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Abstract
The purpose of this effort is to investigate primary res-

onances of nonlinear delay systems. Along these lines,
the response of a Duffing oscillator with delayed-state
feedback to primary resonance excitations is consid-
ered and analyzed using the method of multiple scales.
Unlike previous research efforts that let the coefficients
of the delay states (gains) be small to allow direct
implementation of the method of multiple scales, we
demonstrate that the method can be adapted to ana-
lyze nonlinear delay systems with large gains. Further,
we unveil very interesting dynamic responses charac-
terized by the presence of islands in the frequency re-
sponse of the delayed Duffing oscillator. It is demon-
strated that these islands grow in size and collide with
the main branch of solutions (mainland) as the mag-
nitude of the external excitation is increased or as the
gain-delay combination is chosen closer to the stability
boundaries of the free response.

Key words
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1 Introduction
1.1 Overview
Time-delay, hereditary, retarded, or time-lag repre-

sent different descriptions of dynamic systems that do
not react instantaneously to actuation signals or whose
temporal evolution is based on retarded communica-
tions or information from the past. The first system-
atic work on delay systems started in the early 1900s
with the epidemiological studies on the prevention of
malaria by Ross [Ross, 1911] followed by the work
of Lotka [Lotka, 1923] in 1923, who indicated the
necessity of including time-delays to account for the
malaria incubation times in Ross’ model. In 1927,
Volterra [Volterra, 1927] introduced the retarded forms

of predator-prey models used to describe population
dynamics, while Minorski, in 1942, was among the first
to address the presence of delays in mechanical sys-
tems [Minorski, 1942].
Subsequently, there has been a substantial increase

of research activities directed towards understanding
the effects of time delays on the stability of various
dynamic systems. This established a flourishing new
branch of mathematics primarily concerned with sta-
bility and stabilization of Delay-Differential Equations
(DDEs). Along these lines, a variety of analytical,
graphical, and numerical methodologies have been pro-
posed and implemented to capture and assess the stabil-
ity of systems operating with single, multiple, discrete,
or continuous time delays.

1.2 Background and Motivation
Despite the significant body of research that deals with

the stability and stabilization of delay systems, most of
the previous efforts were directed towards characteriz-
ing the stability of the free response by proposing vari-
ous methodologies to predict and estimate the location
of the eigenvalues relative to the imaginary axis [Diek-
mann, 1995; Bellman and Cooke, 1963]. Little atten-
tion has been paid to understanding the effect of time
delays on the response of nonlinear externally-excited
systems [Hu, 1998 ; Ji and Leung, 2002]. In particular,
the nonlinear response of a delayed system to primary-
resonance excitations has yet to be addressed compre-
hensively. Such studies were not necessary in the past
due to the limited number of applications in which time
delays and external excitations coexist in the operation
of a dynamic system.
However, due to the emergence of micro and nan-

odevices as the next generation sensors and actuators,
this type of analysis is becoming more imperative. Mi-
crodevices are usually excited at one of their resonant
frequencies with feedback control algorithms imple-
mented to close the loop and provide real-time infor-



mation about the states [Garcia and Perez, 2002]. Due
to their large natural frequencies, these devices have
relatively small response periods. The very small mea-
surement delays in the control loop can then be of the
same order as the response period, thereby channeling
energy into or out of the system at incorrect time inter-
vals and producing instabilities that render traditional
controllers’ performance ineffective [Stark, 2005].
To resolve these issues, there is a growing inter-

est in the controls and dynamics communities to uti-
lize delayed-feedback controllers for vibration mit-
igation and control of microsystems. It has been
shown that augmenting the system delay with a care-
fully and deliberately selected delay period is capa-
ble of producing substantial damping that can actu-
ally aid controller design [Abdallah, 1993]. As a
result, delayed-feedback algorithms have been suc-
cessfully implemented to control microcantilevers in
dynamic force microscopy [Yamasue and Hikihara,
2006], to eliminate chaotic motions in tapping-mode
atomic force microscopy [Sadeghian, 2007], for sen-
sor sensitivity enhancement in nanomechanical can-
tilever sensors [Daqaq, 2007; Bradely, 2007], and to
control the quality factor in dynamic atomic force mi-
croscopy [Stark, 2005].
Successful implementation of these controllers to non-

