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Abstract: The paper investigates a filtering/identification problem of finite-state
Markov processes given continuous and/or counting observations. All the transi-
tion intensity matrix, observation plan and counting intensity are parameterized
by a random vector with uncertain distribution belonging to a known class.
An assertion concerning existence of saddle point in the considered minimax
optimization problem as well as a form of corresponding estimate is presented.
Monitoring of TCP link status under uncertainty is proposed as an illustrative
numerical example of application of obtained theoretical results.
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1. INTRODUCTION

For stochastic differential observation systems the
Kalman-Bucy filter (Kalman and Bucy, 1961)
and the Wonham one (Wonham, 1964) provide
the most famous and applicable optimal esti-
mates having a finite-dimensional form. A pri-
ori uncertainty in observation systems, occurring
in many practical situations, generates numer-
ous variations of these algorithms as well as the
whole realms of estimation theory in stochastic
systems, and the minimax approach, particularly
(Anan’ev, 1993), (Borisov and Pankov, 1994),
(Kats and Kurzhanskii, 1978), (Martin and Mintz,
1983), (Pankov and Miller, 2005) and (Semenikhin
et al., 2005). The most attention in this area was
paid to the Kalman-Bucy filter, and basic results
are tightly connected with paradigm of the combi-
nation “linear observation system – Gaussianity –
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linear estimate”. In fact, admissibility of Gaussian
noises in a linear observation system causes for an
optimal estimate to have a linear form. In the case
Gaussianity is unacceptable, the set of feasible
estimates, as a rule, is bounded forcibly by the
class of linear ones. Without pursuing to write an
exhaustive review of minimax filtering, only the
papers closely related to the proposed approach
are mentioned here.

The minimax filtering problem in linear stochastic
systems with a parametric uncertainty in both the
noises intensity and dynamics/observation was in-
vestigated in (Martin and Mintz, 1983). The au-
thors considered optimality criterion in the form
of the (unconditional) mathematical expectation
of quadratic and/or generalized quadratic loss
functions. Using game-theoretic framework, the
filtering problem was transformed to a zero-sum
game, which solution existed, generally, in terms
of mixed strategies. This meant, artificial random
nature was a burden to the uncertain parameters,
and the corresponding saddle point made sense as
the pair “the worst distribution of uncertain pa-



rameters — the best estimator in the worst case”.
Notably, the obtained best estimate represented
a weighted average of the classic Kalman filter
estimates. Further, these results were extended in
(Anan’ev, 1993) to the case of nonparametric un-
certainty in the investigated observation systems.

A case of minimax filtering problem for linear
Gaussian systems with conditional mean square
(MS) criterion was considered in (Kats and
Kurzhanskii, 1978). The uncertainty was only in
the noise parameters. The criterion form, system
linearity and Gaussian noises led to existence
of a saddle point in pure strategies. The initial
problem was reduced to searching for the least
favorable noise parameters (i.e. the mean and in-
tensity), and the best estimate was delivered by
the classic Kalman filter designed for this choice
of parameters.

Aforementioned papers were directed to the dis-
crete - time observation systems. The authors of
(Pankov and Miller, 2005) and (Semenikhin et
al., 2005) investigated linear stochastic differen-
tial systems (SDS) with uncertainty in the noise
intensity. As the objectives were considered tra-
ditional MS criterion and its integral analogue,
respectively. In turn, linearity of obtained mini-
max filters was predetermined by admissability of
Gaussian noises in the considered systems.

The Wonham filtering problem, i.e. the one of
MS-optimal filtering of finite-state Markov jump
process (FSMJP) given its indirect noised con-
tinuous and counting observations, differs from
the filtering problem in linear Gaussian systems
(i.e. the Kalman-Bucy case). First, although the
observation system with Markov jump state can
be rewritten formally as a linear SDS (Elliott
et al., 1995), it is non-Gaussian. Second, the
Wonham filtering estimate is essentially nonlinear
and represents conditional distribution of FSMJP
given available observations. Naturally, the ob-
servation (linear stochastic differential!) system
under investigation can be studied to design the
optimal linear filter, but the obtained estimate
would not possess the property of non-negativity,
by contrast with any of “genuine” probability
distributions. This means, refusal of filter nonlin-
earity depreciates potential estimation results.

