A DISCRETE-TIME HYBRID LURIE TYPE SYSTEM WITH STRANGE HYPERBOLIC NONSTATIONARY ATTRACTOR

Vladimir Belykh, Boris Ukrainsky
Department of mathematics
Volga State Academy of Water Transport
N. Novgorod, Russia
belykh@aqua.sci-nnov.ru, ukboris@ya.ru

Henk Nijmeijer, Alexander Pogromsky
Department of Mechanical Engineering
Eindhoven University of Technology
Eindhoven, The Netherlands
H.Nijmeijer@tue.nl, A.Pogromsky@tue.nl

Abstract

In this paper we present sufficient conditions for existence of strange hyperbolic nonstationary attractor of hybrid continuous piecewise smooth discrete-time dynamical system.

Key words

Piecewise smooth maps, hyperbolic attractors, hybrid systems.

1 Introduction

In the field of dynamical chaos hyperbolic strange attractors play a central role as one of the basic units linking dynamical and ergodic theories. Hyperbolic strange attractors generate random (in terms of mixing property) stationary (in terms of Sinai-Bowen-Ruelle measure (SBR-measure)) processes [Anosov and Sinai, 1967; Bowen,1977; Katok and Hasselblatt, 1995; Afraimovich, Chernov and Sataev, 1995]. In the case of ODEs there are several examples showing the possible existence of a hyperbolic attractor [Belykh, Belykh and Mosekilde, 2005; Kuznetsov, 2005; Kuznetsov and Pikovsky 2007]. Unfortunately all these examples do not lend itself so far to mathematical verification. Contrary, in the case of maps (discrete-time dynamical systems) there are several well defined examples (SmaleWilliams attractor, Lozi map, Belykh map, etc) [Katok and Hasselblatt, 1995; Lozi, 1978; Belykh, 1995; Belykh, Komrakov and Ukrainsky, 2002] for which the hyperbolicity, the existence of invariant measure and mixing property are proved [Pesin 1992; Sataev, 1999; Schmeling and Troubetzkoy, 1998]. In particular, the first example of hyperbolic attractor in Lurie discrete-time system with continuous nonlinearity, having a bounded away from zero discontinuous derivative, was presented in [Belykh, Komrakov and Ukrainsky, 2002]. This system serves as a model of electromechanical control systems. In the map representation
it takes the form

$$
\begin{equation*}
\bar{u}=A u+p \varphi(x), \quad x=c^{T} u, \tag{1}
\end{equation*}
$$

where $u=u(i), \bar{u}=u(i+1), u \in \mathbb{R}^{m} ; A$ is constant $m \times m$-matrix; p, c are constant $m \times 1$-vectors; " T " is transpose and $\varphi: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ is a continuous piecewise smooth function, $\left|\varphi^{\prime}(x)\right|>K, x \in \mathbb{R}^{1}$.
For the parameter domain [Belykh, Komrakov and Ukrainsky, 2002] where the map (1) is hyperbolic from papers [Sataev, 1999; Schmeling, 1998] it follows that the hyperbolic attractor of (1) is stationary in the sense of SBR-measure.
In the present paper we consider the hybrid system of the form

$$
\left\{\begin{array}{l}
u(i+1)=A u(i) u+p \varphi(x(i), z(i)) \tag{2}\\
z(i+1)=\psi(x(i), z(i)), \quad x=c^{T} u,
\end{array}\right.
$$

where the integer $z \in \mathbb{Z}$, the function $\psi: \mathbb{R}^{1} \times \mathbb{Z}_{N} \rightarrow$ \mathbb{Z}_{N} is bounded: $[1, N]=\mathbb{Z}_{N}$.
Our main purpose is to obtain sufficient conditions such that the hybrid map (2) has a strange hyperbolic nonstationary attractor.
Note, that in the case of a periodic nonautonomous system (2) when $\psi=z(\bmod N)$, the system (2) is a composition of N maps (1) with $\varphi(x, i), i=$ $0,1, \ldots, N-1$ standing for $\varphi(x)$, and the hyperbolicity of each such map from N sequential maps does not imply that the map (2) is also hyperbolic. We consider an arbitrary (even random) sequence of $z(i)$ generated by the second equation in (2). The proof of hyperbolicity is based on a comparison principle for multidimensional maps, and the construction of cones that are invariant with respect to a linearization of the map (2), and are independent of the phase coordinates.