linear delay systems requires a deep analytical un-
derstanding of the primary resonance phenomenon in
time-delayed systems, especially when the objective is
to control an externally-excited system. Hu et al. [Hu,
1998 ] studied the primary resonance of a Duffing os-
cillator subjected to both position and velocity delayed-
feedback control. Similarly, Ji and Leung [Ji and Le-
ung, 2002] and Jin and Hu [Jin and Hu, 2007] stud-
ied the primary resonance of a Duffing oscillator with
two time delays in the state feedback. However, all
of these studies were restricted to systems with linear
delay terms that have very small coefficients (gains).
Accordingly, the method of multiple scales [Nayfeh,
1981] was directly implemented to obtain uniform an-
alytical approximate solutions because the gains could
be scaled at the highest order of the perturbation prob-
lem with the nonlinearities, internal damping, and ex-
ternal excitation. For many applications, however, es-
pecially feedback control, these coefficients can be rel-
atively large. By scaling the linear gains at the highest
order of the perturbation problem, one implicitly as-
sumes that the response of the delay system can be ap-
proximated by the first-delay frequency which, in gen-
eral, is very close to the system’s natural frequency.
When the gains are large, sticking to this assumption
could produce erroneous qualitative and quantitative
predictions that would hide some of the essential fea-
tures of the nonlinear response [Daqaq and Alhazza].

1.3 Problem Statement
In this work, we propose a modification to the ap-

proach presented earlier in Refs. [Hu, 1998 ] and [Ji and
Leung, 2002]. Again, we make use of the method of

Figure 1. Stability map of the equilibrium solutions of Equa-
tion (1) for j = 2. Shaded regions represent asymptoti-
cally stable equilibria. Results are obtained for ωn = 1,
µ = 0.005, and T = 2π/ωn.

multiple scales but adapt the implementation procedure
to allow for the alleviation of the small gain restriction.
Utilizing the resulting solution, we uncover interesting
dynamic responses. These responses are characterized
by the presence of frequency islands that have criti-
cal implications on the global stability of the response.
Such islands could yield undesired consequences, espe-
cially when delayed-feedback algorithms are applied to
mitigate oscillations of externally-excited systems.

2 Linear Analysis
2.1 Free Response:
Consider the Duffing oscillator with delayed-state

feedback

d2u

dt2
+ 2µ

du

dt
+ ω2

nu =−K
dju(t− τ)

dtj
− αu3

+ F cos(Ωt)
j = 0, 1, 2

(1)

where u ∈ R is the state, µ ∈ R+ is a linear damping
term, ωn ∈ R+ is the natural frequency, K ∈ R is the
coefficient of the linear-delayed state, loosely referred
to as the gain, τ ∈ R+ is a discrete time delay, α ∈
R is the coefficient of cubic nonlinearity and j is the
order of the delayed-state derivative. We note that the
Einstein convention does not apply.
The local stability of the equilibrium solutions of

the unforced system can be determined by finding the
eigenvalues, λ, of the linearized equation when F
equals zero. These eigenvalues are obtained by sub-
stituting a homogeneous solution of the form, uh =
c exp(λt), into Equation (1) to yield

(ω2
n+λ2)+2µλ+Kλje−λτ = 0, j = 0, 1, 2. (2)
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Figure 2. Variation of the first four delay frequencies, ωd,
(solid lines) and the associated peak frequencies, Ωp, (dashed
lines) with the gain K. Results are obtained for a fixed delay
τ = 0.2π, ωn = 1, µ = 0.005 and j = 2

Equation (2) is a transcendental characteristic equation
that has an infinite number of solutions associated with
every set of fixed parameters (K,τ ). By inspecting the
form of the homogeneous solution, uh, it becomes evi-
dent that the stability of the equilibrium solutions is de-
termined by the sign of the real part of the eigenvalues
(λ = ζd± iωd). In particular, the equilibrium solutions
are locally asymptotically stable if all the eigenvalues
have negative real parts, ζd < 0, and unstable if at least
one eigenvalue has a positive real part, ζd > 0. Thus,
to determine the stability boundaries, we set the real
part of the eigenvalue ζd equal to zero and substitute
λ = iωd into Equation (2), then separate the real and
imaginary parts of the outcome to obtain

(ω2
n − ω̂2

d) + (−1)jK̂
∂j

∂τ̂ j

{
cos(ω̂dτ̂)

}
= 0, (3a)

2µω̂d−(−1)jK̂
∂j

∂τ̂ j

{
sin(ω̂dτ̂)

}
= 0, j = 0, 1, 2.

(3b)
where the hat denotes a value at the stability bound-

ary. For a given gain K̂, Equations (3) can be solved
for the delay τ̂ and the associated frequency at the
boundary, ω̂d. To better visualize the stability of the
equilibrium solutions, the gain-delay space is mapped
into stable and unstable regions as depicted in Fig. 1,
where shaded regions represent gain-delay combina-
tions leading to asymptotically stable equilibria.

