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Abstract— The analysis of the complex non resonant double
Hopf bifurcation is carried out by two complementary tech-
niques: the frequency domain methodology and the normal
form theory. Neimark-Sacker branches, which are originated
at the singularity, are built precisely, thanks to the evaluation
of Floquet multipliers of the nearby limit cycles. The quasi-
analytical expressions of these solutions are obtained through
the graphical Hopf theorem and higher order harmonic balance,
which guarantees the accuracy of the results. The outcomes have
been contrasted with LOCBIF software.

I. INTRODUCTION

Hopf degeneracies are singularities in which some of the
classical postulates of the Hopf bifurcation theorem fail. These
degeneracies can give place to dynamic scenarios of different
complexity such as multiple Hopf points in the equilibrium
manifold, multiple occurrence of limit cycles, or the combina-
tion of both. Golubitsky and Langford [1] studied them using
the mathematical machinery of singularity theory. Moreover,
the analysis of other singularities involving multiple crossing
of eigenvalues on the imaginary axis requires the ability to use
different techniques such as normal forms, multiples scales,
harmonic balance, just to mention only a few. This article
treats a particular degeneracy known as non resonant double
Hopf (DH) bifurcation (also called Hopf-Hopf bifurcation)
which happens when the linearization of the flow evaluated at
one equilibrium point has two pairs of imaginary pure eigen-
values ±iω1, ±iω2 where the quotient ω1/ω2 is an irrational
number and no other eigenvalues exist with zero real part [2].
In these terms, the analysis can be reduced always to a four
dimensional problem. Several engineering models, specially
those concerning coupled oscillators in mechanical systems,
present this singularity [3,4]. In these articles, the authors
have shown the birth of quasiperiodic motion (also called
secondary Hopf bifurcation or Neimark-Sacker bifurcation) of
different complexity besides the classical oscillatory behavior
emanating from Hopf bifurcations.

Nowadays, the DH degeneracy can be analyzed by normal
form theory through a computation of symbolic algebraic
systems [5]. Furthermore, it is shown in [2] how to determine
if the appearance of quasiperiodic solutions involves two
modes (or 2D-tori, which is called the simple case), or if

the quasiperiodicity involves three oscillatory modes (or 3D-
tori, which is known as the complex case). Occasionally, this
last phenomenon can be exhibited as the first pattern of a
route to chaos in high-dimensional systems after generating
a sequence of Neimark-Sacker bifurcations [6]. On the other
hand, the graphical Hopf theorem [7] and its extensions [8,9]
provide tools that can be complemented with Floquet theory
to study the dynamics in the neighborhood of the emerging
limit cycle. Then, local bifurcations of the limit cycles can
be analyzed in the vicinity of the DH bifurcation condition
[10]. This approach would be valuable specially when one has
interest in studying bifurcation or cyclic bifurcation control
[11,12]. Hence, the precise determination of the Hopf bifur-
cation curve together with both Neimark-Sacker bifurcation
branches originated at DH, enables us to recognize certain
regions in the parameter space close to the singularity. The
involved dynamics is distinctive [13] and confirms the classical
results [2]. Taking into account the frequency domain setting
along with the outcomes obtained through normal form theory,
the complex case has been analyzed. Thus, regions where
the 3D-tori appear have been located and their existence
has been checked through numerical simulations. Moreover,
cyclic fold and period-doubling bifurcations, 1-codimension
Hopf degeneracies and some resonances have been found
close to the singularity. These determinations allow to deepen
and complete the analysis of the intrincate dynamic scenario
around DH.

II. THE FREQUENCY DOMAIN APPROACH FOR HOPF

BIFURCATION

The analysis is focused on the autonomous nonlinear system

ẋ = f(x; η), (1)

where x ∈ Rn, ẋ = dx
dt
, η ∈ Rm is a bifurcation parameter

vector and f ∈ C9 in its first variable. Some particular
dynamic changes in the solutions of (1) are detected through
bifurcation points. For instance, if η ∈ R1 one can study
the Hopf bifurcation (HB) phenomenon which is related with
the appearance of periodic solutions under the variation of η
whereas an equilibrium point changes its stability (a stable
focus changes to unstable one, or vice versa). In the time
domain setting, this situation is found through the eigenvalues



of the Jacobian matrix ∂f
∂x , evaluated at the steady state:

