stabilization in different periodic orbits.  

This is the rationale behind different methods of chaos 

control that have been proposed since the pioneering 

work by Ott et al. [Ott, 1990]. In that work, a carefully 

chosen perturbation is applied on one of the system's 

parameters leading to the stabilization of the system on 

one of the attractors' unstable periodic orbits.  

Such perturbation is computed each time depending on 

the system's state, and for this reason the OGY method 

falls in the category of the so-called feedback methods 

of chaos control. Another important family of chaos 

control  is  given  by  nonfeedback  controls.  These  are  

 

applied to periodically driven nonlinear dynamical 

systems. In these methods, a second small harmonic 

perturbation is applied to the system [Lima, 1990] and 

can lead to the stabilization over different periodic 

orbits. It was soon appreciated that the phase difference 

between this second harmonic perturbation and the 

main driving can lead to different behaviours. This was 

first observed in the control of chaos in a CO2 laser 

[Meucci, 1994] and in numerical simulations with the 

Duffing oscillator [Qu, 1995], a model of paramount 

importance in science and engineering. The concept of 

phase control of chaos was then precisely formulated 

and applied to the control of chaos in a two-well 

Duffing system and in its implementation in an 

electronic circuit [Zambrano, 2006]. Interestingly, we 

also found that such method can be applied to control 

other types of complex dynamics, such as crisis 

induced intermittency [Zambrano, Marino et al., 2006], 

escapes in an open system [Seoane, 2008] and pulses in 

an excitable system [Zambrano, 2008], both 

numerically and in experimental implementations.  

This suggest the versatility and the robustness of the 

phase control method. However, we are far from a 

complete understanding on the mechanism of this 

control scheme and on how it can be further optimized. 

In a recent work, we used the Duffing oscillator to 

understand how different ways to apply a pure 

sinusoidal controlling perturbation have different 

effectiveness in stabilizing the system's trajectories 

[Meucci, 2016].  

A second possibility that we have recently explored is 

using square perturbations [Meucci, 2017], showing 

that it is possible to stabilize the trajectories for an 

adequate value of the phase difference. 



 

 

 

2 The system  

   Our numerical and experimental investigations refer 

to a double-well Duffing oscillator: 

 

�̇� = 𝑦 

                                                                                   (1) 

𝑦 ̇ = −𝛾𝑦 + 𝑥 − 𝑥3 + 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑑𝑡) 
 

where γ = 0.25 is the damping constant, A = 0.41 is the 

amplitude of the sinusoidal driving signal with 

frequency fd =1. 

The phase control strategy can be applied indifferently 

to the linear, the cubic term or the driving term of the 

Duffing oscillator. In this work, we consider two 

different periodic perturbations, that is, a pulsed and a 

sinusoidal one.  These two different perturbations are 

shown in Fig. 1 together with the driving term of the 

Duffing oscillator whose amplitude A=0.41 is selected 

to have a chaotic condition.  

 
Figure1. Controlling perturbations f(t) of period T=1/fc representing 

a rectangular pulse of width b and height ε (a) and a pure sinusoidal 
signal with the same amplitude ε (b). In the upper part, the reference 

driving signal with amplitude A.  

 

The pulsed control perturbation f(t), consists of a square 

wave of period T=1/fc and amplitude epsilon, so that 

f(t)= ε for t = [-b/2, b/2] and 0 during the rest of the 

period as shown in Fig. 1. In our case we consider the 

resonant case where the control frequency fc is equal to 

the driving frequency fd.  The parameter b is related to 

the duty cycle D of the square wave through the relation 

D = b/T. A relative phase f [0, 2π] of the pulsed 

perturbation f(t+f) with respect to the driving  has been 

introduced considering that it is the key parameter  of 

our control strategy. 

In the case of the sinusoidal perturbation, optimal 

control is obtained by perturbing the linear term of the 

Duffing oscillator while in the case of pulsed 

perturbation optimal control is achieved on the cubic 

term. In both cases, the perturbations are scarcely 

effective when applied to the main forcing amplitude. 

The harmonic content in the square wave perturbation 

provides a simple explanation for this phenomenon.  

   

3 Optimal Control with pulsed perturbations  

Optimal control using a pulsed perturbation is 

obtained by applying the controlling perturbation to the 

cubic term of the Duffing oscillator: 

 

�̇� = 𝑦 

(2) 

𝑦 ̇ = −𝛾𝑦 + 𝑥 − (1 + 𝜖𝑓(𝑡))𝑥3 + 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑑𝑡) 

To characterize the effect of the controlling 

perturbation we compute the Largest Lyapunov 

Exponents (LLEs) in the parameter plane ε - f using 

the Wolf algorithm [Wolf, 1985] for different values of 

the duty cycle D. The trajectories were obtained using 

a fourth-order Runge-Kutta algorithm with a time step 

h = 0.001. After running the integrator for 1000 cycles, 

to make sure the convergence towards the attractor, the 

LLE was calculated using another 1000 forcing cycles 

of the system. Numerical results for six different values 

of D from D = 0.02 to D = 0.2 are reported in Fig.2.  

 Figure 2. Largest Lyapunov Exponent computed for a pulsed control 

on the cubic term,     (a) D = 0.02,     (b) D = 0.04,     (c) D = 0.08,    

(d) D = 0.12,     (e) D = 0.16,     (f) D = 0.2. 

