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Abstract  
  We study passive and nonlinear targeted energy 
transfers induced by transient resonant interactions 
between an essentially nonlinear attachment and an 
in-flow rigid wing model. We show that it is feasible 
to partially or even completely suppress aeroelastic 
instabilities in the wing (limit cycle oscillations - 
LCOs) by passively transferring broadband vibration 
energy from the wing to the attachment in a one-way 
irreversible fashion. We study the nonlinear 
dynamical mechanisms that govern TET and show 
that they are series of transient or sustained 
resonance captures in different resonance manifolds 
of the dynamics. Aeroelastic instability suppression 
is performed by partially or completely eliminating 
the triggering mechanism for aeroelastic instability. 
Through numerical parametric studies we identify 
three main mechanisms for suppressing aeroelastic 
instability, and investigate them in detail, both 
numerically by Empirical Mode decomposition 
(EMD), and analytically by slow/fast partitions of the 
transient dynamics. 
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1  Introduction 
The triggering mechanism of limit cycle oscillations 

(LCOs) of a wing due to aeroelastic instability was 
studied recently [Lee et al., 2005]. It was shown that 
a cascade of resonance captures constitutes the LCO 
triggering mechanism. It was also concluded that an 
initial excitation by the flow of the heave mode acts 

as the triggering mechanism for the eventual 
activation of the pitch mode through nonlinear 
interactions involving the aforementioned resonance 
captures; the eventual excitation of the pitch mode 
signifies the excitation of the LCO. 
In this work we study suppression of aeroelastic 

instabilities (LCOs) in a 2-DOF rigid wing model 
with an attached essentially nonlinear element, 
termed nonlinear energy sink (NES). We demonstrate 
(at least) three fundamental mechanisms of passive 
LCO suppression by means of targeted energy 
transfers (TETs), e.g., of one-way passive and 
directed vibration energy transfer from the wing to 
the NES, where this energy is localized and locally 
dissipated. We investigate the dynamical 
mechanisms that govern TET and study robustness of 
LCO suppression by bifurcation analysis. 

2  Passive LCO Suppression Mechanisms 
We consider the two-DOF rigid in-flow wing model 

integrated with a single-DOF NES in Figure 1. 
Assuming small motions and quasi-static flow, the 
equations of motion of the wing-NES assembly are 
given in [Lee et al., 2007]. There are two sources of 
nonlinearity in this system: the structural 
nonlinearities of the pitch and heave modes of the 
rigid wing (denoted by the nonlinear grounding 
stiffnesses in Figure 1), and the essential cubic 
stiffness nonlinearity of the NES. Moreover, the NES 
interacts not only with the heave mode, but also with 
the pitch mode through the offset d from the elastic 
axis of the wing. 
First, We now perform computational parametric 

studies to identify parameter subsets where LCOs of 



                                                    

the wing can be suppressed or even completely 
eliminated. Initial conditions close to the trivial 
equilibrium position are considered; e.g., we set all 
initial conditions equal to zero except for a small 
initial velocity of the heave mode [Lee et al., 2007]. 
Our methodology for performing the computational 

parametric study is as follows. We integrate the 
equations of motion for sufficiently long time to 
assure that transients die out. Then we compute the 
root-mean-square (r.m.s.) amplitude of the resulting 
steady-state response. Comparing the steady-state 
pitch (or heave) amplitudes in r.m.s. with and without 
NES attached, we may infer partial or complete LCO 
suppression. 
The first mechanism for LCO suppression (cf. 

Figure 2) is characterized by a recurrent series of 
suppressed burst-outs of the heave and pitch modes 
of the wing, followed by eventual complete 
suppression of the aeroelastic instabilities. In the 
initial phase of transient burst-outs, a series of 
developing instabilities of predominantly the heave 
mode is suppressed by proper transient ‘activation’ of 
the NES, which tunes itself to the fast frequency of 
the developing aeroelastic instability; as a result, the 
NES engages in 1:1 transient resonance capture 
(TRC) with the heave mode, passively absorbing 
broadband energy from the wing, thus eliminating 
the burst-out. In the latter phase of the dynamics, the 
energy fed by the flow does not appear to directly 
excite the heave and pitch modes of the wing, but, 
instead, seems to get transferred directly to the NES 
until the wing is entirely at rest and complete LCO 
suppression is achieved. At the initial stage of the 
recurrent burst-outs, at time instants when the 
pitching LCO is nearly eliminated, most of the 
energy induced by the flow to the wing is absorbed 
directly by the NES with only a small amount being 
transferred to the heave mode, so that both the NES 
and the heave mode reach their maximum amplitude 
modulations. This is followed by suppression of the 
burst-out, and this process is repeated until at a later 
stage complete suppression of the aeroelastic 
instability is reached. The beating-like (quasi-
periodic) modal interactions observed during the 
recurrent burst-outs turn out to be associated with 
Neimark-Sacker bifurcations [Kuznetsov, 1995] of a 
periodic solution and is critical for determining 
domains of robust LCO suppression. 
The second LCO suppression mechanism (cf. Figure 

