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Abstract— The problem of chaos synchronization on net- achieved [3]. Different types of generalized synchrondirat
works of structurally different dynamical systems is invesi-  can be defined, depending on how the state space of one node
gated. Synchronization of dynamical networks is usually déned is mapped to the others. The simplest form of generalized

in terms of identical accordance on the evolution of each hronization is define th lation bet des b
individual node in the network. However, for a network con- SYNchronizationis define the relation between nodes by way

sisting of strictly different nodes, this type of synchronkzation Of @ coordinate transformation, for example a change of
should be redefined. In this case, a generalized definition of coordinates defined by a feedback linealization [4].
synchronization can be considered, where the evolution ofagh Synchronization is a phenomenon that can occur sponta-
node can be related to others in terms of a map. In this study, heq,gly But, in certain circumstances it may be necessary
the case of systems that can be expressed in canonical form by to add int fi troll to th t . d
an appropriately chosen coordinate transformation. In order 0a _'n erco_nnec Ions or contro e_rs_ 0 the system In ror_ ¢
to achieve generalized synchronization on a network of stetly ~ t0 achieve or improve the characteristics of the synchesniz
different nodes, local robust controllers are designed wiwh tion. In this contribution, the latter case is considerede T
force .the network to synchronize in terms of their transformed proposed approach consists on designing a robust comtrolle
coordinates. The main results of this study are illustrated g, that generalized synchronization is achieved. Tige ty
by numerical simulations of a network of well-known chaotic I .
benchmark systems of network synchronization is call controlled synchroti@a
[1].
|. INTRODUCTION The remainder of the paper is organized as follows. On

o . Section 2, the synchronization problem for a network of
Recently, the synchronization of complex dynamical SyS5op, jgentical dynamical nodes is stated. In Section 3, the

tems has received increasing attention from the scientifig in result of this contribution is presented. The numérica
community. In particular, the synchronization of chaoticjm jations, presented in Section 4, are used to illustrate

systems coupled in complex small-world and scale-fregq offectiveness of the proposed approach. In closingesom
topologies [7], [8]. The main concern of these investigasio .,mments and conclusions are presented in Section 5.
has been oriented towards the understanding of the synchro-

nization phenomenon in real-world complex networks, such Il. PROBLEM DESCRIPTION

as the_ Internet, bio-molecular networks and even soqial iN- consider a network ofV nodes, with each one being a
teract!ons. However, most o_f the rese_zarch_ers have chus thﬁynamical system described by

attention on networks consisting of identicaldimensional

dynamical systems with linear and diffusive couplings, rehe @y = fi(zi) +u; 1)
full knowledge about both the node dynamics and couplin
structure are available [2], [5]. This is a highly unlikely
situation under real-world conditions, where the nodes mag
not be identical and their connectivity can be partially o
fully unknown, or even change over time. Yet, even i
these situations, real-world systems present synchrimiza

\%herexi = [z, T2, ...,xm]T € R" are the state variables
the ith node; f; : R® — R"™ are known nonlinear

nctions describing the dynamics of nodeandu; € R"

s a local controller to be designed. Then, the state equstio

of the entire network are given by

phenomena; like interdependence and collaboration, which N
can be thought in terms of generalized synchronization. & = fi(wi) + Z cijla; + u; (2
Synchronization on dynamical networks is usually defined j=1

in terms of identical dynamical evolution of the state variywherey > 0 is a fixed uniform coupling strength, ard =
ables at every node in the network. Thus is Usua”y Ca”e{jCij} c RN XN is a zero-one constant matrix describing the

complete or identical synchronization. For a network witteonnection structure of the network, if there is a connectio
non identical nodes this type of synchronization can't be eetween nodeé and j, then cij = ¢ji = 1, otherwisec;; =
pected. An alternative form of synchronization is conséder ¢ji = 0 (i # j). The diagonal elements af satisfy the
in which thg relation between the nodgs is defined in terMsiffusive coupling restrictionscf; = — Z;V:L#i ¢z, for ).
of a mapping beMeen the statg variables of_ thg nodes he inner coupling matriX € R"*" is a zero-one constant
the network. In this way, generalized synchronization c@n by atrix describing which state variables are connected from
. ) . o node to node.
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7;, such that (1) can be rewritten as: [1l. GENERALIZED SYNCHRONIZATION DESIGN

2= Az + By + v (3) The main result of this contribution can be stated as
follows:

where z; = 7;z; are the transformed state variables of the Theorem 1:The dynamical network on (2) will achieve
i-th node; the constant matricels and B have the controller- a generalized synchronization in terms of (6), if the local
type canonical form; with); a nonlinear function, possibly controllersy; are constructed as
a linearizing feedback controller; and the local controller
u; express in terms of the transformed coordinates. The vi = —ykle; — dsgn(e;) (10)
expression (3) is called the normal form for the affine system