A necessary condition for HB is a single pair of complex
eigenvalues crossing the imaginary axis. This paper is based
on an alternative approach, which comes through feedback
systems and control theory. The bifurcations are found in the
frequency domain, by using the Laplace transform and the
method of harmonic balance. The system (1) is now written
as

ẋ = A(η)x+B(η) [D(η)y + u] , y = C(η)x,

u = g(e; η) = g̃(y; η)−D(η)y,
(2)

where y ∈ Rl is the output variable and, u ∈ Rp is a
nonlinear control variable which acts as an input for the new
system. The n×n matrix A is considered invertible for every
value of η while B, C and D are n × p, l × n and p × l
matrices, respectively; besides g̃ ∈ Rp is a smooth nonlinear
function which results from the initial function f in (1) and
the selected matrices. It is supposed that e = −y. Applying
Laplace transform to (2) with the initial condition x(0) = 0,
yields

e = −G(0; η)g(e; η), (3)

where G(s; η) = C[sI−(A+BDC)]−1B is the usual transfer

matrix of the linear part of system (2). Now, the solutions
of the equation (3) are considered as the steady states of
(2) in the frequency domain. Suppose that x̃ and ẽ be the
equilibrium points of the equation (1) and its corresponding
counterpart in the frequency domain, respectively. In these
terms, the bifurcation analysis results from the l × l matrix
G(s; η)J(η), where

J(η) = D1g(e; η)|e=ẽ =
∙
∂gj
∂ek

¯̄̄̄
e=ẽ

¸
,

g = [gj]
p
j=1 , e = [ek]

l
k=1. If there is a bifurcation in

the solutions of system (2) for η = η0 then, due to the
generalized Nyquist stability criterion, one eigenvalue of the
matrix G(s; η)J(η) crosses (−1 + i0) when s = iω0 and
η = η0. If the case deals with a Hopf or dynamic bifurcation
one has ω0 6= 0, which represents the starting frequency
of the emergent periodic solution. Hence, considering the
characteristic polynomial of the matrix GJ one defines

h(−1, iω0; η0) = det(−1 ∗ I −G(iω0; η0)J(η0)) = 0,

which can be expressed as the following system

F1(ω0, η0) = Re[h(−1, iω0; η0)] = 0,
F2(ω0, η0) = Im[h(−1, iω0; η0)] = 0. (4)

This system yields a necessary condition to the existence of
a bifurcation point (ω0, η0) in the frequency domain. Now, it
is possible to establish the graphical Hopf theorem, i.e., the
version of the well known Hopf bifurcation theorem in the
frequency domain:

Theorem 1:

H1) A unique solution λ̂ (eigenvalue of the matrix GJ)
of the equation h(λ, iω; η) = 0, crosses (−1 + i0) for a

certain value ω = ω0 6= 0 (unique too) when η = η0
and the equilibrium ẽ exhibits a stability change. Moreover,
∂F1
∂ω

¯̄
(ω0,η0)

, ∂F2
∂ω

¯̄
(ω0,η0)

do not vanish simultaneously, where
F1 and F2 have been defined in (4),

H2) The determinant

M1 =

¯̄̄̄
¯ ∂(F1, F2)∂(ω, η)

¯̄̄̄
(ω0,η0)

¯̄̄̄
¯ =

¯̄̄̄
¯

∂F1
∂ω

∂F1
∂η

∂F2
∂ω

∂F2
∂η

¯̄̄̄
¯
(ω0,η0)

,

is nonzero,
H3) The curvature coefficient (also known as the first Lya-
punov coefficient) defined as

σ1 = −Re
µ
wTG(iω0; η0)p1(ω0, η0)

wTG0(iω0; η0)J(η0)v

¶
, (5)

has sign definition.

Then the system (1) has one branch of periodic solutions which
starts at η = η0, and its direction and stability depend on the
signs of M1 and σ1.

Proof: See [7,8].

Observation: In the expression (5), wT and v are the normal-
ized left and right eigenvectors of the matrix G(iω0; η0)J(η0)
associated with the eigenvalue λ̂ (w̄T v = 1 and v̄T v = 1,

where “ · ” means complex conjugation), G0 = dG
ds and p1

is a p−dimensional vector with complex components

p1(ω, η) = QV02 +
1

2
QV22 +

1

8
Lv, (6)

where the matrices Q, Q and L of order p× l are defined
through the second and third derivatives of the function g [7].
Furthermore, the vectors in (6) are defined as

V02 = −1
4
H(0; η)Qv, V11 = v, V22 = −1

4
H(i2ω; η)Qv,

(7)
where H(s; η) = [I +G(s; η)J(η)]−1G(s; η) is the closed-
loop transfer matrix for the feedback system which comes
with (2).