 

The minimum value of ε required for the control of the 

system decreases when the duty cycle increases, while 

the phase remains a crucial parameter to control the 

system. It is important to observe that the two stability 

domains separated by a phase difference of π show the 

appearance of secondary domains as the parameter D 

increases.  For the sake of completeness, in Fig.3 we 

report a comparison among the three different places 

where the pulsed perturbation can be applied, that is, 

the linear term x, the cubic term x3 and the driving term 

A. From the comparison, it appears that optimal control 

is achieved on the cubic term of the oscillator.  

     
 Figure 3. Minimum ε required to control the system for different 
values of the duty cycle D for control applied on the forcing 

amplitude A (red, triangles), to the linear term (blue, circles) and to 

the cubic term (green, squares). 



 

 

 

4 Optimal Control with sinusoidal  perturbations  

   The above result is to be compared with the case 

where pure sinusoidal phase control was considered 

[Meucci, 2016]. In such a case, phase control is more 

efficient when applied to the linear term.  In Fig. 4 we 

report  both LLE (left panels) and isospike plots (right 

panels) regarding the detection of different periodic 

orbits from chaos (in black). From top to bottom we 

refer to sinusoidal perturbations applied to the linear, 

cubic and driving term respectively.  

 
Figure 4. Stability phases predicted by Eqs. (2). Lyapunov exponents 
(left panels) and isospike diagrams (right panels) obtained for control 

applied on the linear term, on the cubic term, and on the driving term 

(top to bottom panels, respectively).  

 

5 Conclusion 

   In this paper we compare the phase control technique 

when applied as a sinusoidal or square-pulsed periodic 

perturbation to a Duffing oscillator. 

The harmonic content of the square wave plays a 

crucial role in optimal control. For a pulsed periodic 

control, optimal control is achieved on the cubic term, 

the opposite for a sinusoidal perturbation.  

The advantage of using pulsed perturbations is also 

related to the fact the region of optimal control can be 

easily detected due to the presence of a saturated regime 

as the duty cycle is increased. In this regime, if the pulse 

duration is reduced, we have to compensate with an 

increase of its amplitude and vice versa. Short-pulsed 

perturbations will be effective only for a narrow range 

of the phase difference; long perturbations will lose 

effectiveness as they imply the effect of several 

sinusoidal harmonic components with opposite phases, 

which occurs soon as the duty cycle becomes large. Our 

investigations confirm the versatility of the phase 

control technique and how the constraints imposed by 

the energy play a key role when considering potential 

applications in physics, engineering and biomedical 

applications. 

 

References 

Wang, J., Sasabe, K. and Fujiwara, O. (2002)  

A simple method for predicting common-mode  

Lima, R. and Pettini, M. (1990) 

   Suppression of chaos by resonant parametric     

perturbations.  Phys. Rev. A, 41, pp. 726.  

Meucci, R., Gadomski, W., Ciofini, M. and Arecchi, 

F.T., (1994) 

   Experimental control of chaos by means of weak 

parametric perturbations. Phys. Rev. E, 49, pp. 

R2528. 

Meucci, R., Euzzor, S., Pugliese, E., Zambrano, S., 

Gallas, M.R., Gallas, J.A.C., (2016) 

   Optimal Phase-Control Strategy for Damped-Driven 

Duffing Oscillators. Phys. Rev. Lett., 116, pp. 

044101. 

Meucci, R., Euzzor, S., Zambrano, S., Pugliese, E., 

Francini, F. and Arecchi, F.T., (2017) 

   Energy Constraints in Pulsed Phase Control of Chaos. 

Phys. Lett. A, 381, pp. 82. 

Ott, E., Grebogi, C. and Yorke, J. A. (1990) 

Controlling chaos. Phys. Rev. Lett., 64, pp. 1196. 

Qu, Z., Hu, G., Yang, G. and Qin, G., (1995) 

   Phase effect in taming nonautonomous chaos by 

weak harmonic perturbations. Phys. Rev. Lett., 74, 

pp. 1736. 

Seoane, J.M., Zambrano, S., Euzzor, S., Meucci, R., 

Arecchi, F.T., Sanjuan, M.A.F., (2008) 

   Avoiding escapes in open dynamical systems using 

phase control. Phys. Rev. E, 78, pp. 016205. 

Zambrano, S., Allaria, E., Brugioni, S., Leyva, I., 

Meucci, R., Sanjuan, M.A.F., Arecchi, F.T., (2006) 

   Numerical and experimental exploration of phase 

control of chaos. Chaos, 1, pp. 013111. 

Zambrano, S., Marino, I.P., Salvadori, F., Meucci, R., 

Sanjuan, M.A.F., Arecchi, F.T., (2006) 

   Phase control of intermittency in dynamical systems. 

Phys. Rev. E, 74, pp. 016202. 

Zambrano, S., Seoane, J.M., Marino, I.P., Sanjuan, 

M.A.F., Euzzor, S., Meucci, R. and Arecchi, F.T., 

(2008) 

   Phase control of excitable systems. New J. of Phys., 

10, pp. 073030. 

Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 

(1985) 

   Determining Lyapunov exponents from a time series. 

Physica D, 16, pp. 285. 


