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Abstract
In this paper, we explore numerically the impact of

different types of inter-layer coupling on the dynamics
of a two-layer multiplex network of coupled FitzHugh–
Nagumo oscillators in the excitable regime. For this pur-
pose, the cases of attractive, repulsive, and periodically
modulated inter-layer coupling are considered. Coupled
in the ring structure, the FitzHugh–Nagumo neurons
demonstrate travelling wave regimes which are different
for the attractive and repulsive intra-layer coupling. It
is shown that the inter-layer coupling affects not only
the frequency of oscillations of individual neurons but
also the spatio-temporal structures in individual layers in
different ways, depending on the sign of the inter-layer
coupling. It is established that complete in-phase syn-
chronization of travelling waves is well achieved in the
presence of attractive inter-layer coupling, while the re-
pulsive inter-layer coupling induces effective anti-phase
synchronization of wave regimes. When the inter-layer
coupling is periodically modulated, the wave structures
in both layers are distorted, and clusters of coherent and
incoherent dynamics can appear in the ring space. The
paper was presented at PhysCon2024.
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1 Introduction
Recently, the interaction of biologically relevant neu-

rons has attracted particular attention of researchers in

the connection with the development of the field of spik-
ing neural networks [Yamazaki et al., 2022]. Spik-
ing neural networks are functionally close to biologi-
cal neural networks, since they implement temporal cod-
ing [Kasabov, 2019]. The most common biologically rel-
evant neuron models are the Hodgkin–Huxley [Hodgkin
and Huxley, 1952], Hindmarsh–Rose [Hindmarsh and
Rose, 1984], Morris–Lecar [Morris and Lecar, 1981],
Izhikevich [Izhikevich, 2003], and FitzHugh–Nagumo
oscillators. The latter is the simplest and was proposed
independently in [FitzHugh, 1961] and [Nagumo et al.,
1962]. But even the simplest oscillatory FitzHugh–
Nagumo neuron model is quite complicated, and atten-
tion should be paid to the dynamics of the individual
neuron [Doi and Kumagai, 2005], including the influ-
ence of external signals [Yan et al., 2020], noise [Perc,
2005], and feedback with delay [Schöll et al., 2009], to
the features of interaction of two coupled neurons with
delay [Semenov et al., 2023] or coupled neurons that
is induced by external noise [Hauschildt et al., 2006],
and to the collective behavior of neurons in small [Ron-
togiannis and Provata, 2021] and large ensembles [Ry-
balova et al., 2021]. The authors of [Plotnikov, 2015]
showed that a time-varying communication delay can
influence the synchronization effect. In addition, op-
timal control of the collective behavior of the ensem-
ble’s neurons can be achieved through external influ-
ence [Takeuchi et al., 2012].

Networks of coupled FitzHugh–Nagumo neurons can
demonstrate different spatio-temporal structures, such
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as chimera states [Schöll, 2016] which are charac-
terized by the coexistence of coherent and incoher-
ent clusters [Abrams and Strogatz, 2004], and rotat-
ing waves [Perlikowski et al., 2010]. Inter-layer cou-
pling between FitzHugh–Nagumo neuron networks can
generate the competitive behavior between the solitary
states and the chimeras in the transition to synchronous
regime [Rybalova et al., 2021]. The authors of the pa-
per [Sawicki et al., 2018] show that the delay controls
chimera relay synchronization in multiplex neural net-
works. In addition, the influence of inter-layer coupling
topology on the relay synchronization effect is investi-
gated [Drauschke et al., 2020]. However, the issue of
anti-phase synchronization arising due to repulsive inter-
layer coupling has not been studied in sufficient detail.
There are no practically data concerning the impact of
inter-layer coupling of different types on traveling wave
regimes in multiplex neural networks.