The demonstration is constructive and considers the intersec-
tion between two eigenlocus. One eigenlocus represents the
Nyquist diagram of the linear part of the system while the
other takes into account the nonlinear nature of the feedback.
This last one is referred to as the amplitude locus. If an
intersection exists for η̃ close to η0, on the Nyquist type
eigenlocus one reads the frequency ω̂ while on the amplitude
locus one encounters an estimation of the size of the oscillation
θ̂. Then it can be established an approximate formula for the
orbit, employing a second order harmonic balance, as follows

e = e(t; η̃) = ẽ(η̃) + Re

Ã
2X

k=0

E2
k exp(ikω̂t)

!
,

where

E2
0 = V02θ̂

2
, E2

1 = V11θ̂ + V13θ̂
3
, E2

2 = V22θ̂
2
,

according with (7) and the vector V13 can be computed as
described in [8]. Considering higher order harmonic balance,



more precise expressions (but still of local validity) for the
periodic solutions can be obtained [8]. A similar procedure
(but up to eight harmonics) is implemented here to com-
pute limit cycle approximations using the so-called modified
scheme (noted as MS) in [9] when the original one proposed
in [7] and [8] does not reach a suitable intersection between
both loci.

III. STABILITY OF CYCLES AND ITS LOCAL BIFURCATIONS

The stability of one T−periodic solution X =X(t; η̃) of the
equation (1) can be evaluated through the eigenvalues of its
monodromy matrix, also called Floquet multipliers. The n×n
monodromy matrix is M(T ) where M = M(t) solves the
differential matrix equation:

Ṁ = S(t)M,

where Ṁ = dM
dt , and S(t) = D1f(X(t; η̃); η̃) =

∂f

∂x

¯̄̄̄
x=X(t;η̃),η=η̃

, S(t + T ) = S(t), where T is the period

of the orbit X. It is established as the initial condition
M(0) = I , where I is the identity matrix of order n. The
n−eigenvalues of M(T ) are β0 = 1, the trivial multiplier
due to the analysis of the flow on a cycle, and the remaining
βi, i = 1, 2, · · · , n− 1. If |βi| < 1 for each i then X results
stable. On the contrary if

¯̄
βj
¯̄
> 1, for some j, then the

orbit X is unstable. The crossing of the unit circle by at least
one βj defines one local cyclic bifurcation. If βj crosses the
frontier through the positive real axis, i.e., βj = 1, then a fold,
transcritical or pitchfork bifurcation is detected. On the other
hand, if βj = −1 a period-doubling bifurcation is established.
The simultaneous crossing of a complex conjugate pair of
Floquet multipliers defines a Neimark-Sacker or secondary
Hopf bifurcation. The latter is related with the appearance
of quasiperiodic solutions, which almost cover some torus
surfaces in the state space. The Hopf singularity that will
be considered is fully connected with this last type of cyclic
bifurcation.

IV. DOUBLE HOPF BIFURCATION

From now on, a particular Hopf degeneracy, due to the
failure of H1 of Theorem 1 in Section II is considered: the
non resonant double Hopf bifurcation, which appears when the
linearization of the system (1) about one equilibrium point,
for some parameter value η0, has two pairs of eigenvalues
±iω1, ±iω2, ω1/ω2 ∈ I, where ω1 > ω2 > 0. The
dynamic scenario can be described completely in the four
dimensional center manifold with two independent bifurcation
parameters, say η = (η1, η2). However, normal form theory
and the frequency domain method give alternative procedures
to deepen the analysis of the singularity.

A. Using normal form theory

It is sufficient to consider the system

ẋ = f(x; η), (8)

where x ∈ R4, η = (η1, η2) ∈ R2. Suppose that one has a
DH at the equilibrium x = 0 and η = 0, with frequencies
ω1 and ω2, as described above. Employing the method of
multiple scales, a normal form with terms up to third order is
achieved [5], which can be expressed in polar coordinates in
the following way