3) is characterized by intermediate or partial 
suppression of LCOs. The initial action of the NES is 
the same as in the ¯first suppression mechanism; 
TET from the wing to the NES then follows under 
conditions of 1:1 TRC, followed by conditions of 1:1 
sustained resonance capture (SRC) where both heave 
and pitch modes attain constant (but nonzero) steady-
state amplitudes. We note that the heave mode 
response can grow larger than that in the 
corresponding system with no NES attached 

(exhibiting an LCO), at the expense of suppressing 
the pitch mode. In this case the action of the NES is 
nonrecurring, as it acts at the early stage of the 
motion stabilizing the wing and suppressing the 
LCO. 
Finally, the third mechanism for LCO suppression 

(cf. Figure 4) is governed by a 1:1 TRC. Both heave 
and pitch modes as well as the NES exhibit 
exponentially decaying responses resulting in 
complete elimination of LCOs. In general, higher 
NES masses are required for complete elimination of 
LCOs. 
As discussed in [Young et al., 2007] there are values 

of the NES parameters for which no LCO 
suppression occurs; on the contrary, the steady state 
amplitudes achieved by the wing may be larger than 
the corresponding values of the wing with no NES 
attached. This underscores the need for performing a 
careful study of robustness of passive LCO 
suppression to changes in initial conditions and 
system parameters.  

3  Analysis by Empirical Mode Decomposition 
In order to numerically prove that the basic 

underlying dynamic mechanism of instability 
suppression is a series of TRCs, we utilize the 
Empirical Mode Decomposition (EMD) introduced in 
[Huang et al., 1998]. EMD through a sifting process 
yields a collection of intrinsic mode functions 
(IMFs), which are functions satisfying the following 
two conditions: (i) the numbers of extrema and of 
zero crossings of each IMF must either be equal or 
must differ at most by one in the entire data set 
considered; and (ii) the mean value of the two 
envelopes defined by the local maxima and local 
minima must be zero at any time instant. Note that an 
IMF can be both amplitude- and frequency-
modulated; e.g., the IMF can be non-stationary. Once 
EMD is performed, the resulting IMFs are suitable 
for applying Hilbert transform, which yields the 
instantaneous amplitude and phase of each IMF at 
any given instant of time. By differentiating the 
instantaneous phase one computes the temporal 
evolution of the instantaneous frequency of each 
IMF, which, when compared with the WT spectrum 
of the corresponding time series, enables one to judge 
the relative contribution of each IMF in the time 
series and, thus, its relative importance in the 
decomposition of the signal. 
We apply EMD to analyze the responses of the NES 

and pitch and heave modes of the wing, for the first 
suppression mechanism, in order to numerically 
prove that it is governed by a series of repeated TRCs 
followed by escapes from capture. Figure 5 depicts 
the leading IMFs of the time series depicted in Fig. 2 
(the value on the upper right part of each plot 
represents the maximum amplitude of the 
corresponding IMF), we conclude that the leading 



                                                    

IMFs are the dominant oscillatory components of all 
three transient responses considered.  
Let , 1, 2,3i iθ =  be the phase variables of the three 

aforementioned leading IMFs of the heave mode, 
pitch mode, and the NES, respectively (computed by 
Hilbert transform). Then, 12 1 2θ θ θ≡ −  denotes the 
corresponding phase difference between the heave 
and pitch modes; 13 1 3θ θ θ≡ − , the phase difference 
between the heave mode and the NES; and 

23 2 3θ θ θ≡ −  the phase difference between the pitch 
mode and the NES. Figure 6 depicts the temporal 
evolutions of these phase differences; in time 
windows where the phase differences monotonically 
increase or decrease, they are considered to be time-
like, otherwise, they are said to exhibit non-time-like 
behavior. If a phase variable is time-like, it can be 
considered as a 'fast angle' of the dynamics, and it 
may be removed from the dynamics (as non-
essential) by simply averaging it out of the problem. 
If, however, the same phase difference is non-time-
like, it may not be averaged out of the dynamics and 
it is expected to influence the (essential) slow 
dynamics through resonance captures. Indeed, when 
the dynamics is captured transiently on a resonance 
manifold [Arnold, 1988] defined by an integral 
relation between the instantaneous frequencies of the 
corresponding IMFs. The resulting TRC leads to 
TET in this system [Vakakis and Gendelman, 2001]. 
From the results depicted in Figure 6, we note that 

