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Abstract it takes the form

In this paper we present sufficient conditions for ex-
istence of strange hyperbolic nonstationary attractor of
hybrid continuous piecewise smooth discrete-time dy- = Au+pp(z), x=c"u, (1)
namical system.

whereu = u(i), w = u(i + 1), u € R™; A is constant
m X m-matrix; p, c are constantn x 1-vectors; T" is

Kgy WO“?'S ] _ transpose ang : R' — R! is a continuous piecewise
Piecewise smooth maps, hyperbolic attractors, hybrid gyg0th function|¢’ (z)| > K,z € RL.

systems. For the parameter domain [Belykh, Komrakov and

Ukrainsky, 2002] where the map (1) is hyperbolic from
papers [Sataev, 1999; Schmeling, 1998] it follows that
1 Introduction the hyperbolic attractor of (1) is stationary in the sense
In the field of dynamical chaos hyperbolic strange at- of SBR-measure.
tractors play a central role as one of the basic units | the present paper we consider the hybrid system of
linking dynamical and ergodic theories. Hyperbolic e form
strange attractors generate random (in terms of mixing
property) stationary (in terms of Sinai-Bowen-Ruelle
measure (SBR-measure)) processes [Anosov and Sinai, u(i 4+ 1) = Au(i)u + po(x (i), 2(7))
1967; Bowen,1977; Katok and Hasselblatt, 1995; { , N T
Afraimovich, Chernov and Sataev, 1995]. In the case 2(i+1) =9(2(0),2(), z=cu,
of ODEs there are several examples showing the possi-
ble existence of a hyperbolic attractor [Belykh, Belykh _ .
and Mosekilde, 200{'-{)? Kuznetsov, ZOOEE; Kuyznetsovyand Whgre the integer € Z, the functiony : R x Zy —
Pikovsky 2007]. Unfortunately all these examples do Zy is bounded{l, N] = Zy.
not lend itself so far to mathematical verification. Con- Our main purpose is to obtain sufficient conditions
trary, in the case of maps (discrete-time dynamical sys- Such that the hybrid map (2) has a strange hyperbolic
tems) there are several well defined examples (Smale-Nonstationary attractor.
Williams attractor, Lozi map, Belykh map, etc) [Ka- Note, that in the case of a periodic nhonautonomous
tok and Hasselblatt, 1995; Lozi, 1978; Belykh, 1995; system (2) when) = z( mod N), the system (2)
Belykh, Komrakov and Ukrainsky, 2002] for which is a composition ofN maps (1) withy(z,i), ¢ =
the hyperbolicity, the existence of invariant measure 0,1, ..., N — 1 standing fory(z), and the hyperbolic-
and mixing property are proved [Pesin 1992; Sataev, ity of each such map fronV sequential maps does not
1999; Schmeling and Troubetzkoy, 1998]. In partic- imply that the map (2) is also hyperbolic. We consider
ular, the first example of hyperbolic attractor in Lurie an arbitrary (even random) sequence: (f) generated
discrete-time system with continuous nonlinearity, hav- by the second equation in (2). The proof of hyperbol-
ing a bounded away from zero discontinuous deriva- icity is based on a comparison principle for multidi-
tive, was presented in [Belykh, Komrakov and Ukrain- mensional maps, and the construction of cones that are
sky, 2002]. This system serves as a model of electro- invariant with respect to a linearization of the map (2),
mechanical control systems. In the map representationand are independent of the phase coordinates.

)



2 Reduction to a normal form Remark The variables separation in this obvious prin-
We introduce the normal form of the Lurie system as ciple is immediately directed to the finding of the com-

the following mapF' pactsD, andD, for certain maps. The map, which we
consider in the paper is the case.
E 11\ [z a As the main example we consider the following class
(y> = (0 B) (y> - (b) gz, 2) 3) of nonlinear functions. For a natural > 1, from

the interval[c, d] consider two sets of real numbers
zZ=1(z,2), Se = (ap = ¢c < a1 < ax < ... < a, = d)
andSb = (bo = 0,by,...,b, = 0)|bi,1bi < 0,
where the overbar denotes the forward shift in time, ¢ = 2,7 — 1, and consider a set of functiorts, =

g9(z,2) = kx + p(z,2); Bisn x n-matrix (n = m — (11(§),m2(&), - - -, (§)), whereny (§) is given in the
1), y = column(y1,y2,.--,yn), 1 = (1,1,...,1), interval (—oo,a1], n,(§) — in the interval [0, c0),
b = column(by, ba, ..., b,) is n-vector of parameters, and fori = 2, n —1 the functionsn;({) are given
k anda are scalar parameters. Denoting- (x, y”)7, in the intervals[0,a; — a;—;]. Assume that each
and introducing the transformatien= Su, whereSis  function from S, is continuous, smootty;(0) = 0,

a nonsingulafm x m-matrix, we obtain that the system 7;(£) > k > 0. Introduce the following function