The aim of this paper is correct formulation and
solution of estimation problem for FSMJPs under
mutual statistical parameter uncertainty in both
the state and observation equations.

The paper is organized as follows. Section 2 con-
tains description of investigated observation sys-
tem. The crucial feature of the system is the
triple “transition intensity matrix – continuous
observation plan – counting observation intensity”
is parameterized by a random vector with known

distribution. The section also contains solution of
the Bayes estimation problem for both the param-
eter value and system state. Note, this result is a
ground for subsequent minimax inferences.

Section 3 is devoted to detailed formulation of
minimax estimation problem. To the best of au-
thor’s knowledge, analogous problem statement
is not presented in literature earlier. First, the
optimality criterion contains a conditional expec-
tation of generalized quadratic loss function given
obtained observations. Second, the class of admis-
sible estimates includes nonlinear ones. Third, the
uncertainty class contains all probability distribu-
tions of random parameter with a known fixed
support, and the considered observation system
is necessarily non-Gaussian. The section also in-
cludes the arguments of practical significance of
presented “exotic” setting.

Section 4 contains solution of stated minimax
estimation problem. The main results concern
the saddle point existence in the corresponding
minimax optimization problem, characterization
of minimax estimate and properties of the least
favorable distributions.

Section 5 demonstrates applicability of the pre-
sented filter by an illustrative numerical example
of TCP link status monitoring under uncertainty.

2. BAYESIAN ESTIMATION IN MARKOV
OBSERVATION SYSTEMS

Before consideration of the filtering problem in
minimax setting, a problem of mutual Bayesian
estimation of FSMJP state and identification of
observation system parameters is investigated.

On the finite time interval [0, T ] let us consider
the observation system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θt = θ0 +
∫ t

0

Λ∗θs−ds + Mθ
t ,

Nt =
∫ t

0

µθs−ds + MN
t ,

Ut =
∫ t

0

Aθs−ds + εWt.

(1)

Here

• θt ∈ Sn is a unobservable homogenous FSMJP
with the state space Sn = {e1, . . . , en} (ek denotes
the k-th unit vector in Euclidian space Rn), with
the known initial distribution p0 and transition
intensity matrix Λ ∈ Rn×n,

• Nt ∈ R is an observable counting process with
intensity µθ dependent on the state θ (µ ∈ R1×n

is a row vector of rates),

• Ut ∈ Rm×1 is an observable continuous process
(A ∈ Rm×n is an observation plan),



• Wt ∈ Rm×1 is a Wiener process representing
errors in continuous observations,

• εε∗ > 0 is a known nondegenerated observation
noise intensity.

The two first equations in (1) define martingale
representation of θ and N (Elliott et al., 1995):
processes Mθ

t and MN
t are Fθ,N

t -adapted square
integrable martingales with predictable character-
istics

〈Mθ, Mθ〉t =
∫ t

0

(diag(Λ∗θs−)−
−Λ∗ diag(θs−) − diag(θs−)Λ)ds,

〈MN , MN 〉t =
∫ t

0

µθs−ds.

Further in the paper it is supposed that all the
transition intensity matrix Λ = Λ(γ(ω)), obser-
vation plan A = A(γ(ω)) and rate vector µ =
µ(γ(ω)) are known bounded functions of ran-
dom parameter γ(ω) ∈ Rk. The functions Λ(v)
and µ(v) satisfy usual conditions for intensities:
λij(v) � 0 if i �= j,

∑n
j=1 λij(v) ≡ 0 and µi(v) � 0

for i = 1, 2, . . . , n.

