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Abstract
Algorithms for guidance and control of a space robot-

manipulator when approaching mini-satellites in adja-
cent orbital planes of the earth-survey constellation and
the results of their computer verification are presented.
The article examines the issues on astrodynamics of a
space robot in the gravitational fields of the Earth, Moon
and Sun, taking into account the aerodynamic resistance
to its movement in low orbit. At the same time, an
electro-reactive propulsion unit and a cluster of gyro-
scopic drives are used to create vectors of control forces
and torques. The most important are new methods and
results for the space robot digital control during its flight
between mini-satellites.
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Abbreviations
AN = Ascending Node
AOCS = Attitude and Orbit Control System
BRF = Body Reference Frame
EPU = Electric Propulsion Unit
GD = Gyrodine
GMC = Gyroscopic Moment Cluster
IRF = Inertial Reference Frame
MRP = Modified Rodrigues Parameters
ORF = Orbital Reference Frame
SINS = Strapdown Inertial Navigation System
SRM = Space Robot-Manipulator
STC = Star Tracker Cluster

1 Introduction
The main trend in modern space systems for remote

sensing of the Earth is the transition to constellations
of optoelectronic (SkySat) and radar (Capella-36) mini-
satellites with a high frequency of earth survey from
low orbits [Crisp et al., 2021; Rodriguez-Donaire et al.,
2020; Lappas and Kostopoulos, 2020; Somov et al.,
2021b; Somov et al., 2023b]. With a service life of
up to 5 years, such satellites have a mass of up to 500
kg and large-sized solar array panels to power onboard
equipment, including an attitude and orbit control sys-
tem (AOCS) with electric propulsion units (EPUs) and a
gyro moment cluster (GMC) based on gyrodines (GDs).
Measuring the coordinates of the spacecraft (SC) motion
is carried out by a strapdown inertial navigation system
(SINS) with correction based on signals from navigation
satellites and a star tracker cluster (STC). In-flight re-
fueling of EPU is not economically viable for ”cheap”
micro-satellites weighing up to 100 kg, but for mini-
satellites equipped with ”expensive” onboard equipment
(telescope, SINS, STC, GMC, EPU, etc.), it is necessary
to study the extension of a service life up to 20 years by
the EPU refueling while using space robot-manipulators
(SRMs). For an orbital constellation of Earth observa-
tion mini-satellites in low sun-synchronous orbits, three
SC in the vicinity of each base orbital plane [Somov
et al., 2023b], the problems of the SRM motion control
are very relevant when approaching mini-satellites.

The article discusses the problems of performing such
maneuvers of the SRM near one base orbital plane while
estimating the time duration and fuel consumption of the
EPU during the SRM flights between mini-satellites.
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2 Models and the problem statement
We use the following reference frames (RF): iner-

tial (IRF O⊕X
iYiZi, basis I⊕ with unit vectors ii,i =

1, 2, 3 ≡ 1 ÷ 3), orbital (ORF Ox◦y◦z◦, basis O with
unit vectors of radial r◦, transversal τττ◦, binormal n◦)
and associated with the SRM body (BRF Oxyz, basis
B) reference frames with the origin at its mass center
O. We assume that the thrust vector Pe of the plasma
EPU is directed along the BRF axis Oy. In the IRF
I ≡ I⊕, the BRF orientation is defined by quaternion
ΛΛΛb

I ≡ ΛΛΛ = (λ0,λλλ), λλλ = {λi} and with respect to ORF
– by column ϕϕϕ={ϕi} of Euler-Krylov angles ϕ1 (yaw),
ϕ2 (roll) and ϕ3 (pitch). We use notation ωωω(t) and εεεεεεεεε(t),
r(t) and v(t) for vectors of the SC body angular veloc-
ity and acceleration, its mass center’s position and pro-
gressive velocity in the IRF as well as symbols ⟨·, ·⟩,
{ · } = col(·), [ · ] = line(·) for vectors and [·×], (·)t for
matrices. We apply vector of the modified Rodrigues pa-
rameters (MRP) σσσ={σi}= e tan(Φ/4) with Euler unit
vector e and angle Φ. Vector σσσ is one-one connected
with quaternion ΛΛΛ by explicit relations. Collinear GD
pair is named as Scissored Pair Ensemble (SPE) [Cren-
shaw, 1973]. Column HHH(β) ≡ hgh(β) = hgΣhp(βp)
with the columns βββ ≡{βp}, p=1÷4 and h(βββ) ∈ SSS ⊂
R3, presents the angular momentum (AM) vector of the
GMC by scheme 2-SPE (Fig. 1) [Somov et al., 2021a;
Somov et al., 2023a; Somov et al., 2023b], where hg is
own AM of each GD. With |hp|=1 ∀p= 1÷4, in the park
state this scheme has the normed AM vector h(β)=0.

