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Abstract
We consider three versions of a problem of impulsive

pest control by its natural enemies. The model is of a
prey-predator type. The control system is described by
a measure differential equation and hence admits dis-
continuous solutions. The cost functional of the first
problem represents a balance between a negative profit
provided by a pest (prey) and a price for applying an
additional population of its natural enemies (predators).
The problem of keeping the pest quantity below a prac-
tically admissible threshold leads to a state-constrained
model, while the most complicated version is due to
the presence of a mixed constraint relating impulsive
action (measure) and the left one-sided limit of a tra-
jectory. We employ a conceptual approach for opti-
mal impulsive pest control based on a certain singular
space-time transformation and share our experience in
its numerical implementation.
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1 Introduction
A number of intensive research of impulsive popu-

lation models were launched recently and inspired by
modern biological technologies in agriculture, see, e.g.,
[Cardoso and Takahashi, 2008, Code, 2009, Jiang and
Lu, 2007, Tang and Cheke, 2005]. These studies form
a popular trend in the mathematical theory of biologi-
cal and ecological systems. Such models also arise in
the study of problems of disease control (see [Verriest,
Delmotte and Egerstedt, 2005]) as the cohort immu-
nization makes changes in the epidemic process in the
short term and results in an almost abrupt change in the
velocity of propagation of the disease.
Our model is described by a measure differential

equation, whose solutions are functions of bounded
variation. For an introduction to mathematical theory
of impulsive control with trajectories of bounded vari-

ation we refer to [Bressan and Rampazzo, 1994,Dykhta
and Samsonyuk, 2009, Gurman, 1972, Miller, 1996,
Miller and Rubinovich, 2001, Rishel, 1965, Warga,
1972, Warga, 1987, Zavalischin and Sesekin, 1997].

2 Optimal Impulsive Control Problems with Tra-
jectories of Bounded Variation Subject to State
and Nonstandard Mixed Constraints

This section contains some preliminary background
from optimal impulsive control.
On a given finite time interval [0, T ] we consider the

following variational problem (P ) with state and mixed
constraints:

I = F (x(T ), µ([0, T ])) → inf, (1)
dx = f(x)dt+ cµ(dt), x(0−) = x0, (2)

Φ(x(t)) ≤ 0 for all t ∈ [0, T ] and (3)
Q(x(t−)) = 0 for µ-almost all t ∈ [0, T ]. (4)

Here, x(t−) denotes the left one-sided limit of func-
tion x at a point t ∈ [0, T ], µ is a finite regular non-
negative scalar measure on [0, T ]. We are given vectors
c, x0 ∈ Rn, and continuous functions F : Rn × R →
R, f : Rn → R, Φ : Rn → R and Q : Rn → R+

(R+ is the nonnegative half-line).
We assume that f meets usual conditions (of sublin-

ear growth and Lipschitz continuity), and Φ(x0) ≤ 0.
As soon as a measure µ is fixed, the assumptions on f
guarantees the existence and uniqueness of a solution
to measure differential equation (2), and the solution is
a right continuous function with a bounded variation on
[0, T ].
Condition (4) is the so-called nonstandard mixed con-

straint, as it relates state trajectory and control measure,
and practically can be viewed of as a jump permitting
relation. The presence of such a condition imparts a
hybrid feature of the addressed problem.
A couple σ = (x, u) satisfying conditions (2)–(4) will

be referred to as an admissible process for (P ). We
suppose that admissible processes exist.
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To our knowledge, for problem (P ) there are no direct
variational techniques, or computational algorithms be-
yond a straightforward discretization.
Now we formulate the result on the problem’s trans-

formation to a conventional (non-impulsive) problem
of optimal control, which can be treated by means of
standard analytical and numerical methods.
On a time interval [0, S], S ≥ T , consider the follow-

ing variational problem (RP ):

J = F (y+(S), η+(S)) → inf;
d
dsξ = α, d

dsη± = (1− α)β±, (5)
d
dsy± = αf(y+) + (1− α)β± c; (6)

ξ(0) = η±(0) = 0, y+(0) = y−(0); (7)
ξ(S) = T, y+(S) = y−(S), η+(S) = η−(S); (8)

η− − η+ ≤ 0; (9)∫ S

0

Ψ(s)ds = 0; (10)

α ∈ [0, 1], β± ≥ 0, β+ + β− = 1. (11)

Here (α, β), β = (β+, β−), are controls. Trajectories
(ξ, y, η), y = (y+, y−), η = (η+, η−), are functions
absolutely continuous on [0, S], y± ∈ Rn, and η± ∈
R+. The integrand from (10) is as follows:

Ψ = α (η+ − η− + ρ(y+ − y−)) +

+(1− α)β+Q−(y−),

where ρ : Rn → R is an arbitrarily chosen nonnegative
function vanishing only at zero.
A collection ς = (y, ξ, η, α, β;S) satisfying (5)–(11)

is said to be an admissible process for (RP ).
For problem (P ), given a measure µ, we define the

function

Υ(t) = t+ 2µ([0, t]), t ∈ [0, T ], (12)

and let υ : [0, T + 2µ([0, T ])] → [0, T ] be its inverse.
In problem (RP ), for given a control (α, β) satisfying