To define a probability triplet with filtration for
the observation system (1) the following notation
is reservated:

• Ft
def= σ{γ(ω), θs(ω), Ns(ω), Ws(ω), 0 � s � t}

is the natural filtration commonly induced by θ,
N , W and γ; F def=

∨
t∈[0,T ] Ft,

• Ut
def= σ{Ns(ω), Us(ω) 0 � s � t} is the natural

filtration commonly induced by the observations
N and U .

The probability measure PF , defined on the un-
derlying space (Ω,F), is known and satisfies the
following conditions:

1) the initial condition θ0(ω), random parameter
γ(ω) and observation noise Wt(ω) are mutually
independent;

2) γ(ω) ∈ C ⊆ Rk for any ω ∈ Ω;

3) MN ⊥⊥ Mθ;

4)

EF

{
exp

[∫ t

0

A∗(γ)(εε∗)−1dUs+

+
1
2

∫ t

0

A∗(γ)(εε∗)−1A(γ)ds+

+
∫ t

0

ln(µ(γ)θs−)dQs −
∫ t

0

(µ(γ)θs− − 1)ds

]}
=1,

5) PF {ω : γ(ω) ∈ L} = F (L), where F (·) is
known a priori distribution of γ.

The index F in the notation PF and EF indicates
for the probability measure and mathematical ex-
pectation to be dependent on a priori distribution
F of γ(ω).

The Bayesian estimation problem for the vector
zt

def= col(θt, γ) is to find ẑF
t

def= EF {zt|Ut}.
As is known, the required estimate ẑF

t is optimal
both in the sense of unconditional MS-criterion:

ẑF
t ∈ Arg min

zt∈Mt

EF

{‖zt − zt‖2
}

, (2)

and its conditional version:

ẑF
t ∈ Arg min

zt∈Mt

EF

{‖zt − zt‖2|Ut

}
. (3)

Above, the set Mt of admissible estimates zt

consists of all Ut-measurable functions. The op-
timality of ẑF

t in the sense of conditional criterion
(3) means, the inequality

EF

{‖zt − ẑF
t ‖2|Ut

}
� EF

{‖zt − zt‖2|Ut

}
holds PF -a.s. for any estimate zt ∈ Mt.

Evidently, the stated problem can be transformed
into one of optimal filtering. Note, the martingale
representations of θ and N are still valid after
replacing of the nonrandom matrix Λ and vector
µ by the random ones Λ(ω) and µ(ω). The formu-
lae for characteristics 〈Mθ, Mθ〉t and 〈MN , MN〉t
also keep the form.

Consider the observation system with the ex-
tended state zt

def= col(θt, γt):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θt = θ0 +
∫ t

0

Λ∗(γs−)θs−ds + Mθ
t ,

γt = γ,

Nt =
∫ t

0

µ(γs−)θs−ds + MN
t ,

Ut =
∫ t

0

A(γs−)θs−ds + εWt,

(4)

and define the conditional distributions

P̂F
i (L, t) def= PF {γt ∈ L, θt = ei | Ut}, i = 1, n,

P̂F (L, t) def= col(P̂F
1 (L, t), . . . , P̂F

n (L, t)).

Theorem 1. If conditions 1) — 5) hold for the
system (4), then

i) conditional distribution P̂F (L, t) is defined as

P̂F (L, t) = K

∫
L

θ̃t(q)F (dq),

K =
(∫

C
1θ̃t(q)F (dq)

)−1

,
(5)

where θ̃t(q) is the unnormalized conditional distri-
bution of θt given Ut, calculated by the Wonham
filtering algorithm under the assumption γ(ω) =q:

θ̃t(q) = p0 +
∫ t

0

Λ∗(q)θ̃s−(q)ds+

+
∫ t

0

diag(θ̃s−(q))A∗(q)(εε∗)−1dUs+

+
∫ t

0

[diag µ(q) − In×n]θ̃s−(q)(dNs − ds),

(6)

where In×n is the n × n unit matrix, and 1 is a
row vector formed by units;



ii) the Bayesian estimate ẑF
t of zt is defined by the

formulae

θ̂F
t = K

∫
C

θ̃t(q)F (dq),

γ̂F
t = K

∫
C

q1θ̃t(q)F (dq).
(7)

Note, that (6), being a linear SDS, has a unique
strong solution for any fixed parameter q ∈ C.