Figure 1. The GMC scheme 2-SPE based on four GDs

The SRM body is considered as a solid with mass m
and inertia tensor J, model of its motion has the form

r′ +ωωω × r = v; m(v′ +ωωω × v) = Pe + Fd;

Λ̇ΛΛ = ΛΛΛ ◦ωωω/2; Jω̇ωω +ωωω ×G = Mg +Md.
(1)

Here vector G = Jωωω+HHH and Mg = −HHH′ represents the
GMC control torque vector, Fd and Md are the vectors
of external disturbing forces and torques, and finally, (·)′
is the symbol of local time derivative. With using Jacobi
matrix Ah(βββ) = ∂h(βββ)/∂βββ, vector Mg is represented
by the following relations with digital control vector ug

k :

Mg = −HHH′ = −hgAh(β)u
g
k(t); β̇ = ug

k(t)≡{ugpk(t)},
where control ugpk(t) = Zh[sat(qntr(ug

pk, u
o
g), u

m
g ), Tu]

is forming ∀k ∈ N0 ≡ [0, 1, 2, . . . ) with a period Tu.

For a given the SRM angular guidance law ΛΛΛp(t),
ωωωp(t), εεεεεεεεεp(t) the error quaternion EEE = (e0, e) = Λ̃ΛΛp ◦ ΛΛΛ
with the vector e = {ei}, corresponds to the attitude er-
ror matrix Ce=I3−2[e×]Qt

e with Qe=I3e0+[e×] and
the angular error vector δϕϕϕ= {δϕi}= 2e0e. The vector
δϕϕϕ is discrete filtered and then values of mismatch vector
ϵϵϵfk=−ϕϕϕf

k are applied in the GMC digital control law

gk+1 = Bgk +Cϵϵϵfk; m̃k = K(gk +Pϵϵϵfk);

Mg
k=ωωωk×Gk + J(Ce

kεεεεεεεεε
p
k + [Ce

kωωω
p
k×]ωωωk + m̃k),

(2)

where for du ≡ 2/Tu, ai ≡ (duτ1i − 1)/(duτ1i + 1)
elements of diagonal matrices K, B, P and C are com-
puted as bi≡(duτ2i−1)/(duτ2i+1); pi≡(1−bi)/(1−ai);
ci ≡ pi(bi−ai) with adaptive-robust tuning the parame-
ters τ1i, τ2i and ki. Next, the GMC control torque vector
Mg

k (2) is ”re-calculated” into vector ug
k of the GD dig-

ital commands using explicit function for the AM distri-
bution between GDs [Matrosov and Somov, 2004].

In the column qr = {Ω, i, ωπ, p, e, u} of osculating co-
ordinates for the position vector r of the SC in orbit, we
traditionally distinguish (i) three elements of the orbit
orientation – the longitude Ω of ascending node (AN),
inclination i, argument of orbit perigee ωπ , and (ii) three
elements that determine the size, shape of the orbit as
well as the SC position in orbit – focal parameter p, ec-
centricity e and argument of orbital latitude u(t), which
sometimes is named as ”orbital latitude” and is related
with the true anomaly ν(t) by the ratio u(t) = ωπ+ν(t).

When the SRM approaches mini-satellites (targets) to
refuel their EPU, the SRM maneuvers consist of flights
between the SC orbits. Each flight consists of three
stages: (i) rotation of the SRM’s orbital plane until it is
aligned with orbital plane of the target, (ii) phasing the
SRM’s position with that target in coplanar orbits, and
(iii) final rendezvous of the SRM with the target.

The problem is to develop the SRM guidance and con-
trol laws while obtaining the estimates of the duration
and EPU fuel consumption during robot flights between
mini-satellites. To solve it, we use methods of controlled
space flight mechanics [Elyasberg, 1965; Battin, 1999;
Alfriend et al., 2010; Vallado, 2013; Baranov, 2016;
Curtis, 2020], including model of the SC movements
and rendezvous in a gravitational field [Clohessy and
Wiltshire, 1960] and its further developments directly
taking into account the second harmonic of the gravi-
tational geopotential [Schweighart and Sedwick, 2002],
[Alfriend and Yan, 2005; Sullivan et al., 2017].