Basically, the coupling between FitzHugh–Nagumo
neurons is electrical (gap junctions) or chemical [Li
et al., 2007]. Besides, a generalized coupling in
FitzHugh–Nagumo neuron networks was considered,
including the links between activators, between in-
hibitors, and between activator and inhibitor vari-
ables [Omelchenko et al., 2013]. The electrical cou-
pling between neurons can be attractive or repulsive,
depending on the sign of the value of the coupling co-
efficient. The attractive coupling is general for bio-
chemical systems, while the repulsive coupling occurs
relatively rarely [Jiang et al., 2020]. For example,
excitation-contraction coupling was employed in cardiac
myocytes [Qu et al., 2007]. Repulsive coupling plays a
crucial role in the dynamics of FitzHugh–Nagumo cou-
pled neurons and significantly complicates the behavior
of these neurons [Rybalova et al., 2023]. In this work, we
investigate the influence of different types of inter-layer
coupling on the spatio-temporal dynamics of two-layer
multiplex neural networks. Depending on the intra-layer
coupling, attractive or repulsive, uncopled layers initially
demonstrate travelling waves of different form and dif-
ferent phase characteristics. The peculiarities of inter-
action of wave regimes are explored for attractive, re-
pulsive and periodically modulated inter-layer coupling.
The changes in the network dynamics as well as the pos-
sibilities of in-phase and anti-phase inter-layer synchro-
nization are analyzed by using the mean frequency de-
pendences and the Pearson’s correlation coefficient.

2 Model under study
The object of our numerical simulation is a multi-

plex network of two coupled layers. Each layer repre-
sents a ring network of coupled FitzHugh–Nagumo neu-
ron models proposed in [FitzHugh, 1961] and [Nagumo
et al., 1962]. The multiplex network under study is de-

scribed by the following system of equations:

εẋi,k = xi,k −
x3
i,k

3
− yi,k+

+
σk

2P

i+P∑
j=i−P

(xj,k − xi,k) + γi(xi,l − xi,k),

ẏi,k = xi,k + a,

(1)

where xi,k are the fast variables (activators) and repre-
sent the voltage across the cell membranes of neurons,
yi,k are the slow recovery variables (inhibitors) which
ensure that neurons return to the recovery state. The in-
dex i = 1, 2, . . . N is the node number, and N = 100
is the total number of elements in each layer. The in-
dex k, l = 1, 2, k ̸= l are the layer numbers. The small
parameter ε is the ratio of the activator to inhibitor time
scales. The parameter a determines the excitation thresh-
old in the single neuron. The FitzHugh–Nagumo oscil-
lator can demonstrate either excitable (|a| > 1) or oscil-
latory (|a| < 1) regimes. In our study we set ε = 0.01,
and a = 1.05 which corresponds to the excitable regime
in each neuron.

The fourth term in the first equation of the network (1)
is responsible for intra-layer coupling between neurons
with the coupling strength σk and the coupling range P .
The links between neurons are electrical [Li et al., 2007].
The intra-layer coupling is attractive for the first layer
and its coupling strength is set as a positive value σ1 =
0.1. The repulsive intra-layer coupling is chosen for the
second layer and its coupling strength is negative, σ2 =
−0.1.

The inter-layer coupling between the two layers is or-
ganized to be symmetrical and mutual. It is introduced
via the x variables and described by the last term in the
first equation (1). In our simulation we consider three
different cases of the inter-layer coupling strength distri-
bution (Fig. 1). In the first case, the inter-layer coupling
is attractive and flat, i.e., γi = γ (green pluses and line in
Fig. 1). In the second case, the coupling is repulsive and
flat, i.e., γi = −γ (red crosses and line in Fig. 1). And
finally, a periodically modulated inter-layer coupling is
used which is defined as γi = πγ sin(6πi/N)/2 (black
stars and line in Fig. 1). All the control parameters are
dimensionless.

3 Quantitative measures
In order to analyze the ”mean” behaviour of the cou-

pled rings we calculate mean frequencies as follows:

⟨fk⟩ =
Qk

T ·N , (2)

where Qk is the number of spikes in the kth ring over
time T = 500, N is the number of neurons in the ring,
k = 1, 2.