(2) takes_ the form (3) as long as the following system n(z,m) = bi_y + bi — b1 ni(x —ai_1), where
of equations has a solution: ni(ai —a;-1)
indexi = 1 for x € (—o0,a4], indexi = n for
| ka1 x € [ap,00) and forz € (ay_1,ay] indexi = ¢,
SAS™! = ( fkba B) i = 2,n — 1. This function has singularities at critical
pointsa; and f(a;) = b; fori = 1,n — 1. An exam-
Tg—1_ T ) d—
ST =e ) ple of such function fon. = 5, a; = ¢+ (i — 1) ——,
. n
Sp— (Z) 7 b; = (—1)ib, n;(z) = = for all i is depicted in Fig.1.

wheree” = (1,0,...,0). Note, that the following sys-
tem of equations

kp+ (E — SAS™He=0
cl's—t=¢” (5)
e’SAS™ = (1—ka1)

takes a form of necessary conditions for resolving the
system (4). We assume that the system (5) can be re-
solved with respect to the paramekesind matrixS (an
example is shown in [Belykh, Komrakov and Ukrain-
sky, 2002]). Hence, the system (1) is reduced to the g
map (3) which we consider below.

3 Existence of invariant domain
Consider an arbitrary map : Rt — R™*" of the
form (z,y) — (P(z,y),Q(z,y)), and reduced map Figure 1. Example ofy(x, 4) with 4 critical points
Dy : (x,y) — (P(z,y),y), wherexz € R™, y € R"
andy = const for ®,. Our problem is to derive the
conditions for the may@ as well as for the boundaries

of a domainD such that 1D c D;2) D = D, x D, Now the map (3) is defined with the function
(direct product). g(x, 2) = n(z,z) and an arl_Jitrary function)(z, ).

Comparison principle. Assume that there exist some Ve consider a set of function&(h) : f(z,2) =
compactsD, andD,, such that: x — ag(z, z), such that:

1. 0D, C D, for anyy = const from compactD, 1. For even z M = max f(z,2) < d;

2. Q(z,y) € Dy foranyz € D, andy € D,,. ) z€[c,d]

m = min f(z,z) >c. Foroddz f(M,z) > c,

ThenD is invariant under the mag. z€le,d]

From this principle it follows that the map has an at- f(m,z) > ¢
tractorA = ®A, A C D. 2. max f'(z,z) > h.

z€le,d]



Figure 2 illustrates functiong(z, z) € ®(h) for even condition becomes valid for small enough eigenvalues
and oddz. of the matrixB.

These conditions provide a simple technical rule for
the system (3): fromx € [c,d] andY € [y, yT] it
follows thatZ € [c,d]. Under the conditiody D C D
the next theorem holds.

Theorem 1. There exists a numbeyy, such that for
any T < Xo (AT 2 max{|\;|}) and anyz € Zy the
map F; has an invariant domairD = {(z,y) : ¢ <
v < dyy; <y <uy,i=1n}and, therefore this
map has an attractod C D.

4 Conditions of hyperbolicity
Assume, thatg(z,z) is a continuous piecewise
smooth function, i.e. smooth in each interval of mono-

. A
nicity. Den = f ! .
tonicity. Denoteh it lgb.(z, 2)]

Definition 1. We call a cone inR"*! with one-
dimensional axes being a set of vectors of the

foom K; = {(¢&n) € R . ¢ €
R'n = column(ny, 2, ..nn) € R",% =ow,0; €
(a; ,a;),i = T,n}, and we call a cone with-
Figure 2. Anexamplef (z, z) € R(h) for even and odd. dimensional axial spacd(, = {({,n) € R"*' :

The coneK; is a set of vectors being parallel to
First we consider reduced system (3), that is a one-those vectors, which have one unit coordinate and
parameter family of mapsF;: all the others are bounded, the colg, is a set
of vectors fromn-dimensional plane and its vectors
column(1, B4, ..., 8,) are similar to those as fak;

{x =z +1y —ag(z,2) (6) (see figure 3).

Y = By —bg(z, 2),

wherez € Zy is a constant parameter. Under a nonsin-  ;(B,0) - plane
gular linear transformation the map (6) can be reduced

to the form

f=$+1y—ag(x’z)
{yi = Ni(yi — big(x, 2)), (7)

where)\; denotes either a real eigenvalue of matix

or a £ 3 for complex eigenvalues + i of matrix B.
Note that in the case of multiple eigenvalues of matrix
B some of the such values af must be increased by
some quantity from a Jordan form of the matri®.
Applying the comparison principle for the malg

as the auxiliary mapb, we consider the mapgy in

the form (z,y) — (z — ag(z,z) + Y,y), where

Y = 1y a parameter. This map is a two parameter
y = const, z = const family of one dimensional maps
f1:ZT =z —ag(z,z)+ Y. As for eachf; € R(h) the For eachz = const consider the linearization of the
first condition of the comparison principle is fulfilled, mMapFy in a point(z,y) of the phase space resulting in
so the intervalc, d| = D,. This condition is illustrated  the linear maf¥" of the form

in Fig. 2 for our main example. It is easy to verify

that ther_e_exists an interv{g)—_, yT] = D_y, satisfying _ E=(1—s(z,2)E+m
the condition 2 of the comparison principle. In fact this T = —ti(@,2)E+ N\ i =1,n,

I;(a,0) - line

Figure 3. Coned{jand K.