3 The SRM control when changing orbital plane
In the theory of instantaneous velocity impulses of the

SC translational motion, the solution to the problem of
the orbital plane turn [Curtis, 2020] is based on chang-
ing the direction of the transversal component of the
SRM velocity vector v1 in the plane of the first orbit
(Fig. 2, blue) by an angle ∆Ω to obtain the velocity vec-
tor v2 in the plane of the second orbit, Fig. 2, green.
When the SRM is located on the line of intersection
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Figure 2. Scheme of changing the longitude of the orbit AN

Figure 3. Scheme of the SRM control when inter-orbital flights

of these orbits at one of the apexes – see the points
an or as most distant from the earth’s equator in the
northern or southern hemispheres of the celestial sphere
(Fig. 3), the modulus of the required velocity impulse
∆v = |∆v| ≡ |v2 − v1| with v1 = |v1| is calculated by
the relation ∆v = 2v1 sin∆Ω/2. With low EPU thrust,
the required velocity impulse cannot be realized in a
short time interval, at which the SC orientation can be
considered constant. Therefore, the important problem
of determining the variable direction of the EPU thrust
vector arises, at which the necessary maneuver of the
SRM transition to a given orbital plane is implemented.

The velocity impulse vector ∆v belongs to a plane tan-
gent to both orbits and, therefore it is perpendicular to
the line of intersection of these orbit planes. In the case
∆Ω → 0, this condition is preserved, and position of the
plane intersection line tends to the SRM position vector
r with the unit vector r◦ = {r◦1 , r◦2 , r◦3} at the point of the
corresponding apex. The change in the longitude of the
SRM orbit’s AN is representing by its turning around the
Earth’s rotation axis with the unit vector i3 = {0, 0, 1}.

All apexes of the SRM orbits are located on circles

in planes parallel to the equatorial plane, and the unit
vector p of the control acceleration along the axis Oy
of the robot BRF is always directed from the IRF axis
O⊕Z

i (Fig. 3) and belongs to the plane Q(r◦, i3). Con-
sequently, the unit vector p of the EPU thrust vector
should be formed according to the relation p = b/b,
where vector b ≡ (i3 × r◦)× r◦ and b = |b|. The
result is the angular guidance law for the thrust vector
Pe = Pmp sign r◦3 of the plasma EPU, where parameter
Pm represents the nominal value of the thrust.

With this guidance law, the efficiency of moving the
AN longitude decreases when the SRM moves away
from the corresponding apex. Therefore, there is ratio-
nal to apply this law only near apexes, the passage of
which occurs during the time intervals determined by the
forecast of the SRM orbital movement. The forecast is
performed at each turnover of the robot’s orbit, based on
analytical relations using measurements of the SRM po-
sition and velocity vectors. Here the time moments tn
and ts of passage the northern and southern apexes are
determined, as well as the time intervals for switching
on the EPU ∀t ∈ [tj − Td, tj + Td], j = n, s with the
half value Td of the full duration Sd = 2Td of switching
on the EPU. Such intervals are displaying in Fig. 3 by
sections of the SRM orbit, highlighted in green.

The SRM angular guidance is determined by the ori-
entation matrix Ab

i = {ati} at the columns a1 = r◦×p,
a2 = p and a3 = a1 × p, as well as by the quaternion
ΛΛΛ and MPR vector σσσ. On each turnover of the orbit, in
the vicinity of its ascending and descending nodes, two
SRM turnings are performed at an angle of ≈ 180 deg
(in Fig. 3 such parts are highlighted in blue) with the as-
signment of boundary conditions for the SRM transition
through the apexes when the EPU is running.

4 The SRM control when phasing and rendezvous
Phasing is performed when two SC moving in close

coplanar orbits approach each other due to a change in
the average angular orbital velocity for one of them.