there exist domains where nontime-like behavior of 
certain phase differences occurs. In these time 
intervals 1:1 TRCs occur, which appear as spirals in 
the phase portraits of Figure 6b. We note that, not 
only do TRCs occur between the heave mode and 
NES and between the pitch mode and NES, but, 
between the heave and pitch modes (as in the case of 
the LCO triggering mechanism [Lee et al., 2005]). 
Figure 6c depicts the instantaneous frequencies of the 
dominant IMFs, and the occurring frequency 
lockings between the wing modes and the NES can 
be clearly inferred. 

4  Slow-Fast Partitions of the Dynamics 
We note that analytical modeling of the transient 

wing-NES interactions can be performed by slow-
fast partitions of the dynamics as discussed in [Lee et 
al., 2007]. To this end, the responses of the heave, 
pitch wing modes and of the NES are expressed as, 
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respectively; components with subscripts 1 and 2 
correspond ‘slowly’ modulated ‘fast’ frequency 
components, je τΩ  and 1/ 2, ( 1)je jτ = − , respectively 
(where Ω  and unity are the normalized frequencies 
of the heave and pitch modes, respectively). 
Introducing the new complex variables,  
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(2) 
Substituting these expressions into the equations of 
motion, and performing two-frequency averaging 
over the two fast components je τΩ  and je τ , we 
obtain a set of six complex-valued modulation 
equations governing the slow dynamics, 

( )Fϕ ϕ′ =                               (3) 

where 6Cϕ ∈ . Analysis of these equations recovers 
the EMD results of Section 5. By performing 
bifurcation analysis of the slow-flow dynamics (3) 
we study robustness of the suppression mechanisms. 

7  Conclusions 
We detected (at least) three suppression 

mechanisms for suppressing aeroelastic instabilities 
in the wing-NES system. The underlying dynamic 
mechanisms governing these mechanisms were series 
of TRCs, e.g., of transient resonances either between 
the NES and the heave and/or pitch modes, or 
between the wing modes themselves. The detailed 
study performed in [Lee et al., 2007] showed that the 
issue of robustness of the suppression can be 
addressed by performing bifurcation analysis of 
steady state responses. In the same reference it is 
found that NESs attached with negative offsets can 
provide robust aeroelastic instability suppression 
within wide ranges of system parameters. 

References  
Arnold, V. (1988). Dynamical Systems III, 

Encyclopaedia of Mathematical Sciences, Springer 
Verlag: Berlin and New York. 

Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., 
Zheng, Q., Yen, N.-C., Tung, C., and Liu, H. 
(1998). The Empirical Mode Decompostion and 
the Hilbert spectrum for nonlinear and 
nonstationary time series analysis, Proc. Royal 
Soc. London, Ser. A, 454, pp. 903-995. 

Kuznetsov, Y. (1995). Elements of Applied 
Bifurcation Theory, Springer-Verlag, New York. 

Lee, Y.S., Vakakis, A., Bergman, L., McFarland, D., 
and Kerschen, G. (2005). Triggering mechanisms 
of limit cycle oscillations in a two-degree-of-
freedom wing flutter model, J. Fluids Str., 21, pp. 
485-529. 

Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, 
D.M., Kerschen, G. (2007). Suppression of 
aeroelastic instability by means of broadband 
passive targeted energy transfers I: Theory, AIAA 
J., 45(3), pp. 693-711. 

Vakakis, A. and Gendelman, O. (2001). Energy 
pumping in coupled mechanical oscillators II: 
Resonance capture, J. Appl. Mech., 68, pp. 42-48. 



                                                    

Figures 
 
 
 

 
Figure 1. Two-DOF rigid wing model with SDOF NES attached. 

 
 
 
 

 
Figure 2. The first suppression mechanism: Recurring burst-outs and instability suppressions. 

 
 
 
 
 
 
 
 



                                                    

 
 
 
 

 
Figure 3. The second suppression mechanism: Partial LCO suppression. 

 
 
 
 
 

 
Figure 4. The third suppression mechanism: Complete LCO suppression. 

 
 
 
 
 
 
 
 
 
 



                                                    

 

 
Figure 5. EMD of the transient responses of Figure 2 (first suppression mechanism). 

 
 
 

 
Figure 6. TRCs occurring in the first suppression mechanism: (a,b) phase differences of dominant IMFs, and (c) 

instantaneous frequencies of the transient responses of the wing modes and NES. 