ṙ1 = r1(α11η1 + α12η2 + p11r
2
1 + p12r

2
2),

ṙ2 = r2(α21η1 + α22η2 + p21r
2
1 + p22r

2
2),

ϕ̇1 = ω1 + ψ1(r1, r2; η),
ϕ̇2 = ω2 + ψ2(r1, r2; η),

(9)

where ψi(r1, r2; η) = ξi1η1 + ξi2η2 + qi1r
2
1 + qi2r

2
2 , i =

1, 2 and αij , pij , ξij, qij, i, j = 1, 2, are constants. The
equilibrium points can be easily found now, solving ṙ1 = ṙ2 =
0, in the two dimensional system. Thus, if r1 6= 0 and r2 6= 0,
one obtains

E : r21 = (p12Ω2 − p22Ω1)∆
−1, r22 = (p21Ω1 − p11Ω2)∆

−1,

where Ω1 = α11η1 + α12η2, Ω2 = α21η1 + α22η2,
∆ = p11p22 − p12p21 6= 0, which represents a quasiperiodic
solution or 2D-torus with approximate frequencies ω̃1 and ω̃2,
close to ω1 and ω2, respectively, in the fourth-order system.

The analysis is based on the cases with p11p22 > 0 or
p11p22 < 0. Particularly, the case where p11p22 > 0 is
considered as the simple one due to the planar system de-
termined through the first two equations of (9) does not show
periodic solutions. The appearance of periodic solutions would
correspond to Hopf bifurcations of the equilibrium points E
noted above, originating the so-called 3D-torus in the fourth-
order system.

In the η−plane the Hopf bifurcation curve can be plotted as
well as two branches of Neimark-Sacker or torus bifurcation
curves, T1 and T2, where the above-mentioned 2D-tori arise.
Otherwise, when the complex case is treated, say p11p22 < 0,
and considering p11 > 0, p22 < 0, the analysis is established
on the variables ρ = p12p

−1
22 , δ = p21p

−1
11 (it is known

that ρδ − 1 6= 0). Particularly, solutions coming from the
Hopf bifurcations of quasiperiodic solutions, called 3D-tori,
can appear with ρ ≥ δ, ρ < 0 and ρδ > 1. An schematic
representation of the bifurcation curves in the neighborhood
of the DH singularity associated to this configuration is shown
in Figure 1. The axes τ1, τ2 are the tangent lines of Hopf
bifurcation curves in the fourth-order system at η = 0. The
curve C is the bifurcation curve of the equilibriums of type
E. Moreover, Y is the curve where the new periodic solutions
disappear, in a heteroclinic bifurcation. Taking into account the
partition of the neighborhood of the origin in the τ−plane, as
can be observed in Figure 1, one finds that in regions 1 and 3
appear an equilibrium and one limit cycle which is unstable,
while zone 2 only shows an unstable equilibrium. Regions 4 to
8 exhibit one unstable equilibrium and two cycles. Particularly,
the dynamics of regions 5, 6 and 7 includes a 2D-tori while
a 3D-torus only appears between C and Y (called region 6).
Specifically, Yu [5] gives a methodology, starting from the
truncated normal form (9), to determine the tangent lines to the
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Fig. 1. Schematic representation of the bifurcation curves close to the
singularity DH with δ ≤ ρ, ρ < 0 and ρδ > 1 (Hi, i = 1, 2 represent the
tangent lines to the Hopf bifurcation branches at criticality while Ti, i = 1, 2
are those to the Neimark-Sacker continuations). The numbers obey to a
particular dynamic configuration in each of the eight regions [2].

Neimark-Sacker bifurcation curves, T1 and T2, whose origin
is the non resonant double Hopf point, and also to the curve
C, where the 3D-torus solution emerges.

B. Under a frequency domain methodology

Once a DH point is detected, again for simplicity, suppose
at the equilibrium x = 0 with η = 0, the Hopf bifurcation
curve that traverses the singularity in the η−plane can be
built just considering the system (4) with the starting points
(ωi, 0), i = 1, 2. This reveals a curled curve and one distinc-
tive autointersection point: the DH singularity. Each branch
is associated with one of the frequencies and it is possible
to get high accurate quasianalytical approximations of the
emerging cycles, employing the generalizations of Theorem
1 (the graphical Hopf theorem). The analysis of the evolution
of its Floquet multipliers of the periodic solutions, following
the ideas in Section III, allows to detect cyclic bifurcations.
Particularly, two Neimark-Sacker branches emerge from the
singularity, generating a tricky dynamic region in the η−plane,
which includes the existence of 3D-tori.