(1), with the nodes so described, the state equations for t L = 1,2, Ny where  sgn(e;) =
entire network (2) become [s.gn(e“), sgn(eig), o sgn(em)] . with  sgn(-) the
signum function, and furthermore, the smooth > 0
N and discontinuous > 0 controller gains are designed to
4= Aizi+ B+ Tz + v (4)  satisfy the bounds
j=1
fori=1,2,..,N. ko> )\i‘f'l (11)
Note that if the network is connected such that there are no N 7
isolated clusters, the coupling matrx, will be irreducible 5 > ijl Billwiill (12)
and symmetric @ = C'T), with its eigenvalues ordered as Z;VZI [lwsal
18] 0= A >A >N > > Ay ®) for any 7, where)\; is thei-th eigenvalue of the matrix’,

andw; € RY its associated eigenvector.
A dynamical network is said to be identically synchronized Pr 0of : Applying the local controllers in (10) to the error

if the state solutions of its nodes satisfy dynamics (8), and rewriting in vector form one gets:
Jim 2 — ]| = 0 ¢=A+1Te(CT - K) - dsgn(e) (13)
for i,j = 1,2,...., N. Then, the network in (2) is synchro- Where @ = [er,ez,.oen] € RWN,A() =

nized in a generalized sense with respect to the coordinatdi; A2, - An] € RN, K = diag(k%-x--;vk) e RV,
transformationsp;; = 7, 7;, if for 4,j = 1,2,..., N the andsgn(e) = [sgn(e1), ..., sgn(en)] € R™*V.

following condition is satisfied: Given that the connectivity matrix satisfies (5), there are
two matrices,) = (wi,ws,...,wy) € R¥Y*N and A =
tlim ”Zz — ZJH =0 (6) diag(/\l, Ao, ...,)\N) € R¥*N such that:
Suppose the control objective is to synchronize the net- C=0Q"AQ

work, in the generalized sense of (6), to a reference node: , , )
where \; and w; are thei-th eigenvalue and associated

2 = Ayzy + B, (7) eigenvector ofC, respectively. WithQ™Q = Iy, the N-
dimensional identity matrix.
By defining the synchronization error as, = z; — 2, Using a change of variables= ¢ Q7, the error dynamics
from (4) and (7), the error dynamics are found to be become
N - T _ T _
=[A-46 )]0 T'n(A - K
b= At S cuTe; + v ®) 1= [A=dsgn(n)]Q" +~T7( )

J=1 whereij = (1,12, ...,nn), With n; = e wf € R™ andw} =
fori=1,2,..,N, whered; = Aiz; + Bty — Ayzy — Biyy,  [W1i>@2is o wni] T € RV or equivalently,
which is a measure of the difference between the reference . _ « "y
node and the current node. Assuming that the trajectories i = (A = Isgn(iS2))wi +9Tn; (Ai — k) (14)
of both nodes are bounded, it follows that their differerge ifg, ; — 1. 9. N,
also bounded. Then, the following inequalities can be ddfine 1pq sfal;ilit&/ of the error dynamics (13) around the zero

fixed point can be determine using the Lyapunov candidate
Al < B 9) pol g yap
function:
fori =1,2,..., N whereg; are nonnegative constants. v — 1 & T
In order to achieve the generalized synchronization of the ) Zlni s
i—

network (2) in terms of criterion (6), the local controllers
v;, have to be designed such thatbecomes asymptotically = The time derivative ol along the trajectories of the error
stable about its zero fixed point. dynamics in (14) is given by



s (i Awd = dsgn(nf)w;
=L 4y (N — k)T
o [l A
Sica | Ol T sgn(n)wy ]|
+y (i = k) [[9:ll T |a|
Considering the bounds of each termi6f From (9) one
has the bound of the first term:

N N
AT < 1> Ajwill < Bjllwill
j=1
The bound for the second term is given by:
_ « N _
[sgn(n)w]]| < Zg-v:ll\sgn(nwj)l\l\wﬁll
< e lwsll

)

IN

J=1

The third term is quadratic and will be negative if the

coefficient is negativey(\; — k) < 0) for any. The bound
on the third term can be expressed as

Y(Ni = B) el T el < —=lmall T i

from this observation one get condition (11) Tineorem 1
by algebraic manipulation.
From the above results the time derivatieis bounded
N
> =1 Billwsil

by
[l T
1 —3 3000 flwill

—Hml\THmH

POl

For V to be negative, the discontinuous gain must satisf

N
- > =1 Billwsll
N
Zj:l [Jwyil

for any 4, resulting on the condition (12) iTheorem 1

Fig. 1. Network of non-identical nodes. “circles” are Spratcuits with
G1(z1); “squares” are Sprott circuits witli2(z1) and “crosses” are local
controllers appropriately designed
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Then, the error dynamics in (14) are globally uniformly

asymptotically stable about the zero fixed point € 0),
which implies that

lim e = lim {z1 — 2, ..., 2y — 2,1 =0
t—oo t—o00

Fig. 2. Synchronization of eight Sprott circuits of two difént structures
with the local controllers activated at= 5

In consequence, the dynamical network (2) under the con-

troller (10), achieves generalized synchronization insthiese
of (6).