We also use Pearson’s correlation coefficient
R1,2 [Pearson and Lee, 1903] between the ith neu-
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Figure 1. Methods of distributing the inter-layer coupling strength γi for the cases of attractive links (green pluses and line), repulsive links (red
crosses and line) and periodically modulated links (black stars and line) for same value of γ = 0.1 in the two-layer network (1)

rons of the coupled rings:

R1,2 =
1

N

N∑
i=1

((∑
t

(xi,1(t)− ⟨xi,1⟩t)×

× (xi,2(t)− ⟨xi,2⟩t)
)/

/(√∑
t

(xi,1(t)− ⟨xi,1⟩t)×

×
√∑

t

(xi,2(t)− ⟨xi,2⟩t)
))

(3)

This measure gives evidence of the degree of correlation
(synchronization) between the interacting layers. R1,2 is
varied within the interval [−1, 1]. The boundary values
correspond to anti-phase and in-phase inter-layer syn-
chronization of oscillations, respectively, and R1,2 = 0
relates to the case of a fully desynchronized multiplex
network.

To evaluate the phase difference between the nodes in
each layer and find its mean value we use the following
relations:

⟨φi⟩ =
〈∑

j

∆φj,j−1

〉
t

, j = 1, 2, . . . , i

⟨φeven
i ⟩ =

〈∑
j

∆φj,j−2

〉
t

, j = 2, 4, . . . , i

⟨φodd
i ⟩ =

〈∑
j

∆φj,j−2

〉
t

, j = 1, 3, . . . , i,

(4)

where ∆φj,j−1 is a phase difference between neurons
j, j − 1, and ⟨·⟩t is the time average value. Other details
of the behaviour are illustrated with additional plots.

4 Initial structures in uncoupled layers
When the layers are uncoupled, different kinds of trav-

elling waves can be observed in the rings depending on
the intra-layer coupling strength. The first layer demon-
strates a wave pattern that is illustrated in Fig. 2,a–c. The
corresponding space-time diagram xi(t) = xi,k(t) and

time series x(t) for three selected neurons in the first
layer are shown in Fig. 2,a, b, respectively. This regime
is obtained for the positive intra-layer coupling strength
σ1 = 0.1 and represents a regular travelling wave with a
small phase differences in the oscillations of neighbor-
ing neurons, which add up to 2π over a full traverse
around the ring. The dependences ⟨φi⟩, ⟨φeven

i ⟩, ⟨φodd
i ⟩

show similar results (see Fig. 2,c), and the mean fre-
quency is f1 ≈ 0.22.

The second layer exhibits a distinct travelling wave
regime which occurs due to the repulsive intra-layer cou-
pling σ2 = −0.1. Its characteristics is shown in Fig. 2,d–
f. This kind of travelling waves differs from that in
the first layer by a significant difference in the phases
of oscillations of neighboring neurons (the black line in
Fig. 2,f). In this case, the phases of oscillations of neu-
rons with a difference in indices i equal to 2 differ in-
significantly and the sum of the phase difference along
all even or odd neurons is equal to 2π (red and green
lines in Fig. 2,h). Calculation of regular ⟨φi⟩ is not
enough to detect the special travelling wave, and only
⟨φeven

i ⟩, ⟨φodd
i ⟩ values can reveal it. The mean frequency

of spikes of the nodes in the second layer is f2 ≈ 0.21.

5 Interaction of two travelling waves
We now explore the interaction of travelling waves in

a two-layer network (1). The initial wave regimes are
shown in Fig. 2,a, d. The impact of the inter-layer cou-
pling is evaluated by calculating the mean frequency (2)
for each layer and the correlation coefficient (3) between
the coupled layers. The corresponding results are plotted
in Fig. 3 for three different types of the inter-layer cou-
pling, i.e., attractive flat with γi = γ ⩾ 0 (Fig. 3,a, d),
repulsive flat with γi = γ ⩽ 0 (Fig. 3,b, e), and period-
ically modulated with γi = πγ sin(6πi/N)/2 (Fig. 3,c,
f). It should be noted that all frequency values ⟨fk⟩ be-
come equal for any γ ̸= 0, γ ∈ [−0.25, 0.25], although
the initial frequency values in the uncoupled layers differ
from each other.

