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Abstract—The damper based on magneto-sensitive fluid and 
rubber is one of the most promising new devices for structural 
vibration reduction. It is described by a dynamical system 
with controlled viscosity and stiffness. The problems of the 
parametric control of damping and generation of harmonic 
oscillations for the presented dynamical system are solved.  
 

I. INTRODUCTION 
 

Magneto-sensitive (MS) fluids and rubbers are a class of 
smart materials whose mechanical properties change 
instantly by the application of a magnetic field.  

Interest in MS materials derives from their ability to 
provide simple, quiet, rapid-response interfaces between 
electronic controls and mechanical systems. That MS media 
have the potential to radically change the way 
electromechanical devices are designed and operated has 
long been recognized. A wide range of potential applications 
is presumably the reason for the intense research in recent 
years [1-4]. 

The MS medium is composed of polarizable particles, 
dispersed in a carrier medium, having a size  on the order of 
a few microns. The MS effect is optimized by choosing a 
particle material with a high magnetic saturation. In general 
an alloy of iron is used in MS media. Typical particle 
volume fractions are between 0,1 and 0,5. Carrier media are 
chosen based upon their rheological and tribological 
properties and on their temperature stability. Examples for 
MS fluids and rubbers are silicone, petroleum based oils, 
mineral oils, polyesters, water, synthetic hydrocarbon oils 
and rubber-like elastomers.  

During the manufacturing process of MS medium, the 
isotropy condition inherent of the filler material is 
maintained in the final composite. Therefore, these materials 
are considered isotropic and non-conductive. However,  MS  
materials  become non-homogeneous due to the presence 
and distribution of particles in the carrier filler. 

In the paper an original dynamical system with controlled 
viscosity and stiffness is used for modeling of an active 
dumper based on MS fluid and rubber. The problems of the 
parametric control of damping and generation of harmonic 
oscillations for the presented dynamical system are solved 
by the Lyapunov method [5]. All theoretical results are 
based on the theorem about asymptotic stability in reference 
to the part of variables [6] as well as the Barbashin-
Krasovski and Chetaev theorems. 
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II. TWO PARAMETRIC DYNAMICAL MODEL  
FOR THE ACTIVE DUMPER 

 
In practice as usual dampers based on MS (or 

magnetorheological) fluids are used [1,2].  
We present an original two parametric model of active 

damper with MS fluid and rubber elements:  
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where x  is the relative axial displacement of the dampers 
piston,  is the dimensionless time, 1 2( )EL m tτ /= /
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( fH H| |< ) is the additional viscosity of MS fluid and 
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r ru k H=  ( rH H| |≤ ) is the additional stiffness of MS 
rubber in a magnetic field with density H , 0r r rk δ μ μ≈  is 
the coefficient of magnetic sensitivity of MS rubber, 
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f ( )τ  is an external dimensionless force. Here  is the m
mass of loading damper, ν  is the viscosity of MR fluid 
without magnetic field, L  is the length of MS rubber 
element, fμ  and rμ  is the magnetic permeability of MS 
fluid and rubber, respectively; fδ  and rδ  is the iron particle 
volume fraction in MS fluid and rubber, respectively. Here 
we use approximations for additional viscosity and stiffness 
from the authors papers [3,4]. It is well known that for real 
MS rubbers 2 0 4r rk H ≤ .  [3]. 
 

III. DAMPER FREE OSCILLATIONS 
 

Consider the problem of damping free oscillations 
generated by non-zero initial conditions, i.e. for ( ) 0f τ = . 
In this case the energy of the dynamical system (1) satisfies 
the following condition:  
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Here and what follows the upper point is d dτ/ .  

Synthesize the controls input fu  and  from the 
condition of decreasing the Lyapunov function 

ru

( ) ( ) 0V Eτ τ= ≥  on the trajectories of the closed loop 
system [5], i.e.  
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Consider an arbitrary constant  and choose controls 
in the following form:  

0C ≥
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where F  is continuous, strictly increasing function such 
what  and (0) 0F = 20 ( ) r rF p k H≤ ≤  for every p R∈ .  

In this case for the energy of dynamical system (1) the 
differential equation is fulfilled  
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where (1 ) 0Cα γ= + > .  