3. STATEMENT OF MINIMAX ESTIMATION
PROBLEM

Let us consider the observation system (4), for
which conditions 1)—4) of previous section are
valid, and condition 5) is replaced by

5’) the distribution F (L) = PF {ω ∈ Ω:γ(ω) ∈ L}
is a priori unknown. The uncertainty set F consists
of all distributions F concentrated on the fixed
known convex compact C ⊆ Rk.

In view of this uncertainty there is a family of
canonical spaces PF

def={(Ω,F ,PF ,{Ft}t∈[0,T ])}F∈F,
parameterized by the distribution F ∈ F.

The set Zt of admissible estimators consists of
Bt-measurable functions ϕ : Cm[0, t] × B[0, t] →
R(n+k)×1 such that supF∈F

EF

{‖ϕ(Ot)‖2
}

< ∞
(here B[0, t] denotes a Blackwell space, and Ot =
{Us, Ns : 0 � s � t} denotes an observation
trajectory occurring on the time interval [0, t]).

Let g = g(x) : C → Rl be a function such
that supF∈F

EF

{‖g(γ(ω))‖2
}

< ∞. We intro-
duce an auxiliary estimate gt for the function
g(γ(ω)) of the random parameter γ(ω). Namely,
gt : Cm[0, t] × B[0, t] → Rl×1 is a fixed known
Bt-measurable function of observations, such that
supF∈F

EF

{‖gt(Ot)‖2
}

< ∞. For example, addi-
tional a priori information like EF {γ(ω)} = g can
be considered as a sort of the auxiliary estimate.

The minimax posterior estimation problem for the
state zt is to find an estimate ẑt such that

ẑt ∈ Arg min
zt∈Zt

sup
F∈F

EF {‖zt − zt(Ot)‖2
Σ1

−
−‖g(γt) − gt(Ot)‖2

Σ2
|Ut}.

(8)

Here ‖x‖2
Σ

def= x∗Σx, and Σ1 and Σ2 are known
nonnegative weight matrices.

The conditional expectation in the criterion above
has transparent interpretation. The point is, any
practical estimation problem should be investi-
gated ultimately with respect to the realized ob-
servation (trajectory, sample, etc.) Utilization of
unconditional minimax criterion implies search-
ing for the worst system parameters irrelative of
the available observations. By contrast with this
case, conditional minimax criterion (8) is more

pessimistic, because it forces to find the worst
parameters regarding to the observation system
and realized observation trajectory as well.

From the practical point of view, allotment of
the parameter γ by the random nature is hardly
reasonable. Actually, in most of applied problems
γ is a priori unknown but nonrandom. Ascription
of randomness is only an artificial trick, because
under nonrandom settings the corresponding cri-
terion has no saddle point at the feasible set of
arguments (see, e.g. (Martin and Mintz, 1983)
for the minimax estimation in linear discrete-time
systems). On the other hand, in many real prob-
lems additional a priori or statistical information
gt concerning functions g(γ) is often available:
prior information, estimates, guess values, etc.
Note, the auxiliary value gt could be either non-
random or Ut-measurable. We need only to precise
it at one time with the Markov state estimation.
It is also remarkable, the generalized quadratic
loss function in (8) penalizes the distributions F
for the deviations of some fixed function g(γ(ω))
from its auxiliary value gt.

