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Abstract
In this paper we present sufficient conditions for ex-

istence of strange hyperbolic nonstationary attractor of
hybrid continuous piecewise smooth discrete-time dy-
namical system.
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1 Introduction
In the field of dynamical chaos hyperbolic strange at-

tractors play a central role as one of the basic units
linking dynamical and ergodic theories. Hyperbolic
strange attractors generate random (in terms of mixing
property) stationary (in terms of Sinai-Bowen-Ruelle
measure (SBR-measure)) processes [Anosov and Sinai,
1967; Bowen,1977; Katok and Hasselblatt, 1995;
Afraimovich, Chernov and Sataev, 1995]. In the case
of ODEs there are several examples showing the possi-
ble existence of a hyperbolic attractor [Belykh, Belykh
and Mosekilde, 2005; Kuznetsov, 2005; Kuznetsov and
Pikovsky 2007]. Unfortunately all these examples do
not lend itself so far to mathematical verification. Con-
trary, in the case of maps (discrete-time dynamical sys-
tems) there are several well defined examples (Smale-
Williams attractor, Lozi map, Belykh map, etc) [Ka-
tok and Hasselblatt, 1995; Lozi, 1978; Belykh, 1995;
Belykh, Komrakov and Ukrainsky, 2002] for which
the hyperbolicity, the existence of invariant measure
and mixing property are proved [Pesin 1992; Sataev,
1999; Schmeling and Troubetzkoy, 1998]. In partic-
ular, the first example of hyperbolic attractor in Lurie
discrete-time system with continuous nonlinearity, hav-
ing a bounded away from zero discontinuous deriva-
tive, was presented in [Belykh, Komrakov and Ukrain-
sky, 2002]. This system serves as a model of electro-
mechanical control systems. In the map representation

it takes the form

u = Au + pϕ(x), x = cT u, (1)

whereu = u(i), u = u(i + 1), u ∈ Rm; A is constant
m×m-matrix;p, c are constantm× 1-vectors; ”T ” is
transpose andϕ : R1 → R1 is a continuous piecewise
smooth function,|ϕ′(x)| > K, x ∈ R1.

For the parameter domain [Belykh, Komrakov and
Ukrainsky, 2002] where the map (1) is hyperbolic from
papers [Sataev, 1999; Schmeling, 1998] it follows that
the hyperbolic attractor of (1) is stationary in the sense
of SBR-measure.

In the present paper we consider the hybrid system of
the form

{
u(i + 1) = Au(i)u + pϕ(x(i), z(i))

z(i + 1) = ψ(x(i), z(i)), x = cT u,
(2)

where the integerz ∈ Z, the functionψ : R1 × ZN →
ZN is bounded:[1, N ] = ZN .

Our main purpose is to obtain sufficient conditions
such that the hybrid map (2) has a strange hyperbolic
nonstationary attractor.

Note, that in the case of a periodic nonautonomous
system (2) whenψ = z( mod N), the system (2)
is a composition ofN maps (1) withϕ(x, i), i =
0, 1, ..., N − 1 standing forϕ(x), and the hyperbolic-
ity of each such map fromN sequential maps does not
imply that the map (2) is also hyperbolic. We consider
an arbitrary (even random) sequence ofz(i) generated
by the second equation in (2). The proof of hyperbol-
icity is based on a comparison principle for multidi-
mensional maps, and the construction of cones that are
invariant with respect to a linearization of the map (2),
and are independent of the phase coordinates.