2.2 Forced Response:
2.2.1 The Steady-State Solution In the remain-

der of this work, we limit the analysis to gain-delay
combinations leading to stable equilibrium solutions.
In other words, we only consider gain-delay values in
the shaded regions depicted in Fig. 1. As such, the ho-
mogeneous linear solution of Equation (1), uh, decays
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Figure 3. Variation of the associated damping ratios ζd/ωd

with the gain K. Results are obtained for a fixed delay τ =

0.2π, ωn = 1, µ = 0.005 and j = 2

with time and does not affect the steady-state response.
Next, to determine the steady-state linear response of
the forced system, we retain the linear terms in Equa-
tion (1) and assume a solution of the form

uss(t) =
1
2
aei(Ωt+γ) + cc (4)

where a and γ are, respectively, the steady-state ampli-
tude and phase of the response and cc is the complex
conjugate of the preceding term. We substitute Equa-
tion (4) into the linearized version of Equation (1), set
the real and imaginary parts of the resulting expression
equal to zero, and obtain

(
(ω2

n−Ω2)+(−1)jK
∂j

∂τ j
[cos(Ωτ)]

)
a = −F cos γ

(5a)

(
2µΩ− (−1)jK

∂j

∂τ j
[sin(Ωτ)]

)
a =F sin γ,

j = 0, 1, 2
(5b)

The linear steady-state amplitude of the response can
be obtained by squaring and adding Equations (5) then
solving the resulting equation for a. The correspond-
ing phase, γ, is obtained by using either one of Equa-
tions (5). Accordingly, the steady-state response can be
written as

uss(t) = a cos(Ωt + γ) (6)



where

a =F

/{(
ω2

n − Ω2 + (−1)jK
∂j

∂τ j
[cos(Ωτ)]

)2

+
(

2µΩ− (−1)jK
∂j

∂τ j
[sin(Ωτ)]

)2}
(7a)

γ = − arctan
2µΩ− (−1)jK ∂j

∂τj [sin(Ωτ)]

ω2
n − Ω2 + (−1)jK ∂j

∂τj [cos(Ωτ)]
(7b)

2.2.2 Peak Versus Delay Frequencies Similar to
continuous systems, delay systems could exhibit peak
responses (resonances) at a large number of frequen-
cies. The peaks can be determined by minimizing the
denominator of Equation (7a) with respect to the exci-
tation frequency. The minimization problem requires
that the first derivative of the denominator with respect
to Ω vanishes and that the second derivative is greater
than zero. It turns out that these equations do not al-
ways yield a unique solution. As such, the frequency-
response curves of the forced response may exhibit
more than one peak. To further illustrate this fact,
we consider the assumption of small internal damp-
ing, gain, and delay. In other words, we let µ = εµ,
K = εK, and τ = ετ , undertake the minimization
problem, then eliminate terms having higher orders of
ε to obtain

cos
(

πj

2
+ τΩp

)
=

2(−1)−jΩ2−j
p

(
Ω2

p − ω2
n

)

K
(
j(Ω2

p − ω2
n) + 2Ω2

p

) ,

j = 0, 1, 2.

(8)

or

cos
(

πj

2
+ τΩp

)
−O

(
Ω2−j

p

K

)
= 0 j = 0, 1, 2.

(9)

where Ωp is the peak frequency and O denotes “the
order of ”. By examining Equation (9), it becomes
evident that the number of peak frequencies is directly
proportional to both j and the magnitude of K.
Hence, a delay system can exhibit more than one peak
frequency. For instance, at τ = 1.2π, K = −0.4,
j = 2, ωn = 1, and µ = 0.005 the frequency-response
exhibits a very large number of peak frequencies,
out of which, the lowest three are listed herein:
Ωp1 = 0.841806, Ωp2 = 1.61982, Ωp3 = 3.29911.

The preceding discussion is aimed at demonstrating
that delay systems can exhibit primary resonances at a
large number of frequencies. Depending on the gain
and delay values, these resonances may occur at fre-
quencies that are far from the natural frequency ωn.
Further, not every delay frequency, ωd, obtained via

the linear unforced eigenvalue problem yields a peak
frequency. This can be understood by noting that, as-
sociated with every nonzero set of parameters (K, τ ),
the free response always yields an infinite number of
eigenfrequencies, ωd. On the other hand, as illustrated
in Equation (9), the number of peak frequencies de-
pends on the values of j and K.
To further illustrate the relation between the peak fre-

quencies, Ωp, and the imaginary parts of the eigen-
values, ωd, Fig. 2 displays variation of the first four
peak and delay frequencies with the gain for j = 2
and a fixed delay, τ = 0.2π. The figure shows that
the first delay frequency, ωd1, coincides with the the
first peak frequency, Ωp1, over the whole gain range.
The second peak frequency, ωp2, however exists only
for values of K greater than K ≈ 0.5 and approaches
the second-delay frequency, ωd2, only when the gain
is large. The convergence between these frequencies
at large gains can be attributed to a decrease in the ab-
solute value of the damping parameter, ζd2, associated
with the second-delay frequency as depicted in Fig. 3.
The third and fourth peak frequencies exist for smaller
gains but only converge to the delay frequencies as the
gain is increased.