Figure 4. Difference in the AN longitude at the first two turnovers

Figure 5. The longitude difference between the SC#1 and SRM orbits
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In the theory of instantaneous velocity pulses, phas-
ing is achieved through the formation of a velocity vec-
tor pulse at the perigee of the SRM orbit to change its
average orbital velocity and, after one turnover of the
phasing orbit, the formation of a reverse pulse −∆v to
return the SRM to its original orbit [Curtis, 2020]. The
pulses are formed in the corresponding directions of or-
bital transversal unit vector τττ◦. The EPU low thrust is
taken into account in calculating the parameters of the
phasing trajectory with centering the time of the EPU
turning on / off relative to the time tπ of perigee πππ pas-
sage. Solving the problem of approaching the SRM to
the ”aiming” point at a given distance from the serviced
mini-satellite begins with synthesis of the SRM guid-
ance law during translational motion. Here, the main pa-
rameters are the accelerating and braking instantaneous
pulses of the SRM velocity, as well as the duration of the
robot maneuver. Next, the Clohessy-Wiltshire equations
and their modifications are used, taking into account the
features of the distribution of the EPU required veloc-
ity pulses and onboard forecast of disturbances based on
available measurements [Somov et al., 2023a].

Figure 6. The MRP vector during the SRM turns at the first turnover

Figure 7. Angular velocity vector of SRM turns at the first turnover

Figure 8. The GMC digital control vector at the first orbit turnover

5 Computer simulation results
A simulation was carried out for the SRM flights be-

tween adjacent orbits of mini-satellites in a constellation
of three spacecraft in sun-synchronous orbits, spaced
apart in the AN longitude by an angle ∆Ω = 0.84 deg.

The parameters of this constellation correspond to an
areal survey of the Sea of Marmara and the environs
of Istanbul, all details are presented in [Somov et al.,

2023b]. Here we use models (1) and (2) for movement
of the SRM with a mass m of 1500 kg and an inertia
tensor J = diag(1600, 1200, 1800) kg m s2 taking into
account gravitational disturbances from the Moon, Sun
and second harmonic of the gravitational geopotential,
the EPU with thrust Pm = 6 N at an exhaust velocity
of the working fluid of 17363.7 m/s. Simulation of the
SRM turning maneuvers was performed using the GMC
with the own AM of each gyrodine hg = 30 Nms and
digital control with the period Tu = 0.25 s.

Figure 4 shows changes in the difference in the AN
longitude of the SRM orbit at the first two orbit turnover
when the EPU is turned on in the vicinities of apexes,
which are highlighted in pink. The change in the dif-
ference ∆Ω(t) in the AN longitude of the SRM orbit
is demonstrated in Fig. 5, where the flight between the
orbits of SC#1 and SC#2 ends at the time moment t∗=
220200 s (the time duration Tm=2.55 day) with a work-
ing fluid consumption of 13.26 kg.

Figures 6 and 7 show the program changes in the MRP
σσσ vectors and angular velocityωωω when two SRM turns at
the first orbit turnover, and vector of the GD digital com-
mands at such SRM turns is presented in Fig. 8. The re-
sults of simulating the SRM phasing when its approaches
SC#1 in the orbital plane are presented by the change of
the difference in their orbital latitudes in Fig. 9. Distur-

Figure 9. Difference in orbital latitude between SC#1 and SRM

bances, errors in forecast and the SRM orientation con-
trol when ”distribution” of a required velocity pulse at
a given time interval, taking into account the EPU low
thrust, do not allow phasing to be performed with high
accuracy. Therefore, additional stages of approaching

Figure 10. Vector of the SRM range at the first stage of approach

Figure 11. Vector of difference between velocities at the first stage
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Figure 12. Vector of the SRM range at the second stage of approach

Figure 13. Vector of difference between velocities at the second stage

Figure 14. Modules of range vectors and velocity differences

the SRM with the target are necessary, presented in de-
tail in Figs. 10 – 13, where the modules of vectors are
marked in black. Figure 14 shows a general diagram of
the change in the modules of the range vectors and the
difference in velocities of the robot and targets, indicated
at the final stages of the SRM maneuvering. Here, three
blue dotted vertical lines separate: (i) orbital plane rota-
tion and phasing (left line), (ii) phasing and the first stage
of approach (middle line) and, finally, (iii) the rightmost
line separates the first and second additional sequentially
performed stages of rendezvous.

Conclusion
The developed algorithms for control of a space robot

during its flights between mini-satellites in low orbits in
a constellation of the Earth survey are described and re-
sults of computer simulation are presented. Estimates
of the time duration and fuel consumption of the elec-
tric propulsion unit during robot flights were obtained.
These results are useful for study and research in as-
trodynamics [Vallado, 2013] as a branch of astrophysics
https://en.wikipedia.org/wiki/Astrophysics.
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