2 Reduction to a normal form

We introduce the normal form of the Lurie system as the following map F

$$
\left\{\begin{array}{l}
\binom{\bar{x}}{\bar{y}}=\left(\begin{array}{ll}
1 & 1 \\
0 & B
\end{array}\right)\binom{x}{y}-\binom{a}{b} g(x, z) \tag{3}\\
\bar{z}=\psi(x, z)
\end{array}\right.
$$

where the overbar denotes the forward shift in time, $g(x, z) \equiv k x+\varphi(x, z) ; B$ is $n \times n$-matrix $(n=m-$ 1), $y=\operatorname{column}\left(y_{1}, y_{2}, \ldots, y_{n}\right), \mathbf{1}=(1,1, \ldots, 1)$, $b=\operatorname{column}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is n-vector of parameters, k and a are scalar parameters. Denoting $v-\left(x, y^{T}\right)^{T}$, and introducing the transformation $v=S u$, where S is a nonsingular $m \times m$-matrix, we obtain that the system (2) takes the form (3) as long as the following system of equations has a solution:

$$
\left\{\begin{array}{l}
S A S^{-1}=\left(\begin{array}{cc}
1-k a & \mathbf{1} \\
-k b & B
\end{array}\right) \tag{4}\\
c^{T} S^{-1}=e^{T} \\
S p=\binom{-a}{-b}
\end{array}\right.
$$

where $e^{T}=(1,0, \ldots, 0)$. Note, that the following system of equations

$$
\left\{\begin{array}{l}
k p+\left(E-S A S^{-1}\right) e=0 \tag{5}\\
c^{T} S^{-1}=e^{T} \\
e^{T} S A S^{-1}=(1-k a \mathbf{1})
\end{array}\right.
$$

takes a form of necessary conditions for resolving the system (4). We assume that the system (5) can be resolved with respect to the parameter k and matrix S (an example is shown in [Belykh, Komrakov and Ukrainsky, 2002]). Hence, the system (1) is reduced to the map (3) which we consider below.

3 Existence of invariant domain

Consider an arbitrary map $\Phi: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m+n}$ of the form $(x, y) \rightarrow(P(x, y), Q(x, y))$, and reduced map $\Phi_{0}:(x, y) \rightarrow(P(x, y), y)$, where $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$ and $y=$ const for Φ_{0}. Our problem is to derive the conditions for the map Φ as well as for the boundaries of a domain D such that 1) $\Phi D \subset D$; 2) $D=D_{x} \times D_{y}$ (direct product).
Comparison principle. Assume that there exist some compacts D_{x} and D_{y} such that:

1. $\Phi_{0} D_{x} \subset D_{x}$ for any $y=$ const from compact D_{y}
2. $Q(x, y) \in D_{y}$ for any $x \in D_{x}$ and $y \in D_{y}$.

Then D is invariant under the map Φ.
From this principle it follows that the map has an attractor $A=\Phi A, A \subset D$.