V. EXAMPLE

The considered nonlinear system is designed with two
coupled LCR circuits as shown in Figure 2, where C1, C2
are capacitors and, L1, L2 are inductances and R is a resistor.
Choosing the voltages across the capacitors and the currents
in the inductances as state variables, one obtains

ẋ1 = η1(
1
2x1 − α2x21 − α3x31) + (η1 + η3)x2 − η1x4,

ẋ2 = −12
√
2x1,

ẋ3 = (
√
2 + 1)x4,

ẋ4 = (2−
√
2)(x1 − x3 − η2x4),

(10)
where x = (x1, x2, x3, x4) = (vC1 , iL1 , vC2 , iL2), η1 =

1
C1

and η2 = R are independent bifurcation parameters. The

Fig. 2. A doubly LCR coupled electrical circuit (γ = η3η
−1
1 ).

constants C2, L1 and L2 have the following values: C2 =
1√
2+1

, L1 = 2√
2

and L2 = 1
2−√2 . In this case, the

conductance is a nonlinear element which can be described
according to the current-voltage nonlinear function iG =
−12vG − α2v2G + α3v3G, where two additional parameters, α2
and α3, are now included. Besides, the term u = η3x2 in the
first equation of system (10) appears due to a control function
which depends on the second variable and a new auxiliary
parameter. This model has been analyzed in detail for the case
(α2, α3) = (0, 1) and η3 = 0 in [10].

It is easy to see that the unique equilibrium point of
system (10) is x̃ = 0, while η1 + η3 6= 0. Considering
the linearization of the system evaluated at the equilibrium,
one finds a unique 1:1 resonant double Hopf singularity for
η∗∗ = (η∗∗1 , η∗∗2 , η∗∗3 ) = (4(2 − √2), 2, 2(2√2 − 3)) with

frequency ω∗∗ = 4
√
2. Moreover, one discovers close to this

degeneracy infinite non resonant double Hopf points, which
exist for 2(2

√
2 − 3) < η3 < 2. In this range of values, the

case η3 = −0.22 with the analysis of the dynamics close to
a complex non resonant double Hopf singularity (in the sense
of Section IV) will be the focus of the rest of this article.

Applying the methodology described in Section II, the
system (10) is written as (2) defining

A =

⎡⎢⎢⎣
0 η1 + η3 0 −η1

−12
√
2 0 0 0

0 0 0
√
2 + 1

2−√2 0 −(2−√2) −(2−√2)η2

⎤⎥⎥⎦ ,

B =
£
1 0 0 0

¤T
= CT , D = [ 0 ],

and u = g(e; η1, (α2, α3)) = η1
¡−12e− α2e2 + α3e3

¢
, with

e = −y. Then, it is possible to compute the transfer matrix G
and to find the corresponding equilibrium equation (3) in the
frequency domain, whose unique solution results ẽ = 0. Thus,
the characteristic and unique eigenvalue λ̂ of GJ evaluated at
s = iω, can be expressed as

λ̂ = (A1 + iA2) (A3 + iA4)
−1 , (11)
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Fig. 3. Hopf bifurcation (H) curve through DH for (α2, α3) = (0.6, 1) and
η3 = −0.22. (Cyclic fold (F ) (−.) and period doubling bifurcation (PD)
(−) curves in the neighborhood of DH, H10 Hopf degeneracies (o)).

where

A1 = −η1η2ω2(2−
√
2), A2 = η1ω(

√
2− ω2),

A3 = −2ω4 + (κ+
√
2η3)ω

2 − 2χ,
A4 = 2(2−

√
2)η2ω

3 − 2(√2− 1)χη2ω,
where κ = κ(η1) = (4−

√
2)η1 + 2

√
2 and χ = η1 + η3.

If η3 = −0.22, it is found that the non resonant double Hopf
singularity DH has coordinates η1 = 2.22, η2 = 1.89488
and its critical frequencies are ω̄1 = 1.065654287, ω̄2 =
1.327084759. With this starting point and solving the nonlin-
ear system