2 Reduction to a normal form
We introduce the normal form of the Lurie system as

the following mapF





(
x
y

)
=

(
1 1
0 B

)(
x
y

)
−

(
a
b

)
g(x, z)

z = ψ(x, z),
(3)

where the overbar denotes the forward shift in time,
g(x, z) ≡ kx + ϕ(x, z); B is n× n-matrix (n = m−
1), y = column(y1, y2, . . . , yn), 1 = (1, 1, . . . , 1),
b = column(b1, b2, . . . , bn) is n-vector of parameters,
k anda are scalar parameters. Denotingv − (x, yT )T ,
and introducing the transformationv = Su, whereS is
a nonsingularm×m-matrix, we obtain that the system
(2) takes the form (3) as long as the following system
of equations has a solution:





SAS−1 =
(

1− ka 1
−kb B

)

cT S−1 = eT

Sp =
(−a
−b

)
,

(4)

whereeT = (1, 0, . . . , 0). Note, that the following sys-
tem of equations





kp + (E − SAS−1)e = 0

cT S−1 = eT

eT SAS−1 =
(
1− ka 1

)
(5)

takes a form of necessary conditions for resolving the
system (4). We assume that the system (5) can be re-
solved with respect to the parameterk and matrixS (an
example is shown in [Belykh, Komrakov and Ukrain-
sky, 2002]). Hence, the system (1) is reduced to the
map (3) which we consider below.

3 Existence of invariant domain
Consider an arbitrary mapΦ : Rm+n → Rm+n of the

form (x, y) → (P (x, y), Q(x, y)), and reduced map
Φ0 : (x, y) → (P (x, y), y), wherex ∈ Rm, y ∈ Rn

andy = const for Φ0. Our problem is to derive the
conditions for the mapΦ as well as for the boundaries
of a domainD such that 1)ΦD ⊂ D; 2) D = Dx×Dy

(direct product).
Comparison principle. Assume that there exist some

compactsDx andDy such that:

1. Φ0Dx ⊂ Dx for anyy = const from compactDy

2. Q(x, y) ∈ Dy for anyx ∈ Dx andy ∈ Dy.

ThenD is invariant under the mapΦ.
From this principle it follows that the map has an at-

tractorA = ΦA,A ⊂ D.

Remark. The variables separation in this obvious prin-
ciple is immediately directed to the finding of the com-
pactsDx andDy for certain maps. The map, which we
consider in the paper is the case.
As the main example we consider the following class

of nonlinear functions. For a naturaln > 1, from
the interval [c, d] consider two sets of real numbers
Sa = (a0 = c < a1 < a2 < . . . < an = d)
and Sb = (b0 = 0, b1, . . . , bn = 0)|bi−1bi < 0,
i = 2, n− 1, and consider a set of functionsSη =
(η1(ξ), η2(ξ), . . . , ηn(ξ)), whereη1(ξ) is given in the
interval (−∞, a1], ηn(ξ) — in the interval [0,∞),
and for i = 2, n− 1 the functionsηi(ξ) are given
in the intervals[0, ai − ai−1]. Assume that each
function fromSη is continuous, smooth;ηi(0) = 0,
η′i(ξ) > k > 0. Introduce the following function

η(x, n) = bi−1 +
bi − bi−1

ηi(ai − ai−1)
ηi(x− ai−1), where

index i = 1 for x ∈ (−∞, a1], index i = n for
x ∈ [an,∞) and for x ∈ (ai′−1, ai′ ] index i = i′,
i = 2, n− 1. This function has singularities at critical
pointsai andf(ai) = bi for i = 1, n− 1. An exam-

ple of such function forn = 5, ai = c + (i− 1)
d− c

n
,

bi = (−1)ib, ηi(x) = x for all i is depicted in Fig.1.
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Figure 1. Example ofη(x, 4) with 4 critical points

Now the map (3) is defined with the function
g(x, z) = η(x, z) and an arbitrary functionψ(x, z).
We consider a set of functions<(h) : f(x, z) =
x− ag(x, z), such that:

1. For even z M = max
x∈[c,d]

f(x, z) < d;

m = min
x∈[c,d]

f(x, z) > c. For oddz f(M, z) > c,

f(m, z) > c
2. max

x∈[c,d]
f ′(x, z) > h.



Figure 2 illustrates functionsf(x, z) ∈ <(h) for even
and oddz.

Figure 2. An examplef(x, z) ∈ <(h) for even and oddz.