Remark. The variables separation in this obvious principle is immediately directed to the finding of the compacts D_{x} and D_{y} for certain maps. The map, which we consider in the paper is the case.
As the main example we consider the following class of nonlinear functions. For a natural $n>1$, from the interval $[c, d]$ consider two sets of real numbers $S_{a}=\left(a_{0}=c<a_{1}<a_{2}<\ldots<a_{n}=d\right)$ and $S_{b}=\left(b_{0}=0, b_{1}, \ldots, b_{n}=0\right) \mid b_{i-1} b_{i}<0$, $i=\overline{2, n-1}$, and consider a set of functions $S_{\eta}=$ $\left(\eta_{1}(\xi), \eta_{2}(\xi), \ldots, \eta_{n}(\xi)\right)$, where $\eta_{1}(\xi)$ is given in the interval $\left(-\infty, a_{1}\right], \eta_{n}(\xi)$ - in the interval $[0, \infty)$, and for $i=\overline{2, n-1}$ the functions $\eta_{i}(\xi)$ are given in the intervals $\left[0, a_{i}-a_{i-1}\right]$. Assume that each function from S_{η} is continuous, smooth; $\eta_{i}(0)=0$, $\eta_{i}^{\prime}(\xi)>k>0$. Introduce the following function $\eta(x, n)=b_{i-1}+\frac{b_{i}-b_{i-1}}{\eta_{i}\left(a_{i}-a_{i-1}\right)} \eta_{i}\left(x-a_{i-1}\right)$, where index $i=1$ for $x \in\left(-\infty, a_{1}\right]$, index $i=n$ for $x \in\left[a_{n}, \infty\right)$ and for $x \in\left(a_{i^{\prime}-1}, a_{i^{\prime}}\right]$ index $i=i^{\prime}$, $i=\overline{2, n-1}$. This function has singularities at critical points a_{i} and $f\left(a_{i}\right)=b_{i}$ for $i=\overline{1, n-1}$. An example of such function for $n=5, a_{i}=c+(i-1) \frac{d-c}{n}$, $b_{i}=(-1)^{i} b, \eta_{i}(x)=x$ for all i is depicted in Fig.1.

Figure 1. Example of $\eta(x, 4)$ with 4 critical points

Now the map (3) is defined with the function $g(x, z)=\eta(x, z)$ and an arbitrary function $\psi(x, z)$. We consider a set of functions $\Re(h): f(x, z)=$ $x-a g(x, z)$, such that:

1. For even $z \quad M=\max _{x \in[c, d]} f(x, z)<d$; $m=\min _{x \in[c, d]} f(x, z)>c$. For odd $z f(M, z)>c$, $f(m, z)>c$
2. $\max _{x \in[c, d]} f^{\prime}(x, z)>h$.

Figure 2 illustrates functions $f(x, z) \in \Re(h)$ for even and odd z.

Figure 2. An example $f(x, z) \in \Re(h)$ for even and odd z.

First we consider reduced system (3), that is a oneparameter z family of maps F_{1} :

$$
\left\{\begin{array}{l}
\bar{x}=x+1 y-a g(x, z) \tag{6}\\
\bar{y}=B y-b g(x, z)
\end{array}\right.
$$

where $z \in \mathbb{Z}_{N}$ is a constant parameter. Under a nonsingular linear transformation the map (6) can be reduced to the form

$$
\left\{\begin{array}{l}
\bar{x}=x+\mathbf{1} y-a g(x, z) \tag{7}\\
\bar{y}_{i}=\lambda_{i}\left(y_{i}-b_{i} g(x, z)\right),
\end{array}\right.
$$

where λ_{i} denotes either a real eigenvalue of matrix B or $\alpha \pm \beta$ for complex eigenvalues $\alpha \pm \beta i$ of matrix B. Note that in the case of multiple eigenvalues of matrix B some of the such values of λ_{i} must be increased by some quantity ε from a Jordan form of the matrix B.
Applying the comparison principle for the map F_{1} as the auxiliary map Φ_{0} we consider the map F_{0} in the form $(x, y) \rightarrow(x-a g(x, z)+Y, y)$, where $Y=1 y$ a parameter. This map is a two parameter $y=$ const, $z=$ const family of one dimensional maps $f_{1}: \bar{x}=x-a g(x, z)+Y$. As for each $f_{1} \in \Re(h)$ the first condition of the comparison principle is fulfilled, so the interval $[c, d]=D_{x}$. This condition is illustrated in Fig. 2 for our main example. It is easy to verify that there exists an interval $\left[y^{-}, y^{+}\right]=D_{y}$, satisfying the condition 2 of the comparison principle. In fact this
condition becomes valid for small enough eigenvalues of the matrix B.
These conditions provide a simple technical rule for the system (3): from $x \in[c, d]$ and $Y \in\left[y^{-}, y^{+}\right]$it follows that $\bar{x} \in[c, d]$. Under the condition $F_{1} D \subset D$ the next theorem holds.