(11) and such that the respective solution ξ of (5), (7)
satisfies (8), we introduce the map Ξ : [0, T ] → [0, S]
by the formulas

Ξ(t) = inf{s ∈ [0, T ]| ξ(s) > t}, t ∈ [0, T ), (13)
Ξ(T ) = S. (14)

Theorem 2.1 ( [Goncharova and Staritsyn, 2015]).
1) For any (P )-admissible process σ, there exists an
admissible for (RP ) process ς = (y, ξ, η, α, β;S) with
S = T + 2µ([0, T ]), such that

υ(s) = ξ(s), s ∈ [0, S];

x(t) = y±(Υ(t)), µ([0, t]) = η±(Υ(t)), t ∈ [0, T ].

2) For any (RP )-admissible process ς , there exists a
measure µ such that the process σ = (x[µ], µ) is (P )-
admissible, and

y±(Ξ(t)) = x(t), η±(Ξ(t)) = µ([0, t]), t ∈ [0, T ].

Here x[µ] is the solution to the measure differential
equation under a measure µ.
3) Optimal solutions for problems (P ) and (RP ) can

exist only simultaneously. For optimal processes σ∗

and ς∗, we get I(σ∗) = J(ς∗).

The direct and inverse transforms are implemented as
follows:
Given an admissible in (P ) process σ, the passage
(P ) → (RP ) consists in extending the instants τ ∈
Dµ(T ) of impulses to intervals Ωτ = [Υ(τ−),Υ(τ)],
where Υ(·) is given by (12). Denote Ωτ+ = Υ(τ−) +
[0, Tτ [, Ωτ− = Ωτ \ Ωτ+, Tτ = µ({τ}), Ω =
∪τ∈Dµ(T )Ωτ , Ω± = ∪τ∈Dµ(T )Ωτ±.
A desired (RP )-admissible process ς form Theo-

rem 2.1 corresponds to controls

α(s) = π(Υ−1(s)), s ∈ [0, S] \ Ω,
α(s) = 0, s ∈ Ω, and

β±(s) =

1/2, s ∈ [0, S] \ Ω,
1, s ∈ Ω±,
0, s ∈ Ω∓.

Here, Υ−1(·) is the function inverse for Υ(·), and by
π(·) is the Radon-Nikodym derivative of the Lebesgue
measure λ with respect to (λ+ 2µ)(·).
The inverse transformation (RP ) → (P ) of a process
ς is based on the discontinuous time reparameterization
Ξ(·), defined by (13), (14). This function is right con-
tinuous, monotone nondecreasing, and pseudo-inverse
with respect to ξ(·).
A control process ς corresponding to σ, admissible for
(P ) and meeting the relations of the second assertion
in Theorem 2.1, is produced by a differential measure
µ(dt) = dFµ(t) with the distribution function Fµ of
the form

Fµ(0−) = 0, Fµ(t) = η+(Ξ(t)).

3 Conceptual Approach for Numerical Implemen-
tation

Based on Theorem 2.1, we follow the algorithm:

• Problem (P ) is reduced to problem (RP ) with
bounded controls by virtue of the time reparam-
eterization.

• An appropriate numerical algorithm for optimal
control (and a suitable software) is applied to solve
the reduced problem.

• The result of the previous stage is interpreted in
terms of problem (P ) by applying the inverse time
transformation.
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4 Pest Control
The pest population dynamics is given by the follow-

ing model of Lotka-Volterra type:

dx1 = x1(b1 + a11x1 + a12x2)dt+ c1 µ(dt), (15)
x1(0−) = x0

1, (16)
dx2 = x2(b2 + a21x1 + a22x2)dt+ c2 µ(dt), (17)

x2(0−) = x0
2. (18)

Here, x = (x1, x2) is a vector of the populations
of preys and predators (individuals per square unit),
x0 = (x0

1, x
0
2) are the initial populations, A(t) =

{aij(t)}i,j=1,2, b(t) = (b1(t), b2(t)), aij and bi are the
coefficients of the species interaction with aii(t) < 0,
a12(t) < 0, a21(t) > 0. The terms ci µ(dt), i = 1, 2, in
(15), (17) correspond to an artificial (possibly, instanta-
neous) increase of the population of predators in order
to terminate the pest population growth. The control
period is [0, T ].

Problem 1: Consider the following cost functional

I = q1

∫ T

0

x1(t)dt+ q2µ([0, T ]), (19)

which represents a balance between the negative profit
provided by the pest activity over the control period and
the total price we pay for applying an additional pop-
ulation of the predators. Here, the scalar coefficients
qi > 0 are conditional prices. We are to minimize cost
(19) subject to constraints (15)–(18).
Consider the model (15)–(18) identified by [Cardoso

and Takahashi, 2008] for the interaction of caterpillars
Anticarsia gematalis, parasitizing soy plant, and their
natural predators wasps. We are given the following
set of parameters:

A =

(
−0.001 −0.02
0.0029 0

)
, b = (0.16,−0.19),

c = (0, 1).