4. SOLUTION FOR MINIMAX ESTIMATION
PROBLEM

Let us fix some distribution F ∈ F and consider
the estimate ẑF

t calculated by (6) and (7), i.e.
conditional expectation corresponding to F . Fur-
ther, Ẑt = {ẑF

t : F ∈ F} denotes a set of all
these estimates calculated for each distribution
F ∈ F given a fixed observation trajectory Ot.
Below we also reserve the general notation f̂F

t =
f̂F

t (Ot) = EF {ft|Ut} for conditional expectation
of any random value ft = f(θt, γt) calculated by
the given trajectory Ot:

f̂F
t =

∫
C

n∑
j=1

f(ej, q)P̂F
j (dq, t). (9)

Theorem 2. i) If the dual optimization problem

F̂ ∈ Arg max
F∈F

{(
‖̂zt‖2

Σ1

F

− ‖ẑt
F ‖2

Σ1

)
−

−
(
‖̂gt‖2

Σ2

F

− ‖ĝF
t ‖2

Σ2

)
− ‖gt − ĝF

t ‖2
Σ2

} (10)

has a solution (dependence on Ot and γ in the
above criterion is omitted), then the function

J(zt, F ) def= EF

{‖zt − zt‖2
Σ1

− ‖gt − gt‖2
Σ2
|Ut

}
has the saddle point (ẑt, F̂) on the set Zt ×F: the
least favorable distribution F̂ is a solution of (10)
and ẑt = ẑF̂

t is the estimate calculated by (6), (7)
and (9) under the least favorable distribution F̂;
in this case the estimate ẑt is a solution of the
minimax posterior estimation problem (8) for the
state zt;



ii) if θ̃t(q) (6) depends on q ∈ C continuously, then
the solution of (10) does exist, moreover there
exists a version of the least favorable distribution
concentrated at most at n + k + l + 2 points of C.

The uncertainty set F of admissible distributions
in Theorem 2 can be replaced by any subset of F

closed in the weak topology. In this case item i)
is still valid, meanwhile fulfillment of item ii) can
not be guaranteed.

Item ii) provides existence of some discrete ver-
sion of the least favorable distribution. In general,
this distribution is neither unique nor necessarily
discrete. Characterization and further investiga-
tion of the whole set of the worst distributions is
very complicated problem out of the scope of this
paper.

5. NUMERICAL EXAMPLE: MONITORING
OF TCP LINK STATE UNDER

UNCERTAINTY

Let us consider the Gilbert model (Gilbert, 1960)
of TCP link functioning. It is supposed, the un-
observable link status is described by a FSMJP θt

with two possible states: the “good” (θt = e1)
and the “bad” (θt = e2) ones. Corresponding
observation system, being a specific case of (1),
has the following form:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θt = θ0 +
∫ t

0

[−λ1 λ1

λ2 −λ2

]∗
θs−ds + Mθ

t ,

Nt =
∫ t

0

[
µ1 µ2

]
θs−ds + MN

t ,

Ut =
∫ t

0

[
A1 A2

]
θs−ds + εWt,

(11)

The transition intensity matrix Λ = ‖λi‖i=1,2 of
θt is a priori unknown, but the bounds of elements
of Λ are usually available: λi ∈ [λi, λi], i = 1, 2.

TCP protocol allows to observe a process of packet
losses Nt, assumed to be a counting process with
intensity µθ dependent on the current link state
θt. Evidently, µ2 > µ1, i.e. the rate of packet
losses in the “bad” state is higher than one in
the “good” state. Exact values of the rates are
also unknown, but their bounds are available:
µi ∈ [µ

i
, µi], i = 1, 2. Continuous observation

Ut represents integral statistical data concerning
the Round Trip Time (RTT) history: A1 and A2

are unknown expected RTT values in the “good”
and “bad” states, respectively (A2 > A1), and the
Wiener process εWt describes RTT disturbances.
A priori uncertainty of vector A is in the same
form as ones of Λ and µ: Ai ∈ [Ai, Ai], i = 1, 2.

The problem is to find a filtering estimate of
the TCP link state θt under a priori uncertainty
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Fig. 1. Available observations: scaled increments
of continuous observations ∆Ut/∆t (solid
black line), and moments of packet losses Nt

(black dots).