Theorem 1. There exists a number λ_{0}, such that for any $\lambda^{+}<\lambda_{0}\left(\lambda^{+} \triangleq \max _{i}\left\{\left|\lambda_{i}\right|\right\}\right)$ and any $z \in \mathbb{Z}_{N}$ the map F_{1} has an invariant domain $D=\{(x, y): c<$ $\left.x<d, y_{i}^{-}<y_{i}<y_{i}^{+}, i=\overline{1, n}\right\}$ and, therefore this map has an attractor $A \subset D$.

4 Conditions of hyperbolicity

Assume, that $g(x, z)$ is a continuous piecewise smooth function, i.e. smooth in each interval of monotonicity. Denote $h \triangleq \inf _{x \in A, z \in \mathbb{Z}_{N}}\left|g_{x}^{\prime}(x, z)\right|$.
Definition 1. We call a cone in R^{n+1} with onedimensional axes being a set of vectors of the form $K_{1}=\left\{(\xi, \eta) \in R^{n+1}: \xi \in\right.$ $R^{1}, \eta \triangleq \operatorname{column}\left(\eta_{1}, \eta_{2}, \ldots \eta_{n}\right) \in R^{n}, \frac{\eta_{i}}{\xi}=\alpha_{i}, \alpha_{i} \in$ $\left.\left(\alpha_{i}^{-}, \alpha_{i}^{+}\right), i=\overline{1, n}\right\}$, and we call a cone with n dimensional axial space $K_{n}=\left\{(\xi, \eta) \in R^{n+1}\right.$: $\left.\xi+\sum_{i} \beta_{i} \eta_{i}=0, \beta_{i} \in\left(\beta_{i}^{-}, \beta_{i}^{+}\right), i=\overline{1, n}\right\}$.
The cone K_{1} is a set of vectors being parallel to those vectors, which have one unit coordinate and all the others are bounded, the cone K_{n} is a set of vectors from n-dimensional plane and its vectors $\operatorname{column}\left(1, \beta_{1}, \ldots, \beta_{n}\right)$ are similar to those as for K_{1} (see figure 3).

Figure 3. Cones K_{1} and K_{2}.

For each $z=$ const consider the linearization of the map F_{1} in a point (x, y) of the phase space resulting in the linear map T of the form

$$
\left\{\begin{array}{l}
\bar{\xi}=(1-s(x, z)) \xi+\sum \eta_{i} \tag{8}\\
\bar{\eta}_{i}=-t_{i}(x, z) \xi+\lambda_{i} \eta_{i} \quad i=\overline{1, n}
\end{array}\right.
$$

where $s(x, z) \triangleq a g_{x}^{\prime}(x, z), \quad t_{i}(x, z) \triangleq \lambda_{i} b_{i} g_{x}^{\prime}(x, z)$. We consider the cones in the space (ξ, η), which are independent of the points (x, y) in the phase space of F_{1}.
Introduce two families of linear manifolds

$$
\begin{aligned}
& l_{1}(\alpha, \sigma) \triangleq\left\{\begin{array}{ll}
\eta_{i}-\alpha_{i} \xi=\sigma_{i} & \sigma_{i} \in R^{1} \\
i=\overline{1, n}, & \alpha_{i} \in\left(\alpha_{i}^{-}, \alpha_{i}^{+}\right)
\end{array}\right\} \\
& l_{2}(\beta, \rho) \triangleq\left\{\xi+\sum_{i} \beta_{i} \eta_{i}=\rho: \rho \in R^{1}, \beta_{i} \in\right.
\end{aligned}
$$ $\left.\left(\beta_{i}^{-}, \beta_{i}^{+}\right)\right\}$.