(8)



wheres(z, 2) 2 agl(x,z), ti(x,z) 2 Aibigh(z, 2).
We consider the cones in the spagen), which are
independent of the points, y) in the phase space of

F.
Introduce two families of linear malnifolds
A i —o;€E=0; o0;€R
11(0[70') = 7,72_ 1 lf ¢ . Z‘ _ + s
i=Tm,  ac(aaf)

(B.p) 2 {6+ 0m =p:pe RLG €
(B 5}

The images of these manifold¥; andT', are also
linear manifolds with new values;, 3,, o; andp.

Definition 2. An attractor A is called a hyperbolic at-
tractor, if there exist coned(} and K3, such that
V(z,y) € A the following conditions hold:

hl. clos(K3) Nclos(K2) = {0};

h2. clos(TK}{) C K¥, clos(T7'K?) C K§;

h3. There exist a constamnt0 < [ < 1 such, that
a)If (¢&,m) € Ki*andB; € (B;,B8;) thenp; €
(87,8F) and[| > =],
b) If (¢&,m) € K$ anda; € (a; ,af) thena; €
(a7 o) and (7] < l]or).

E+D.Bmi=p

(1,0) (1)

We pay special attention at the condition h3, which im-
plies that the image of a line and pre-image of a plane
tend to the origin due to decrease of valpenda; in
a geometrical progression with the factoOne iterate — — B _
of I (v, o) andis(3, p) in the cones is schematically )" —0ig =0 i ~045 =0
shown in the Fig. 4.

Under the above conditions on functigfiz, z) the

following theorem holds.

i=1,n

Figure 4. Transformation of linear manifolds.

Theorem 2. There exist numbers; > 1 and \g, 0 <
Ao < 1, such that the attractor of the mapF; is a
hyperbolic attractor forh > hg, AT < )¢ and any 4
z € Ln.

Proof (in the case oK{') is based on:

gy

1. Invariance:

(a) We prove, that the images otf, 3;, o,
p) are defined by the next formula =

1+ 8\ =i+ Ny

——— R O P RES ’
1—s—3 Bt l1—s+> qj

p = pl —s—XBt) 5i = oA —
@; y_ oj. We construct a map for the value

¢ 2 > «a; generated by the map.The in-
equality for the imagel holds: f»(¢) <
¢ < f1(¢) where the functionsf; () =
A+ AC —Ah+A7¢
Tranyc R0 = 70557
comparison functions. The graphs of the
functions¢ = f1(¢) and( = f»(¢) are
shown in the figure 5. This figure illustrate
the existing invariant intervdll =, ¢ ™).

(b) The existence of an invariant interval implies
that there exists a set of intervals for each
coordinater;. The latter finishes the proof

are

—ah-1 ¢~ gt

Figure 5. One-dimensional maps of a comparison.

2. Expansion;
We prove the property of expansion of the variable
p £ &+ Bini. This fact together with bound-
edness of coordinates of the vectbprovides an
expansion of any vectdg, n) € K.

of the existence and invariance of the cone The proof for invariant conds; is similar to that for

(K1)

coneKy.



Theorem 3. Let the conditions of Theorem 2 hold. Kuznetsov, S. and Pikovsky, A. (2007). Autonomous

Then the map (3) has a strange hyperbolic nonstation-
ary attractor.

Proof. Let two different mapsFl(1> andFl(2) satisfy
the Theorem 2. Then the compositisih") 7 satis-

coupled oscillators with of a physical system with a
hyperbolic strange attractoRhysica D. 232. pp. 67-
102.

lozi, R. (1978). Un attracteur deéron.J. Physique

39, pp. 9-10.

fies the Theorem 2 as well. This statement follows from Pesin, Ja. (1992). Dynamical systems with generalized

the property that botIFfl) andFl(z) have the same in-
variant domain and the same invariant co&$ and
K3 which are the same for any point. At each two
neighbor iteraté and: + 1 the integer; andz; , takes
values within the intervéZ y and the map$’ |.—., and
F |.—.,., are representatives of the famifyf. Hence
F|.—., -F |.—.,,, satisfy the Theorem 2, the mdp
has strange hyperbolic nonstationary attractor with re-
spect to integet.

Example. For the function from the main exam-
ple we obtainN different maps (3) for the sequence
f(z,1), f(z,2),..., f(z,N) from R(h). Let the con-

trol rule for the integerz be given by the function
N

¥(x,y,2) = k € Zy with probability p, > pj, = 1.

k=1
Due to Theorem 3 the map (3) has a hyperbolic attrac-
tor which randomly changes its structure according to
the probability distribution.
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