(20)

The state x̄ = (x̄1, x̄2) ≈ (65.5172, 4.7241) is the
only equilibrium point making a practical sense. How-
ever, from the economical point of view the level x̄1 is
not satisfactory and should be reduced.
A similar problem is addressed by [Code, 2009],

where replenishment of the predator population is pro-
duced by applying pure impulses at specified times —
once per twenty days, — and by a control one mean the
number of individuals introduced into the ecosystem at
each of these moments. To study the problem the Max-
imum Principle was used, and a search for numerical
solutions was performed by using a discrete scheme of
dynamic optimization like in [Cardoso and Takahashi,
2008].

As a class of controls, we now consider Lebesgue–
Stieltjes measures. They cover the above case of purely
impulsive controls, however, the instants of impulses
may be not fixed but subject to optimization.
To solve the problem we apply our control optimiza-

tion scheme based on the problem transformation by
means of discontinuous time change. The reduced op-
timization problem is a state constrained problem. To
find its solution one should use an appropriate software.
We employed OPTCON III (a software, designed in
ISDCT SB RAS). For q1 = q2 = 1, different values
of x0, and T within the interval of 150–200 days, we
obtained solutions in the form of purely impulsive con-
trols. In fact, the number of impulses and their localiza-
tion heavily depend on the initial data. Figs. 1, 3 illus-
trate the dynamics of the populations (preys are black,
predators are red) for x0 = (10, 0). Figs. 2, 4 show the
population evolutions for x0 = (10, 1).

Figure 1. Problem 1. Population dynamics for T = 150, x0 =
(10, 0).

Problem 2: We are to keep the population density x1

below the critical value: x1 ≤ h over the whole control
period.
Here we have a state constrained problem of impulsive
control. Now it is natural to set q1 = 0, q2 = 1, and
we use the data (20) as before. Numerical simulations
were carried out for different levels h ∈ [20, 50] and
initial values x0

2 < x0
1 ≤ h. The period T is taken

in the interval from 150 to 200 days. All the control
strategies that we obtained as quasi-optimal solutions
have a common pattern: We do nothing until the in-
stant t = τ < T when the population x1 reaches the
critical level h. As soon as this happens, we intro-
duce an external population of the predators in quantity
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Figure 2. Problem 1. Population dynamics for T = 155, x0 =
(10, 1).

Figure 3. Problem 1. Population dynamics for T = 190, x0 =
(10, 0).

ντ = µ({τ}). Then we continuously replenish the pop-
ulation x2 with new individuals in order to maintain the
level x1 = h. This way, x2 keeps to the constant value
x̃2 = x0

2 + ντ . The optimal trajectories are presented
in Fig. 5
The optimal control measure is of the form

µ(dt) = m(t)χ(τ,T ](t) dt+ ντδ(t− τ) dt,

Figure 4. Problem 1. Population dynamics for T = 200, x0 =
(10, 1).

Figure 5. Problem 2. Optimal trajectories.

where χ(τ,T ] is the characteristic function of the set
(τ, T ]. The absolutely continuous (w.r.t. the Lebesgue
measure λ) component of µ is nontrivial. Its density m
can be found from the control system as follows:

m(t) = −x̃2(b2 + a21h+ a22x̃2), t ∈ [0, T ].

For instance, given h = 20 and x0
2 = 1, we get τ ≈

5.281, ντ ≈ 7, m(t) ≈ 0.924, t ∈ [0, T ], and I ≈
187.181. In other words, we are to introduce about 187
predators per square unit in the course of the control
period. For x0

2 = 0, we can calculate the moment τ
explicitly:

τ =
1

b1
ln

h (b1 + a11x
0
1)

x0
1 (b1 + a11h)

.
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Figure 6. Problem 3. Population dynamics for T = 175, x0 =
(10, 0).

Figure 7. Problem 3. Population dynamics for T = 160, x0 =
(10, 1).

Problem 3. Minimize (19) subject to (15)–(18) and an
additional mixed constraint

l(x1(t−), t) ≤ 0 for µ-almost all t ∈ [0, T ].

The practical motivation can be as follows: Some-
times it may be disadvantageous (or, actually, impos-
sible) to introduce predators into the ecosystem until
the population of preys reaches some “critical mass”.
For instant, being without the required amount of food,

predators can migrate, or, even worse, cause damage
to the ecosystem. Here, a scalar continuous function
l(x1, t) defines an upper bound for x2 depending on
the current moment t and the level of x1. Note that the
inequality constraint can be always equivalently refor-
mulated as an equality constraint like (4) with a certain
nonnegative continuous (or even smooth) function.
Numerical implementation is performed for h = 20,
q1 = q2 = 1, and the same data A, b, and c. The dy-
namics of the competing species is shown on Fig. 6,
7. For T = 175 and the initial population values
x0 = (10, 0), the proposed control strategy consists in
applying a single impulse at the moment when x1 first
reaches the prescribed level h. The impulse action re-
sults in recruiting about 30 individuals per square unit.
If T = 160 and x0 = (10, 1), the best strategy we ob-
tained is to introduce ≈ 65 individuals per square unit
after the lapse of more than one hundred days.
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