The images of these manifolds $T l_{1}$ and $T l_{2}$ are also linear manifolds with new values $\bar{\alpha}_{i}, \bar{\beta}_{i}, \bar{\sigma}_{i}$ and $\bar{\rho}$.
Definition 2. An attractor A is called a hyperbolic attractor, if there exist cones K_{1}^{u} and K_{n}^{s}, such that $\forall(x, y) \in A$ the following conditions hold:
h1. $\operatorname{clos}\left(K_{1}^{u}\right) \cap \operatorname{clos}\left(K_{n}^{s}\right)=\{0\}$;
h2. $\operatorname{clos}\left(T K_{1}^{u}\right) \subset K_{1}^{u}, \quad \operatorname{clos}\left(T^{-1} K_{n}^{s}\right) \subset K_{n}^{s}$;
h3. There exist a constant $l, 0<l<1$ such, that
a) If $(\xi, \eta) \in K_{1}^{u}$ and $\beta_{i} \in\left(\beta_{i}^{-}, \beta_{i}^{+}\right)$then $\overline{\beta_{i}} \in$ $\left(\beta_{i}^{-}, \beta_{i}^{+}\right)$and $|\bar{\rho}|>l^{-1}|\rho|$,
b) If $(\xi, \eta) \in K_{n}^{s}$ and $\alpha_{i} \in\left(\alpha_{i}^{-}, \alpha_{i}^{+}\right)$then $\overline{\alpha_{i}} \in$ $\left(\alpha_{i}^{-}, \alpha_{i}^{+}\right)$and $\left|\overline{\sigma_{i}}\right|<l\left|\sigma_{i}\right|$.

We pay special attention at the condition h3, which implies that the image of a line and pre-image of a plane tend to the origin due to decrease of values ρ and $\overline{\sigma_{i}}$ in a geometrical progression with the factor l. One iterate of $l_{1}(\alpha, \sigma)$ and $l_{2}(\beta, \rho)$ in the cones is schematically shown in the Fig. 4.
Under the above conditions on function $g(x, z)$ the following theorem holds.

Theorem 2. There exist numbers $h_{0}>1$ and $\lambda_{0}, 0<$ $\lambda_{0}<1$, such that the attractor A of the map F_{1} is a hyperbolic attractor for $h>h_{0}, \lambda^{+}<\lambda_{0}$ and any $z \in \mathbb{Z}_{N}$.

Proof (in the case of K_{1}^{u}) is based on:

1. Invariance:
(a) We prove, that the images of ($\alpha_{i}, \beta_{i}, \sigma_{i}$, ρ) are defined by the next formulas $\beta_{i}=$ $\frac{1+\bar{\beta}_{i} \lambda_{i}}{1-s-\sum \bar{\beta}_{j} t_{j}}, \overline{\alpha_{i}}=\frac{-t_{i} \lambda_{i}+\lambda_{i} \alpha_{i}}{1-s+\sum \alpha_{j}}$, $\bar{\rho}=\rho\left(1-s-\sum \bar{\beta}_{i} t_{i}\right), \bar{\sigma}_{i}=\sigma_{i} \lambda_{i}-$ $\bar{\alpha}_{i} \sum \sigma_{j}$. We construct a map for the value $\zeta \triangleq \sum \alpha_{i}$ generated by the map T. The inequality for the image $\bar{\zeta}$ holds: $f_{2}(\zeta)<$ $\bar{\zeta}<f_{1}(\zeta)$ where the functions $f_{1}(\zeta)=$ $\frac{\lambda h+\lambda^{-} \zeta}{1+a h+\zeta}$ and $f_{2}(\zeta)=\frac{-\lambda h+\lambda^{-} \zeta}{1-a h+\zeta}$ are comparison functions. The graphs of the functions $\bar{\zeta}=f_{1}(\zeta)$ and $\bar{\zeta}=f_{2}(\zeta)$ are shown in the figure 5. This figure illustrate the existing invariant interval $\left(\zeta^{-}, \zeta^{+}\right)$.
(b) The existence of an invariant interval implies that there exists a set of intervals for each coordinate α_{i}. The latter finishes the proof of the existence and invariance of the cone $\left(K_{1}^{u}\right)$.

Figure 4. Transformation of linear manifolds.

Figure 5. One-dimensional maps of a comparison.
2. Expansion:

We prove the property of expansion of the variable $\rho \triangleq \xi+\sum \beta_{i} \eta_{i}$. This fact together with boundedness of coordinates of the vector β provides an expansion of any vector $(\xi, \eta) \in K_{1}^{u}$.