2.3 Implementation of the Method of Multiple
Scales

It has been shown in the previous section that delay
systems exhibit a large number of peak frequencies and
that these frequencies are not necessarily close to ωn.
Further, one would expect that, similar to continuous
systems, the nonlinear response in the vicinity of each
frequency could have a qualitatively different behav-
ior. As such, the response of a delay system can not
be captured by simply assuming that the response can
be approximated by one frequency that is very close
to the system’s natural frequency unless the gains are
very small [Hu, 1998 ]. In this section, we propose
a methodology to alleviate this assumption. Towards
that end, we extract the delay from the linear states and
write Equation (1) in the following form:

d2u

dt2
+2|f1(K, τ)|du

dt
+|f2(K, τ)|u = F cos(Ωt)−αu3

(10)
where f1 and f2 are unknown nonzero functions that
will be determined at a later stage in the perturbation
analysis. As mentioned earlier, since the analysis is
limited to asymptotically stable free responses, abso-
lute values of the unknown functions are used to ensure
this condition.
Using the method of multiple scales, we seek a

second-order nonlinear solution in the form

u(T0, T1) = u0(T0, T1) + εu1(T0, T1) + O(ε2) (11)

where Tn = εnt and ε is a small bookkeeping parame-



ter. In terms of the Tn, the time derivative becomes

d

dt
= D0 + εD1 + O(ε2) (12)

where Dn = ∂/∂Tn. To analyze the effect of the pri-
mary resonance excitation, the amplitude of excitation
and nonlinearities are ordered so that they appear in the
same perturbation equation as f1. In other words, we
let

f1 = εf1, F = εF, α = εα, β = εβ
(13)

We express the nearness of the excitation frequency, Ω,
to the unknown function, f2, by introducing a detuning
parameter, σ, and letting

Ω2 = |f2|+ εσ (14)

For small ε, Equation (14) can be written as

Ω ≈
√
|f2|+ 1

2
√
|f2|

εσ (15)

Substituting Equation (11), (13), and (15) into Equa-
tion (10) and equating coefficients of like powers of ε,
we obtain

O(1) : D2
0u0 + |f2|u0 = 0 (16)

O(ε) : D2
0u1 + |f2|u1 = −2D0D1u0 − 2|f1|D0u0

+ F cos(
√
|f2|T0 + σ

√
|f−1

2 |T1)

− αu3
0 (17)

The solution of the first order equation, Equation (16),
can be written as

u0 = A(T1)ei
√
|f2|T0 + Ā(T1)e−i

√
|f2|T0 (18)

Substituting Equation (18) into Equation (17) and elim-
inating the terms that produce secular terms in the so-
lution yields

−2i
√
|f2|D1A− 2i|f1|

√
|f2|A +

F

2
eiσ
√
|f−1

2 |T1

− 3αA2Ā = 0
(19)

To construct the modulation equations, we introduce
the polar transformation A(T1) = a(T1)eiβ(T1)/2 and
substitute it into Equation (19), then separate the real
and imaginary parts of the outcome to obtain

√
|f2|a′ = −(|f1|

√
|f2|)a +

F

2
sin γ (20a)

√
|f2|aγ′ = (Ω2 − |f2|)

2
a− 3α

8
a3 +

F

2
cos γ (20b)

where the prime denotes differentiation with respect to

T1, γ = σ
√
|f−1

2 |T1 + β. Now, substituting T1 = εt

into Equations (20), then setting the bookkeeping pa-
rameter ε equal to 1 yields

√
|f2|ȧ = −(|f1|

√
|f2|)a +

F

2
sin γ (21a)