Proposition 1: The extended dynamical system (1)-(3) is 
asymptotically stable in reference to the variable . The 
closed loop system (1), (2) has the asymptotically stable 
equilibrium , .  

E
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Proof: The asymptotic stability follows from the 
application of the theorem on asymptotic stability in 
reference to the part of variables [6] to the function V .  

Example 1: In Figure 1 the phase portraits of the closed 
loop system (1), (2) are presented. The function 

 was used, where  is the 
Heaviside function. The phase portrait (a) and (b) 
corresponds to the parameter 

( ) )()exp(14.0)( phppF −−= ( )h p

1α =  and 5α =  in the 
relation (3), respectively.  
 

VI. GENERATION OF HARMONIC OSCILLATIONS 
 

Consider the problem of parametric generation of 
harmonic oscillations with the desired frequency ω  and 
amplitude A  in the system (1). For this reason, introduce 
the functions of energy and desired energy of the dynamical 
system (1)  
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Define a new control for the reduced stiffness by the 

formula   where .  
Synthesize the controls input 
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 on the trajectories of the closed 
loop system [5], i.e.  
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Choose controls in the following form:  

 
( )1 2 2( ) ( ) ( )fu F E E h E E u F xx E E∗ ∗ ∗= − − , = −&    (4) 

where  is the Heaviside function, ( )h p 1F  and 2F  are 
continuous, strictly increasing functions such what 

1(0) 0F = , 2 (0) 0F =  and 2 2
21 ( ) 1 r r

2F p kω ω− ≤ ≤ − + H  for 
every p R∈ .  

As a result, we have the following additional differential 
equation:  
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Proposition 2: The extended dynamical system (1), (4), (5) 

is asymptotically stable in reference to the variable E E∗− . 
The closed loop system (1), (4) has the desired harmonic 
oscillation if  and 0E > 2 1ω γ> + . It has also the unstable 
equilibrium point (0,0).  

Proof: The asymptotic stability follows from the 
application of the theorem on asymptotic stability in 
reference to the part of variables [6] to the function V . 
Because  in small environ of the point (00E ≥& 0),  then the 
equilibrium is unstable in accordance to the Chetaev 
theorem.  

Example 2: In Figure 2 the phase portraits of the closed 
loop system (1), (4) are presented for the harmonic 
oscillation with the desired frequency 1.1ω =  and 
amplitude 0 7A = . . Here the following functions were used: 

1( ) 0F p ≡  and ( ) )()exp(12.0)(2 phppF λ−−=  with a 
parameter 0λ > . The phase portrait (a) and (b) corresponds 
to the parameter 1λ =  and 5λ = , respectively.  
 

ACKNOWLEDGMENT 
 

Many thanks for my colleague and friend Dr. Ilya V. 
Burkov for a review and discussion of the article.  
 

REFERENCES 
 
[1] W. Kordonsky, “Magnetorheological effects as a base of new 

devices and technologies,” J. Magn. Magn. Mat., vol. 122, pp. 
395-398, 1993. 

[2] J.D. Carlson and M.R. Jolly, “MR fluid, foam and elastomer 
devices,” Mechatronics, vol. 10, pp. 555-569, 2000.  

[3] I.A. Brigadnov and A. Dorfmann, “Mathematical modeling of 
magneto-sensitive elastomers,” Int. J. Solids & Structures, 
vol. 40, no. 18, pp. 4659-4674, 2003.  

[4] I.A. Brigadnov and A. Dorfmann, “Mathematical modeling of 
magnetorheological fluids,” J. Continuum Mechanics & 
Thermodynamics, vol. 17, no. 1, pp. 29-42, 2005.  

[5] A.L. Fradkov, “Investigation of physical systems by means of 
feedbacks,” Avtom. i Telemekh., no. 3, pp. 213-229, 1999 
(Engl. transl. in Autom. Remote Control.). 

[6] V.V. Rumyantsev and A.S. Oziraner (1987). Stability and 
Stabilization in Reference to the Part of Variables. Moscow, 
Nauka, 1987 (in Russian).  

 
 



 

 
 
 

 
 

Fig. 1. The phase portraits of the closed loop system (1), (2) described in the Example 1. 



 
 
 

 
 

Fig. 2. The phase portraits of the closed loop system (1), (4) described in the Example 2.
 