The proof for invariant cone K_{n}^{s} is similar to that for cone K_{1}^{u}.

Theorem 3. Let the conditions of Theorem 2 hold. Then the map (3) has a strange hyperbolic nonstationary attractor.

Proof. Let two different maps $F_{1}^{(1)}$ and $F_{1}^{(2)}$ satisfy the Theorem 2. Then the composition $F_{1}^{(1)} F_{1}^{(2)}$ satisfies the Theorem 2 as well. This statement follows from the property that both $F_{1}^{(1)}$ and $F_{1}^{(2)}$ have the same invariant domain and the same invariant cones K_{1}^{u} and K_{n}^{s} which are the same for any point. At each two neighbor iterate i and $i+1$ the integer z_{i} and z_{i+1} takes values within the interval \mathbb{Z}_{N} and the maps $\left.F\right|_{z=z_{i}}$ and $\left.F\right|_{z=z_{i+1}}$ are representatives of the family F_{1}. Hence $\left.\left.F\right|_{z=z_{i}} \cdot F\right|_{z=z_{i+1}}$ satisfy the Theorem 2, the map F has strange hyperbolic nonstationary attractor with respect to integer z.
Example. For the function from the main example we obtain N different maps (3) for the sequence $f(x, 1), f(x, 2), \ldots, f(x, N)$ from $\Re(h)$. Let the control rule for the integer z be given by the function $\psi(x, y, z)=k \in \mathbb{Z}_{N}$ with probability $p_{k}, \sum_{k=1}^{N} p_{k}=1$.
Due to Theorem 3 the map (3) has a hyperbolic attractor which randomly changes its structure according to the probability distribution.

Acknowledgements

This work was supported by the NWO-RFBR (grant N 047-017-018) and Russian Foundation for Basic Research (grant N 05-01-00509).

References

Afraimovich, V., Chernov, N. and Sataev, E. (1995). Statistical properties of 2-D generalized attractors, J. of Chaos, 5(1), pp. 239-252.
Anosov, D. and Sinay, J. (1967). Some smooth dynamical systems, $U M N, 22(5)$, pp. 107-172.
Belykh, V. (1995). Chaotic and strange attractors of a two-dimensional map, Matematicheski Sbornik, 186(3), pp. 3-18.
Belykh, I., Belykh, V. Mosekilde, E. (2005). Hyperbolic Plykin attractor can exists in neuron models. Int. J. Bifurc. Chaos,15, pp. 3567-3578.

Belykh, V., Komrakov, N. and Ukrainsky, B. (2002). Hyperbolic attractors in a family of multidimensional maps with cusp-points. In Proc. of int. conf. "Progress in nonlinear science" dedicated to the 100-th anniversary of A. Andronov. Nizhny Novgorod. V. 1, pp. 31-38.
Bowen, R. (1977). Bernoulli maps of the interval. Israel J. of Math.. 28, pp.161-168.
Katok, A, Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press.
Kuznetsov, S. (2005). Example of a physical system with a hyperbolic attractor of the Smale-Williams type. Phys. Rev. Lett.. 95. p. 14401.

Kuznetsov, S. and Pikovsky, A. (2007). Autonomous coupled oscillators with of a physical system with a hyperbolic strange attractors. Physica D.. 232. pp. 67102.
lozi, R. (1978). Un attracteur de Hénon. J. Physique. 39, pp. 9-10.
Pesin, Ja. (1992). Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Th. \& Dymam.Sys..12, pp. 123-151.
Sataev, E. (1999). Ergodic properties of the Belykh map. J.Math. Sci.. 95, pp. 2564-2575.
Schmeling, J. (1998). A dimension formula for endomorphisms - the Belykh family. Ergod. Th. \& Dymam.Sys..18, pp. 1283-1309.
Schmeling, J. and Troubetzkoy, S. (1998). Dimension and invertibility of hyperbolic endomorphisms with singularities. Ergod. Th. \& Dymam.Sys..18, pp. 12571282.