Q.E.D.

IV. NUMERICAL EXPERIMENTS

Example 1: To illustrate the main result of this contribu-
tion, consider a network constructed with two differentdgp
of Sprott circuits [6], which are defined by:

T = X2
Ty = 3 (15)
T3 = —0.6x3— 29+ Gl(fL‘l) +u

where the ternG;(x1) can take one of the following forms:

G1(x1) |21 | —2 (16)
Ga(x1) —1.221 4 2sgn(xy) 17)

A network is constructed by coupling together eight Sprott
circuits in a fully connected structure as shown in Figure
1; where half of the nodes are Sproot circuits with(x;)
(represented by circles) and the other half are Sprootitircu
with G5 (z1) (represented by squares), with a local controller
in each node (represented by crosses). To synchronize this
network the local controller are designed according to the
specification of Theorem 1 In Figure 2 the dynamical
evolution of the entire network when the controllers are
activated att = 5 are presented. As can be seen the nodes
become synchronized to the reference node, a Sproot circuit
with G1(z1) in this case.

Example 2: To further illustrate the proposed generalized
synchronization the network shown in Figure 3 is constmlicte
coupling together Sprott circuits witlds; (1) (“circles”),
Sprott circuits withGa(z1) (“squares”) and Rdssler circuits
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Fig. 3. Network of non-identical nodes. “circles” are Spraitcuits with  Fig. 4.  Synchronization of six Sproot circuits of two diféet structures
G1(z1); "squares” are Sprott circuits with's (x1); “triangles” are Rossler  and three Rossler circuits in their transformed coordimatwith the local
circuits; and “crosses” are local controllers approphatiesigned controllers activated at = 5

(“triagles™), which are given by

11",'1 = —X2 — I3
x.g = x1+axy (18)
ig = Ig($1—b)+a+u 7]

For such a network to achieve generalized synchronizatic *7
a coordinate transformation is used to take the Rosslégrsys
into its normal form. Assuming that the output of (18) is
y = x9, the following coordinate transformation takes the '
Rossler system to the canonical form (3) in the transforr
variablesz = ¢(x) [3]:

2

0—

Z1 Z2
z9 = xr1 + axo (19) =27
z3 ary + (a? — 1)z — 3 N

This coodinate transformation is a diffemorphism and it

inverse is: i
€1 az1 + 29
Zo = 21 (20) 2=
x3 (2a% — 1)z1 + azo — 23 2

The dynamical evolution of the globally coupled network "
of three Sproot circuits witld7; (21 ), three withG2(x;) and h
three Rossler circuits in their normal coordinates is ghaw ~ **~
Figure 4. The trajectories of the Rdssler and Sprott disdni o
their original coordinates are shown in Figure 5. The Ré¥ssl| -os
circuit (18) is synchronized in the generalized sense of tF
composition of the coordinate transformations (19) and (2( -1s-| =<
to the evolution of the reference Sprott circuit (15)-(16). - - s

25

V. COMMENTS AND DISCUSSION 5 P

Different approaches can be consider for the synchroniza-
tion of complex dynamical networks. In this contribution,Fig. 5. Trajectories of the (a) Sproot circuit and (b) Résstircuits in
the nodes are considered to be non identical, but with tH@eir original coordinates
restriction of having a coordinate transformation that can
make them relatively similar in the transform coordinates,



that is, they have the same dimension and have a controller
type canonical form. Then, the difference between them
can be seen as a perturbation, which is eliminated by a
robust controller properly designed. With these contrdtie
nodes of the network can be made to identically synchro-
nize on their transform coordinates, which in their origina
coordinates becomes a form of generalized synchronization
An obvious limitation of the proposed method is the fact
the requires the same number of controllers than nodes,
in a work to be reported elsewhere this robust controlled
synchronization design is combined with a pinning control
strategy, providing a reduction on the number of nodes where
controlled action in taken. Yet another aspect of interest t
considered as future work is determining conditions for the
existence of an appropriate coordinate transformatioin suc
that this result is applicable for a more general class of
oscillators.
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