First we consider reduced system (3), that is a one-
parameterz family of mapsF1:

{
x = x + 1y − ag(x, z)
y = By − bg(x, z), (6)

wherez ∈ ZN is a constant parameter. Under a nonsin-
gular linear transformation the map (6) can be reduced
to the form

{
x = x + 1y − ag(x, z)
yi = λi(yi − big(x, z)), (7)

whereλi denotes either a real eigenvalue of matrixB
or α± β for complex eigenvaluesα± βi of matrixB.
Note that in the case of multiple eigenvalues of matrix
B some of the such values ofλi must be increased by
some quantityε from a Jordan form of the matrixB.
Applying the comparison principle for the mapF1

as the auxiliary mapΦ0 we consider the mapF0 in
the form (x, y) → (x − ag(x, z) + Y, y), where
Y = 1y a parameter. This map is a two parameter
y = const, z = const family of one dimensional maps
f1 : x = x− ag(x, z) + Y . As for eachf1 ∈ <(h) the
first condition of the comparison principle is fulfilled,
so the interval[c, d] = Dx. This condition is illustrated
in Fig. 2 for our main example. It is easy to verify
that there exists an interval[y−, y+] = Dy, satisfying
the condition 2 of the comparison principle. In fact this

condition becomes valid for small enough eigenvalues
of the matrixB.
These conditions provide a simple technical rule for

the system (3): fromx ∈ [c, d] andY ∈ [y−, y+] it
follows thatx ∈ [c, d]. Under the conditionF1D ⊂ D
the next theorem holds.

Theorem 1. There exists a numberλ0, such that for

anyλ+ < λ0 (λ+ ∆= max
i
{|λi|}) and anyz ∈ ZN the

mapF1 has an invariant domainD = {(x, y) : c <
x < d, y−i < yi < y+

i , i = 1, n} and, therefore this
map has an attractorA ⊂ D.

4 Conditions of hyperbolicity
Assume, thatg(x, z) is a continuous piecewise

smooth function, i.e. smooth in each interval of mono-
tonicity. Denoteh

∆= inf
x∈A,z∈ZN

|g′x(x, z)|.

Definition 1. We call a cone inRn+1 with one-
dimensional axes being a set of vectors of the
form K1 = {(ξ, η) ∈ Rn+1 : ξ ∈
R1, η

∆= column(η1, η2, ...ηn) ∈ Rn,
ηi

ξ
= αi, αi ∈

(α−i , α+
i ), i = 1, n}, and we call a cone withn-

dimensional axial spaceKn = {(ξ, η) ∈ Rn+1 :
ξ +

∑
i

βiηi = 0, βi ∈ (β−i , β+
i ), i = 1, n}.

The coneK1 is a set of vectors being parallel to
those vectors, which have one unit coordinate and
all the others are bounded, the coneKn is a set
of vectors fromn-dimensional plane and its vectors
column(1, β1, ..., βn) are similar to those as forK1

(see figure 3).
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Figure 3. ConesK1andK2.

For eachz = const consider the linearization of the
mapF1 in a point(x, y) of the phase space resulting in
the linear mapT of the form

{
ξ = (1− s(x, z))ξ +

∑
ηi

ηi = −ti(x, z)ξ + λiηi i = 1, n,
(8)



wheres(x, z) ∆= ag′x(x, z), ti(x, z) ∆= λibig
′
x(x, z).

We consider the cones in the space(ξ, η), which are
independent of the points(x, y) in the phase space of
F1.
Introduce two families of linear manifolds

l1(α, σ) ∆=
{

ηi − αiξ = σi

i = 1, n,
:

σi ∈ R1

αi ∈ (α−i , α+
i )

}
,

l2(β, ρ) ∆= {ξ +
∑
i

βiηi = ρ : ρ ∈ R1, βi ∈
(β−i , β+

i )}.
The images of these manifoldsT l1 andT l2 are also

linear manifolds with new valuesαi, βi, σi andρ.

