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Abstract
We investigate passage through resonance in a two-

degree of freedom system consisting of a linear oscilla-
tor weakly coupled to a nonlinear forced actuator. Two
classes of problems are studied analytically and numer-
ically: (1) a periodic force with constant frequency is
applied to the nonlinear actuator (the Duffing oscilla-
tor) with slowly time-decreasing linear stiffness; (2)
the time-invariant nonlinear oscillator is excited by a
force with slowly increasing frequency. In both cases,
the attached linear oscillator and linear coupling remain
time-invariant, and the system is initially engaged in
resonance. This paper demonstrates that in the sys-
tems of the first type autoresonance (AR) occurs in
both oscillators. In the system of the second type AR
occurs only in the excited nonlinear oscillator but the
coupled linear oscillator exhibits small bounded oscil-
lations. Assuming a slow change of detuning rate, we
obtain explicit asymptotic approximations for the am-
plitudes and the phases of oscillations close to exact
(numerical) results.

Key words
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1 Introduction
Resonance energy transfer from a source of energy to

a receiver represents one of the most effective meth-
ods of excitation and control of oscillations for a broad
range of natural, physical and engineering systems.
Theoretical approaches and applications of this effect
in physical and engineering systems have been widely
discussed, see, e.g., [May and Kühn, 2011; Vakakis,
et.al., 2008, Vazquez, MacKay, and Zorzano, 2003],
etc.
High-energy resonance motion can be achieved, e.g.,

with the help of feedback intended to sustain “a reso-
nance under action of the force produced by the sys-

tem’s itself” [Andronov, Vitt,and Khaikin, 1966]. The
theory of feedback resonance has been developed in a
series of works, e.g., [Andrievsky and Fradkov, 1999;
Fradkov, 1999; Kovaleva, 1999]. Feedback control
building on this idea and using self-sustained oscil-
lations with predefined energy as a working process
has been employed in a number of engineering sys-
tems, see, e.g., [Astashev and Babitsky, 2007]. Control
schemes in these systems have included electronic and
electromechanical positive feedback and a synchronous
type actuator for self-excitation of resonant vibration
in combination with negative feedback for its stabiliza-
tion.

Note that feedback does not need an additional source
of energy. However, its practical realization requires
careful diagnostics of nonlinear states and may become
extremely complicated and costly in a multi-degree of
freedom system. A large class of systems can avoid
feedback, still producing the required state with the
help of a properly controlled resonant excitation. Res-
onance control employs an intrinsic property of a non-
linear oscillator to change both its amplitude and nat-
ural frequency when the driving frequency changes.
This means that the oscillator may be captured into
resonance with its drive if the driving frequency varies
slowly in time to be consistent with the frequency of the
oscillator. The ability of a nonlinear oscillator to stay
captured into resonance due to variance of its struc-
tural or excitation parameters is known as autoreso-
nance (AR).

Autoresonance was first used in applications to par-
ticle acceleration and reported as “the phase stability
principle” [Veksler, 1944; McMillan, 1945]. Building
on that works, a large number of theoretical studies,
experimental results and applications of AR in differ-
ent fields of natural science have been reported in lit-
erature, see, e.g., [Blekhman, 2012; Chapman, 2011;
Charman, 2007; Friedland, 2014]. The analysis was
first concentrated on AR in the basic single-degree of
freedom model but then the developed methods and
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approaches were extended to two- and three-degree of
freedom systems. Examples in this category are inter-
actions of the plasma waves with laser beams [Char-
man, 2007; Barth and Friedland, 2007; Chapman, et
al., 2010], particle transport in a weak external field
with slowly varying frequency [Galow, 2013; Zelenyi,
2013], control of diatomic molecules [Marcus, Fried-
land, and Zigler, 2005], etc.