√
|f2|aγ̇ =

(Ω2 − |f2|)
2

a− 3α

8
a3 +

F

2
cos γ (21b)

where the dot denotes differentiation with respect to
time, t. For the steady-state response, ȧ = γ̇ = 0.
It follows from Equations (21a) and (21b) that

f2
1 |f2|a2

0 +
(

(|f2| − Ω2)
2

a0 − 3α

8
a3
0

)2

=
F 2

4
(22)

and

tan γ0 =
|f1|

√
|f2|a0

(|f2|−Ω2)
2 a0 − 3α

8 a3
0

(23)

where a0 and γ0 are, respectively, the steady-state am-
plitude and phase of the response. Setting α equal to
zero in Equations (22) and (23), one would expect to
obtain the linear steady-state amplitude and phase of
the response as given by Equations (7). Therefore, f1

and f2 are determined by enforcing the linear steady-
state amplitude and phase obtained via Equations (22)
and (23) to equal those acquired via Equations (6)
and (7). Imposing these conditions, we obtain

f2 = ω2
n + (−1)jK

∂j

∂τ j
[cos(Ωτ)]

f1 =
1

2
√
|f2|

(2µΩ− (−1)jK
∂j

∂τ j
[sin(Ωτ)])

j = 0, 1, 2.

(24)

As one would expect, for small values of K and σ, f2
2

approaches ωn and f1 approaches µ. To assess the sta-
bility of the resulting solutions, we find the eigenvalues
of the Jacobian of the modulation equations evaluated
at the roots (a0, γ0) and characterize the sign of their
real parts.
In Fig. 4, we validate the modified perturbation so-

lution by comparing the frequency-response curves to
solutions acquired via the method of harmonic balance.
By inspecting Fig. 4, it is evident that the modified ap-
proach yields results that are almost indistinguishable
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Figure 4. Nonlinear frequency-response curves obtained us-
ing the method of harmonic balance (circles) and the method
of multiple scales (solid lines). Results are obtained for
K = 0.2, τ = 0.2π, j = 2, and F = 0.04.

from those obtained using the harmonic balance (solu-
tions are on top of each other). It is also evident that the
methodology closely predicts the frequency-response
curves even for large values of K and is capable of
capturing the effect of different nonlinear coefficients
on the response.

2.4 Frequency Island Behavior
For small forcing magnitudes, the feedback controller

may reduce the response amplitude significantly. The
frequency-response curves before application of a de-
layed feedback are shown in Fig. 5 and illustrate
large-response amplitudes, hardening-type behavior,
and hysteretic jumps. Clearly, there is at least one sta-
ble branch of steady-state solutions associated with ev-
ery excitation frequency. In order to decrease this sta-
ble response amplitude, a gain, K = 0.4, and an associ-
ated delay, τ = 0.7π, are chosen as parameters for the
feedback controller. The frequency-response curves for
various forcing magnitudes are seen in Fig. 6. For
the case with the relatively small forcing magnitude,
F = 0.05, the feedback has caused the undelayed peak
amplitude to decrease from about 0.8 in Fig. 5 to ap-
proximately 0.3 in Fig. 6, which is a decrease of more
than 50 percent.
Along with the stable solution branch, mainland,

there exists unstable islands in the frequency-response
curves in Fig. 6. Frequency island generation was en-
countered previously by very few researchers includ-
ing Narimani et al. [Narimani, 2002] in their analy-
sis of a piecewise linear system under harmonic excita-
tion, and by Lacarbonara et al. [Lacarbonara, 2005] in
studying the nonlinear modal interactions of imperfect
beams at veering. In both cases, the frequency islands
are created by either two stable branches of solutions
or at least contained one stable branch of dynamic so-
lutions. On the other hand, the frequency islands here
are formed by two unstable solution branches.
As the forcing is increased, the island increases in size
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Figure 5. Frequency-response curves for different excitation
magnitudes and zero gain (K = 0). The other parameters
used are j = 2, τ = 0.7π, α = 0.5, ωn = 1, and µ = 0.005.
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Figure 6. Frequency-response behavior and frequency is-
lands for increasing forcing amplitudes. Dashed lines rep-
resent unstable solutions. Results are obtained for j = 2,
τ = 0.7π, K = 0.4, α = 0.5, ωn = 1, and µ = 0.005.

and grows closer to the mainland until they collide at a
critical forcing amplitude, as illustrated in the descend-
ing subfigures within Fig. 6. Initial investigation also
reveals that these frequency islands grow in size and
collide with the mainland as the delay is chosen closer
to the stability boundary. For instance, Figure 7 reveals
mainland destruction as the delay time increases.
Consequently, there will be a region of excitation fre-

quencies for which no stable solution exists. For ex-
ample, as shown in Fig. 8, the response amplitude
grows without limits when the system is excited at
a frequency that falls within the new region without
a mainland. This result has critical implications on
implementing delayed-feedback controllers to stabilize
externally-excited nonlinear systems, since for some
gain-delay combinations that yield a linearly-stable
free response, the nonlinear forced response could
grow without bounds.
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