In the case of attractive inter-layer coupling, the
mean frequency ⟨fk⟩ decreases linearly as the coupling
strength γ increases (Fig. 3,a). Herewith, the Pearson’s
correlation coefficient R1,2 gradually increases as γ →
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Figure 2. Initial wave structures in uncoupled layers (γi = 0 in (1)). Space-time diagrams xi(t) = xi,k(t) (a, d), time series x(t) for the
chosen individual neurons (b, e), and phase differences ⟨φi⟩, ⟨φeven

i ⟩, ⟨φodd
i ⟩ (c, f) for the first layer at σ1 = 0.1 (a–c) and the second layer

at σ2 = −0.1 (d–f). Other parameters: ε = 0.01, a = 1.05, P = 1, N = 100.1
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Figure 3. Mean frequencies fk , k = 1, 2 (colors and line types are specified in legends) (a–c), and Pearson’s correlation coefficient R1,2

(d–f) for attractive flat inter-layer coupling (γ ⩾ 0) (a, d), repulsive flat inter-layer coupling (γ ⩽ 0) (b, e), and for periodically modulated
inter-layer coupling (πγ sin(6πi/N)/2) in the two-layer network (1). Other parameters: ε = 0.01, a = 1.05, P = 1, N = 100.

0.075 but remains less than 0.5 (Fig. 3,d). Thus, there
is a range of the coupling strength γ ∈ (0, 0.075] within
which the frequencies become equal but the oscillations

of the symmetrical nodes of the layers are still weakly
correlated. This situation is illustrated in Fig. 4,a–c for
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Figure 4. Space-time diagrams xi(t) = xi,2(t) (a, d), time series x(t) for the 50th node in each layer k = 1, 2 (b, e), and phase differences
⟨φi⟩, ⟨φeven

i ⟩, ⟨φodd
i ⟩ (c, f) for the second layer (k = 2) for γ = 0.07 (a–c), and γ = 0.2 (d–f) in the two-layer network with attractive

flat inter-layer coupling (1)). Other parameters: ε = 0.01, a = 1.05, P = 1, N = 100.

the fixed γ = 0.07 by the space-time diagram, time se-
ries for the 50th node of the layers, and phase differ-
ences (4) between the nodes in the second ring. It is
clearly seen that for weak inter-layer coupling the travel-
ling wave regime in the second ring doesn’t change sig-
nificantly.

Further increase in the inter-layer coupling, γ > 0.075,
shows an abrupt increase in the correlation coefficient
value R1,2 which then tends to 1 with increasing γ
(Fig. 3,d). Starting with a certain value of attractive inter-
layer coupling γ ≈ 0.15 the layers become completely
and in-phase synchronized. Exemplary spatio-temporal
and phase characteristics of the synchronous regime es-
tablished in both layers are presented in Fig. 4,d–f for
γ = 0.2. It is seen that the interacting layers are syn-
chronized in the regime of regular travelling wave being
very similar to the initial wave structure in the first layer.

As follows from (Fig. 3,b,e), the dependence of the
mean frequencies ⟨fk⟩ on γ looks like rather com-
plicated in the case of repulsive inter-layer coupling
(Fig. 3,b). However, a trend towards an increase in the
oscillation frequencies can be observed when the cou-
pling strength γ decreases. Additionally, the Pearson’s
correlation coefficient R1,2 takes negative values which
decrease as γ decreases (Fig. 3,e). Thus, one may con-
clude that the repulsive inter-layer coupling can induce
an effect being quite similar to effective (within a finite
accuracy) anti-phase inter-layer synchronization of wave
structures in the two-layer multiplex network.