Some particular results (e.g., [Barth and Friedland,
2007]) suggest that external forcing with a slowly vary-
ing frequency applied to a pair of coupled nonlinear
oscillators generates AR in both oscillators. However,
this conclusion cannot be applied universally, because
the dynamics of an oscillator in a coupled system can
drastically differ from the dynamics of a single oscil-
lator. We illustrate this effect by considering a me-
chanical model consisting of a linear oscillator weakly
coupled to a nonlinear actuator (the Duffing oscillator).
Two types of autoresonant problems are studied: (1)
a periodic force with constant frequency is applied to
the Duffing oscillator with slowly time-decreasing stiff-
ness; (2) a time-invariant nonlinear actuator is excited
by a force with slowly increasing frequency. In both
cases the system the attached linear oscillator and lin-
ear coupling remain time-invariant, and the system is
initially engaged in resonance. It is obvious that os-
cillations with growing energy in the linear attachment
may arise only in the presence of AR in the nonlinear
actuator. The purpose of this paper is to find the condi-
tions under which AR in the nonlinear actuator brings
about growing oscillations in the linear attachment. We
demonstrate that periodic forcing with constant (reso-
nant) frequency may cause AR in both oscillators but
the drive with the slowly-varying frequency gives rise
to AR only in the excited nonlinear oscillator while the
attached oscillator exhibits small bounded oscillations.

The paper is organized as follows. In Sec. 2, the
system of the first type is considered. Given small de-
tuning rate, we derive approximate solutions describing
growing oscillations in both oscillators. In Sec. 3 we
show that AR in the time-invariant nonlinear actuator
is unable to sustain oscillations with increasing ampli-
tudes in the attachment but an additional slow change
of the actuator parameters may entail growing oscilla-
tions of the coupled oscillator. Escape from resonance
is investigated in Sec. 4. Section 5 contains a brief
summary and conclusions.

It is important to note that leading-order asymptotic
equations derived in Sec.2 and Sec. 3 are similar to in-
homogeneous Schrödinger equations described a wide
variety of physical models. This similarity suggests a
potential extension of the results obtained for a me-
chanical model to the study of energy transfer in sys-
tems of different physical nature.

2 Autoresonance in a System with a Constant
Forcing Frequency

The model studied in this section consists of a time-
invariant linear oscillator weakly coupled to a time-
dependent nonlinear actuator (the Duffing oscillator)
subjected to a periodic excitation with constant fre-
quency. Our purpose is to demonstrate that AR oc-
curring in the nonlinear oscillator entails oscillations
with gradually increasing amplitude in the linear at-
tachment.
The equations of motion are given by

m1
d2u1
dt2

+ c1u1 + c10(u1 − u0) = 0, (1)

m0
d2u0
dt2

+ C(t)u0 + ku30 + c10(u0 − u1) = A cosωt,

where u0 and u1 denote absolute displacements of the
nonlinear and linear oscillators, respectively; m0 and
m1 are their masses; c1 and k are the coefficients of
linear stiffness and cubic nonlinearity; c10 is the linear
coupling coefficient; C(t) = c0− (k1+k2t), k1,2> 0;
A and ω denote the amplitude and the frequency of the
periodic force. The system is initially at rest, that is,
ur = 0, vr = dur/dt = 0 at t = 0; r = 0, 1.
We introduce the small parameter of the system 2ε =
c10/c1 << 1, which represents a dimensionless coeffi-
cient of weak coupling. Considering weak nonlinearity
and taking into account resonance properties of the sys-
tem, we redefine the parameters as follows:

τ0 = ωt, τ1 = ετ0, A = εmω2F, cr/mr = ω2, (2)

k1/c0 = 2εs, k2/c0 = 2ε2bω, k/c0 = 8εα, c10/cr = 2ελr,

ζ(τ1) = s+ bτ1, (1)

and then rewrite (1) as:

d2u1
dτ20

+ u1 + 2ελ1(u1 − u0) = 0, (3)

d2u0
dτ20

+ (1− 2ζ(τ1))u0 + 8εαu30 + 2ελ0(u0 − u1) = 2εF cos τ0.

In the next step, we introduce the new variables Yr by
formulas

Yr = (vr + iur)e
−iτ0 , i =

√
−1; r = 0, 1. (4)

It follows from (3), (4) that energy Er of each of the
oscillators (3) can be asymptotically evaluated as Er =
1
2 |Yr|

2 + ε . . . (r = 0, 1).