F1(ω, η) = Re(λ̂) + 1 = 0, F2(ω, η) = Im(λ̂) = 0,

where the expression of λ̂ is given by (11), a continuation
of Hopf (H) bifurcation points can be done in the η1 − η2
parameter plane. Its two branches, named as Hi, i = 1, 2
are associated with the frequencies ω̄i, i = 1, 2 respectively,
and represented in Figure 3. Now, fixing (α2, α3) = (0.6, 1)
and for completeness, the fold (F ) bifurcation curve and
the period-doubling (PD) one, obtained with the LOCBIF
software [14], have been added to the last figure. It must be
observed the cyclic fold curve is similar to a curved triangle,
incomplete in one of its sides. Its terminal or generating points
are certain Hopf degeneracies HDi, i = 1, 2, usually noted
H10, where the curvature coefficient σ1 vanishes (see (5) in
H3 of Theorem 1), namely, HD1 : η1 = 2.21033, η2 =
1.96331, ω = 1.1131983560, σ1 = 0.646 ∗ 10−7 and HD2 :
η1 = 2.37168, η2 = 1.63223, ω = 0.9837376553, σ1 =
−0.223 ∗ 10−7. This kind of degeneracy is associated with
the simultaneous coexistence of a pair of limit cycles in its
unfolding. Moreover, the nearby period doubling curve is an
island of period doubling bifurcations.

Keeping η3 = −0.22 and fixing the value η2 = 1.88,
two Hopf bifurcation points are found close to DH, say,

TABLE I

DETECTION OF A NEIMARK-SACKER BIFURCATION OF CYCLES FOR η2 =

1.88, WITH (α2 ,α3) = (0.6,1) AND η3 = -0.22.

η1 = 2.22816 η1 = 2.22817
β0 1.001061337 1.001062903

β1−2 1.000011 exp(±1.503911i) 0.999996 exp(±1.504057i)
β3 0.9336322590 0.9335826414

TABLE II

DETECTION OF A SECOND NEIMARK-SACKER BIFURCATION OF CYCLES

FOR η2 = 1.88, WITH (α2 ,α3) = (0.6,1) AND η3 = -0.22.

η1 = 2.22476 η1 = 2.22477
β0 1.005628287 1.005731349

β1−2 1.000144 exp(±1.785426i) 0.999653 exp(±1.787339i)
β3 0.9975715823 0.9975052464

η1 = 2.21666 for ω = 1.336433149 (it belongs to H2)
and η1 = 2.22406 for ω = 1.058200007 (in H1) (see
Figure 4). Through the frequency domain methodology and
considering quasianalytical expressions of higher order for the
limit cycles, using the MS algorithm [9], and the evolution
of their Floquet multipliers, two Neimark-Sacker bifurcation
points are detected. The first one is obtained for η1 = 2.22816,
when a generic cycle, that appears from the H2 branch,
bifurcates. The second one results for η1 = 2.22476, starting
from the periodic solution born at H1 branch. These detections
are based on the results that are shown in Tables I and II,
respectively. Repeating this procedure for a range of values
η2 < 1.89488 (the ordinate of the DH point), two Neimark-
Sacker branches, which are born at DH, are built precisely and
checked with the LOCBIF software as can be seen in Figure
4. The terminal points of these curves are another kind of
degeneracies 1:2 resonance points (see [2] for more details)
due to they belong to PD islands: the larger one has been
mentioned before but there is also a tiny island situated above
the right Hopf branch (see Figure 4).

Otherwise, by means of Yu’s normal form implementation
[5], one can obtain the tangent lines L1, L2 at DH to the
Neimark-Sacker branches, proving the exactitude of the shown
results, and get information about the existence of bifurcation
of the arising 2D-tori. Specifically, it is possible to compute
the tangent line L3 to the curve C. If this line lays between L1
and L2 then a 3D-torus solution is possible. The expressions
of these three lines are:

L1 : η2 = −1.205744580(η1 − 2.22) + 1.89488,
L2 : η2 = −3.349711533(η1 − 2.22) + 1.89488,
L3 : η2 = −3.186850098(η1 − 2.22) + 1.89488,

and this is all shown in Figure 5. This situation agrees wholly
with the dynamic portrait of Figure 1, and its adaptation to
the analyzed configuration is given in Figure 6.
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Fig. 5. The Neimark-Sacker T1, T2 (−.) branches born at DH, through FDM,
in conjunction with its tangent lines L1, L2 (−) obtained by normal forms.
L3 (−) is the tangent line to the curve C, where the 2D-torus bifurcates.

VI. CONCLUSIONS

The frequency domain methodology has allowed us to
analyze partially the complex case of the non resonant double
Hopf singularity. Specifically, particular dynamic regions in its
neighborhood have been recognized thanks to the plotting of
the Hopf bifurcation curve and the Neimark-Sacker branches.
The normal form theory as well as LOCBIF have been used
as complementary resources to check the appearance of the
2D and 3D-tori.
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