In order to explore the changes in the dynamics of cou-

pled layers in details, we calculate and plots space-time
diagrams and phase differences between the nodes in
each layer in Fig. 5 for three different values of the repul-
sive inter-layer coupling strength. It can be seen that as a
result of repulsive interaction, the initial travelling waves
in the coupled rings can be distorted (the structure in the
second layer, Fig. 5,a, g) or even destroyed (structures
in both layers, Fig. 5,b, e, h). However, as the repulsive
coupling strength increases in its absolute value, the trav-
elling wave regime can be restored in both layers, and
the observed wave structures almost exactly repeat the
initial travelling waves (Fig. 2). Such a peculiarity of the
multiplex network dynamics occurs when the repulsive
inter-layer coupling strength is varied within the inter-
vals γ ∈ [−0.0159 : −0.0152]∪ [−0.0145 : −0.0132]∪
[−0.0129 : −0.0127]∪[−0.0121 : −0.0115]∪[−0.084 :
−0.041] ∪ [−0.026 : 0]. However, the behavior of the
second layer changes gradually as γ decreases, and the
travelling wave regime being very similar to the reg-
ular travelling wave can be established in the second
layer (Fig. 5,c). However, there is a significant differ-
ence in the phases of oscillations of neighboring neurons
(Fig. 5,i).

Now we turn to the third case when the inter-layer cou-
pling is periodically modulated (black stars and line in
Fig. 1). Calculation results for the mean frequencies and
the correlation coefficient are shown in Fig. 3,c, f, re-
spectively. In this case, it is impossible to detect a pos-
itive or negative trend in the dependence ⟨fk⟩(γ), k =
1, 2 (Fig. 3,c). When the inter-layer coupling is weak,
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Figure 5. Space-time diagrams xi(t) = xi,2(t) for the second layer (k = 2) (a–c) and phase differences ⟨φi⟩, ⟨φeven
i ⟩, ⟨φodd

i ⟩ for
the first layer (d–f) and the second layer (g–i) in the network (1) in the case of repulsive flat inter-layer coupling for γ = −0.035 (a, d, g),
γ = −0.099 (b, e, h), and γ = −0.155 (c, f, i). Other parameters: ε = 0.01, a = 1.05, P = 1, N = 100.

γ < 0.07, and when the sum of all the inter-layer cou-
pling strengths is equal to zero (

∑
i γi = 0), the mean

frequency of neural impulses in the network remain un-
changed and constant. Additionally, the Pearson’s cor-
relation coefficient R1,2 is almost zero (Fig. 3,f). In this
case, as follows from Fig. 6,a,d,g,j, where space-time di-
agrams and phase differences are shown for γ = 0.04
and for each layer separately, the regular travelling wave
regime in the first layer has a more significant influence
on the dynamics of the second layer in the case of weak
periodically modulated inter-layer coupling. The same
behavior of the multiplex network was also observed
in the previous two cases (attractive flat and repulsive
flat inter-layer couplings). The dynamical regime in the
first layer is fully preserved (Fig. 6,a, g), while the wave
structure in the second layer is distorted (Fig. 6,d, j).

When the coupling strength grows further, γ ∈
[0.07, 0.152], the mean frequencies are arbitrarily
changed between the constant level f1 ≈ 0.22 (as for

weak coupling) and the frequency value from the range
f1 ∈ [0.26, 0.35] (Fig. 3,c). The correlation coefficient
R1,2 changes arbitrarily its value between 0.1 and 0.3
(Fig. 3,f), that corresponds to weakly correlated oscilla-
tions of the interacting layers. A least correlated charac-
ter (R1,2 → 0) and thus the absence of synchronization
between the two layers is also observed for larger val-
ues of inter-layer coupling, γ > 0.15 (Fig. 3,f). Such
a picture can easily be understood if to address to the
spatio-temporal and phase characteristics for each layer
shown in Fig. 6,b, h, e, k for γ = 0.081 and Fig. 6,c, i, f,
l for γ = 0.2. It is seen that several clusters of neurons
appear in both layers (Fig. 6,b, e) but they are differently
localized in the ring space. So, in the first layer, irregular
(incoherent) clusters occupy the regions corresponding
to repulsive inter-layer coupling with the second layer,
while synchronous clusters in the second layer appear
in places corresponding to attractive inter-layer coupling
with the first layer. Thus, in the case of periodically mod-
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ulated inter-layer coupling, the clusters of the spatio-
temporal structure arising with attractive intra-layer cou-
pling are transmitted by positive inter-layer coupling,
and the clusters of the spatio-temporal structure resulted
from the repulsive intra-layer coupling are transmitted
by repulsive inter-layer coupling. Finally, when the peri-
odically modulated inter-layer coupling becomes rather
strong, γ > 0.15, the initial spatio-wave structures are
essentially corrupted as can be seen in the correspond-
ing space-time diagrams and phase differences for each
layer (Fig. 6,c, i, f, l).