Definition 2. An attractorA is called a hyperbolic at-
tractor, if there exist conesKu

1 and Ks
n, such that

∀(x, y) ∈ A the following conditions hold:

h1. clos(Ku
1 ) ∩ clos(Ks

n) = {0};
h2. clos(TKu

1 ) ⊂ Ku
1 , clos(T−1Ks

n) ⊂ Ks
n;

h3. There exist a constantl, 0 < l < 1 such, that
a) If (ξ, η) ∈ Ku

1 and βi ∈ (β−i , β+
i ) thenβi ∈

(β−i , β+
i ) and|ρ| > l−1|ρ|,

b) If (ξ, η) ∈ Ks
n and αi ∈ (α−i , α+

i ) thenαi ∈
(α−i , α+

i ) and|σi| < l|σi|.
We pay special attention at the condition h3, which im-
plies that the image of a line and pre-image of a plane
tend to the origin due to decrease of valuesρ andσi in
a geometrical progression with the factorl. One iterate
of l1(α, σ) and l2(β, ρ) in the cones is schematically
shown in the Fig. 4.
Under the above conditions on functiong(x, z) the

following theorem holds.

Theorem 2. There exist numbersh0 > 1 andλ0, 0 <
λ0 < 1, such that the attractorA of the mapF1 is a
hyperbolic attractor forh > h0, λ+ < λ0 and any
z ∈ ZN .

Proof (in the case ofKu
1 ) is based on:

1. Invariance:

(a) We prove, that the images of (αi, βi, σi,
ρ) are defined by the next formulasβi =

1 + βiλi

1− s−∑
βjtj

, αi =
−tiλi + λiαi

1− s +
∑

αj
,

ρ = ρ(1 − s − ∑
βiti), σi = σiλi −

αi

∑
σj . We construct a map for the value

ζ
∆=

∑
αi generated by the mapT .The in-

equality for the imageζ holds: f2(ζ) <
ζ < f1(ζ) where the functionsf1(ζ) =
λh + λ−ζ

1 + ah + ζ
andf2(ζ) =

−λh + λ−ζ

1− ah + ζ
are

comparison functions. The graphs of the
functions ζ̄ = f1(ζ) and ζ̄ = f2(ζ) are
shown in the figure 5. This figure illustrate
the existing invariant interval(ζ−, ζ+).

(b) The existence of an invariant interval implies
that there exists a set of intervals for each
coordinateαi. The latter finishes the proof
of the existence and invariance of the cone
(Ku

1 ).
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Figure 4. Transformation of linear manifolds.
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Figure 5. One-dimensional maps of a comparison.

2. Expansion:
We prove the property of expansion of the variable

ρ
∆= ξ +

∑
βiηi. This fact together with bound-

edness of coordinates of the vectorβ provides an
expansion of any vector(ξ, η) ∈ Ku

1 .

The proof for invariant coneKs
n is similar to that for

coneKu
1 .



Theorem 3. Let the conditions of Theorem 2 hold.
Then the map (3) has a strange hyperbolic nonstation-
ary attractor.

Proof. Let two different mapsF (1)
1 andF

(2)
1 satisfy

the Theorem 2. Then the compositionF
(1)
1 F

(2)
1 satis-

fies the Theorem 2 as well. This statement follows from
the property that bothF (1)

1 andF
(2)
1 have the same in-

variant domain and the same invariant conesKu
1 and

Ks
n which are the same for any point. At each two

neighbor iteratei andi+1 the integerzi andzi+1 takes
values within the intervalZN and the mapsF |z=zi and
F |z=zi+1 are representatives of the familyF1. Hence
F |z=zi

·F |z=zi+1 satisfy the Theorem 2, the mapF
has strange hyperbolic nonstationary attractor with re-
spect to integerz.
Example. For the function from the main exam-

ple we obtainN different maps (3) for the sequence
f(x, 1), f(x, 2),..., f(x,N) from <(h). Let the con-
trol rule for the integerz be given by the function

ψ(x, y, z) = k ∈ ZN with probabilitypk,
N∑

k=1

pk = 1.

Due to Theorem 3 the map (3) has a hyperbolic attrac-
tor which randomly changes its structure according to
the probability distribution.
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