1  2  3  4  5  
0  

0.2

0.4

0.6

0.8

1  

Fig. 2. The indicator of “good” state (solid gray
line), Wonham estimate given true value of
(Λ, µ, A) (solid black line) and minimax esti-
mate (dotted line).

of observation system parameters, i.e. to solve a
special case of minimax estimation problem (8),
when Σ1 = diag[I2×2, 0] and Σ2 = 0.

For simulation the following true parameter values
are assigned: λ1 = 1.9, λ2 = 5.1, A1 = 29,
A2 = 51, µ1 = 0.5, µ2 = 60, ε = 0.5. The
uncertainty is given by the bounds: λ1 = 0.5,
λ1 = 2, λ2 = 5, λ2 = 25, A1 = 20, A1 = 30,
A2 = 50, A2 = 120, µ

1
= 0.1, µ1 = 1.1, µ

2
= 50,

µ2 = 100.

Figure 1 contains available observations: scaled
increments of continuous observations ∆Ut

∆t (∆t =
0.01), and moments of packet losses Nt. Figure 2
presents the indicator function of the “good” state
θ∗t e1 in comparison with both the Wonham filter-
ing estimate, calculated given true value of the
triple (Λ, µ, A), and presented minimax estimate.
Figure 3 presents the indicator θ∗t e1 in comparison
with both the minimax estimate and the Won-
ham filtering estimate, calculated with uncertain
parameters replaced by the guess values – centers

of corresponding uncertainty sets: λgv
i = (λ

i
+λi)

2 ,

µgv
i =

(µ
i
+µi)

2 , Agv
i = (Ai+Ai)

2 , i = 1, 2. Obviously,
performance of the minimax filter and the Won-
ham one, calculated with guess values, can not
be correctly compared with one of the Wonham
filter calculated under the perfect knowledge of
(Λ, µ, A), because of different a priori information
used in estimation. For an estimate ν of the state
process θ let us consider the averaged L2 norm
of error 1

T

∫ T

0
‖θt − νt‖2dt. Being calculated for
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Fig. 3. The indicator of “good” state (solid gray
line), Wonham estimate calculated under
guess values of (Λ, µ, A) (solid black line) and
minimax estimate (dotted line).

T = 10 in the example, this performance index is
equal to 0.00438 for the “perfect” Wonham filter,
0.1753 for the minimax one, and 0.46246 for the
“guess” Wonham filter. The point is, the uncer-
tainty of parameters, corresponding to the “bad”
state is wider, and the chosen guess values occur
to be far from exact ones. This is a reason the
“guess” Wonham filter identifies the “bad” state
poorly, demonstrating unstable oscillating behav-
ior (see, e.g., intervals (0.68, 1.63) and (1.9, 2.32)
in Figure 3). This means, the only observations
are not enough for the “guess” Wonham filter in
the “bad” state to estimate this current link status
surely under missing a priori information. In this
situation the proposed minimax filter turns out
to be more effective, suggesting a “case-neutral”
uniform estimate θ̂t = col(0.5, 0.5).

6. CONCLUSIONS

The contributions of this paper are as follows.

1. The problem of estimation in Markov jump
observation system under a priori uncertainty is
properly stated in terms of game-theoretic frame-
work.

2. The work contains an assertion, specifying a
solution of stated minimax optimization problem:
saddle point existence, dual optimization prob-
lem, defining the least favorable distribution, and
the form of desired minimax estimate.

3. Applicability of the minimax estimate is demon-
strated by the example of TCP link monitoring
given observations of RTT and packet losses under
a priori uncertainty of the link parameters.

At the same time we can point following open
problems.

First, practical implementation of the proposed
results requires development of effective numerical
schemes, realizing the minimax estimation pro-
cedure. Second, it is worth to specify conditions
guaranteeing existence of the dual optimization
problem solution. Third, investigation of minimax
versions for optimal control problems (see, e.g.
(Miller et al., 2005)) looks very promising.
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