6 Conclusion
We have studied numerically how the type of inter-

layer coupling, such as attractive, repulsive and periodi-
cally modulated, can influence the interaction of travel-
ing waves in a two-layer network of coupled FitzHugh–
Nagumo neurons. Without inter-layer coupling, the first
layer with attractive intra-layer coupling demonstrates a
regular travelling wave with a small phase difference in
the oscillations of neighboring neurons, which adds up
to 2π over a full traverse around the ring. The second
layer also exhibits a travelling wave regime but due to
the repulsive intra-layer coupling the phases of oscilla-
tions of neighboring neurons significantly differ, how-
ever, the sum of the phase difference along all even or
odd neurons is equal to 2π.

Our studies have shown that at weak attractive inter-
layer coupling the mean frequencies of neuron impulses
become equal but the oscillations of the symmetrical
nodes remain weakly correlated. Starting with a certain
value of the inter-layer coupling strength, the Pearson’s
correlation coefficient increases abruptly to 1, that indi-
cates the effect of complete in-phase synchronization of
traveling waves in the coupled layers.

In the case of repulsive inter-layer coupling, the depen-
dence of the mean frequencies on the coupling strength
becomes rather complicated, the Pearson’s correlation
coefficient takes negative values which decrease as the
absolute value of the inter-layer coupling strength in-
creases. The initial travelling waves in the coupled rings
can be distorted or even destroyed. However, as the re-
pulsive coupling strength increases in its absolute value,
the travelling wave regime can be restored in each layers,
and the observed wave structures almost exactly repro-
duce the initial travelling waves. It has been established
that the repulsive inter-layer coupling has a significant
effect on the dynamics of the multiplex neural network,
changing the nature of the oscillations of the neurons in
the layers, and can lead to the effect of anti-phase syn-
chronization of traveling waves.

When the periodically modulated inter-layer coupling
is weak enough, the mean frequency of neural impulses
in the network remain unchanged and constant, and the
Pearson’s correlation coefficient is almost zero. When
the coupling strength grows, the mean frequencies be-
have in a similar manner as in the case of repulsive cou-

plng. The correlation coefficient first slightly increases
and then again vanishes, thus indicating the uncorrelated
dynamics between the layers. A new interesting fact has
been revealed when studing the impact of periodically
modulated inter-layer coupling. Several incoherent clus-
ters appear in both layers and are characterized by a dif-
ferent length and location in the ring space. The clus-
ters arising due to the attractive intra-layer coupling are
transmitted by positive inter-layer coupling, and the clus-
ters resulted from the repulsive intra-layer coupling are
transmitted by repulsive inter-layer coupling. Finally,
the initial spatio-wave structures in the layer are signif-
icantly distorted when the periodically modulated inter-
layer coupling is sufficiently strong.

Thus, despite the complexity of the studied model and
the coupling topology, it is possible to control the aver-
age frequency of oscillations in the network by introduc-
ing positive and negative links. The introduction of pos-
itive links leads to a decrease in the average frequency
of oscillations, and the introduction of negative links, on
the contrary, increases the average frequency of oscilla-
tions. The obtained results can be useful to specialists in
the study and training of spiking neural networks. The
initial distribution of links significantly affects the av-
erage frequency of spikes. Thus, if there is a need to
introduce additional positive links between neurons for
training purposes, negative links can also be introduced
to maintain the average level of spike activity. Such an
approach to training will allow avoiding a significant de-
crease or increase in the spike activity of network neu-
rons on average.

As an outlook, it is worth exploring the behavioral
features of a three-layer neural network and consider-
ing the possibilities of observing and controlling relay
synchronization of traveling waves. Additionally, simi-
lar problems with non-identical parameters of excitabil-
ity of neurons in the network are interesting. Distributed
parameters of neurons will allow us to explore the per-
missible limits of observation of the effects presented in
this article.
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