Inserting (4) into (3), we obtain the following first-
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order equations for the complex-valued amplitudes Yr :

dY1
dτ0

= iε[λ1(Y1 − Y0) +G1], Y1(0) = 0, (5)

dY0
dτ0

= −iε{[ζ(τ1)− 3α|Y0|2]Y0 − λ0(Y0 − Y1)+

F +G0}, Y0(0) = 0

and similar equations for the complex conjugate
variablesY ∗

0 , Y
∗
1 . The terms G0, G1 involve fast (in τ0)

harmonics with coefficients depending on Yr and Y ∗
r

(r = 0, 1), but explicit expressions of G0, G1 are in-
significant for further analysis.
Explicit analytical approximations for the complex

amplitudes Yr are constructed in the form of the multi-
ple scales expansions with the slow main terms:

Yr(τ0, τ1, ε) = φr(τ1) + εφ(1)
r (τ1, τ1) + ε2... (6)

Next, we introduce the new independent time-scale
τ = sτ1 and perform the following rescaling of the
variables and the parameters:

Λ = (s/3α)1/2, f = F/sΛ, β = b/s2, (7)
ζ0(τ) = 1 + βτ, ψr = φr/Λ, µr = λr/s.

Inserting (6), (7) into (5) and applying the multiple
scales formalism [Nayfeh and Mook, 2004], we obtain
the dimensionless equations for the slow variables ψr:

dψ1

dτ
− iµ1(ψ1 − ψ0) = 0, ψ1(0) = 0, (8)

dψ0

dτ
− iµ0(ψ0 − ψ1) + i(ζ0(τ)− |ψ0|2)ψ0 = −if,

ψ0(0) = 0.

The real-valued amplitudes ar > 0 and phases ∆r of
oscillations are calculated as

ar = |ψr|,∆r = arg(ψr). (9)

Details of the derivation of asymptotic solutions
for similar systems can be found in [Kovaleva and
Manevitch, 2012]. It is important to note that equa-
tions (8) are identical to inhomogeneous Schrödinger
equations. This suggests that, in analogy with nonlin-
ear tunneling [Manevitch and Kovaleva, 2013], the re-
sults concerning AR in a mechanical chain can be ex-
tended to a wide variety of systems of different physical
nature. Note that AR in a one-dimensional Schrödinger
equation was investigated earlier [Friedland, 1998].
We show that in some special cases the equation of

the excited oscillator can be solved independently. Let
us consider an asymmetric system in which m1 =

εδm0, δ = O(1). In this case, µ0 = µ1c1/c0 =
µ1m1/m0 = εδµ1, and thus the term proportional to
µ0 may be removed from (8) in the considered approx-
imation. The resulting truncated system is given by

dψ
(0)
1

dτ
− iµ1(ψ

(0)
1 − ψ

(0)
0 ) = 0, ψ

(0)
1 (0) = 0, (10)

dψ
(0)
0

dτ
+ i(ζ0(τ)− |ψ(0)

0 |2)ψ(0)
0 = −if, ψ(0)

0 (0) = 0.

The nonlinear equation in (10) can be investigated
separately. Therefore, if approximations ψ(0)

r are close
to exact solutions ψr, then the condition of the occur-
rence of AR in a single Duffing oscillator derived in
[Kovaleva and Manevitch, 2013a, b] can be extended
to the weakly coupled system (8). The effect of weak
coupling may be taken into account in subsequent iter-
ations (see, e.g., [Kovaleva and Manevitch, 2012]). It
is important to note that the assumption µ0/µ1 << 1 is
used to simplify the analysis but the qualitative features
of the dynamical behavior hold true for a wide range of
parameters such that µ0 < 1 and µ1 < 1.
Now we recall earlier obtained results [Kovaleva and

Manevitch, 2013a, b] needed for our analysis. It was
shown that AR in the Duffing oscillator may occur at
f > f1 =

√
2/27, while the values f < f1 corre-

sponds to bounded oscillations at any rate β. In the
domain f > f1 the Duffing oscillator admits AR at
β < β∗ and bounded oscillations at β > β∗. The crit-
ical rate β∗ is defined as β∗ = [(f/f1)

2/3 − 1]/T ∗,
where τ = T ∗ corresponds to the first minimum of
the phase ∆0(τ) in the time-independent Duffing os-
cillator with β = 0. The values of T ∗ and β∗ were
found both analytically and numerically in [Kovaleva
and Manevitch, 2013b].
In analogy with a single oscillator, the solution
ψ0(τ) = ψ̄0(τ) + ψ̃0(τ) represents small fast fluctu-
ations ψ0(τ) near a quasi-steady state ψ̄0(τ) calculated
as a stationary point of (8) with the “frozen” parame-
ter ζ0. Assuming µ0 = O(ε), we obtain the following
equation for ψ̄0:

(ζ0 − |ψ̄0|2)ψ̄0 = −f. (11)

The quasi-stationary value of the amplitude a(τ) is de-
fined as ā0 = |ψ̄0|; it can be interpreted as the back-
bone curve, which expresses a relationship between the
amplitude and the frequency of free oscillations. If
|f/2ζ0| << 1, then the quasi-steady state ψ̄0 and the
corresponding amplitude ā0 can be approximated as

ψ̄0 ≈ ±
√
ζ0, ā0 ≈

√
ζ0 →

√
βτ, as τ → ∞, (12)

with the phases of oscillations ∆ = 0 or ∆ =
π.Asymptotic approximations for fast fluctuations can
be computed by linearizing nonlinear equation in (9)
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near ψ̄0 (see [Manevitch, Kovaleva, and Shepelev,
2011]).
If the solution ψ0(τ) is known, then the response
ψ1(τ) is calculated from (8) by formula

ψ1 = −iµ1

τ∫
0

eiµ1(τ−s)ψ0(s)ds. (13)

Since the effect of small fast fluctuations ψ̃0 on the
value of integral (13) is negligibly small compared to
the contribution of the slowly-varying function ψ̄0, the
following approximation is valid:

ψ1(τ) ≈ −iµ1e
iµ1τJ(τ), (14)

J(τ) =

τ∫
0

e−iµ1sψ̄0(s)ds,

where ψ̄0 =
√
1 + βτ.Integration by parts gives

J(τ) = −iµ−1
1 [eiµ1τ ψ̄0(τ)− ψ̄0(0)]− Φ(τ),

Φ(τ) =
β

2

τ∫
0

e−iµ1s

√
1 + βs

ds.

It is easy to deduce that Φ(τ) is a Fresnel-type inte-
gral bounded at any τ > 0. Hence, ψ1(τ) = ψ̄1(τ) +
ψ̃1(τ) +O(

√
β), where

ψ̄1(τ) = ψ̄0(τ), ψ̃1(τ) ≈ −ψ̄0(τ)e
iµ1τ . (15)

It follows from (15) that a1 = |ψ̄1| = a0. Note that the
equalities ψ̄1(τ) = ψ̄0(τ), a1 = a0 can be directly
obtained from (8) but the performed transformations
provides the formal demonstration of the occurrence of
growing oscillations in the linear attachment.
Theoretical results are illustrated in Fig. 1. The fol-

lowing parameters are used for numerical computa-
tions:

β = 0.05, µ0 = 0.02, µ1 = 0.25, f = 0.34. (16)

We recall that a single oscillator with parameters µ0 =
0, f = 0.34, β = 0.05 < β∗ = 0.06, admits AR [Ko-
valeva and Manevitch, 2013b].
Figures 1(a) and 1(b) show that exact amplitudes ar

(r = 0, 1) calculated by formulas (8),(9) (solid lines)
and their approximations a

(0)
r obtained from approxi-

mate (dotted lines) amplitudes are close to each other.
This implies that the conditions (10) of the occurrence
of AR in a single nonlinear oscillator can be extended
to the weakly coupled system (8). As seen in Fig.1(a),
fast fluctuations become negligibly small compared to

the quasi-stationary amplitude ā0 . This implies that
asymptotic approximations ψ̃0(τ) can be calculated
from a linearized equation. Details are omitted for
brevity.
Figure 1(b) demonstrates initially irregular oscilla-

tions of the linear attachment but at later times forc-
ing with increasing amplitude dominates and motion is
transformed into regular oscillations near the backbone
curve ā1(τ). The amplitude and the period of fast fluc-
tuations near ā1(τ) are calculated as ã1(τ) = |ψ̃1(τ) =
|ψ̄0(0)| = 1, T1 = 2π/µ1 ≈ 25.12. These values
are close to the corresponding parameters in Fig. 1(b).
Figures 1(c) and 1(d) illustrate phase locking typical
for AR oscillations.

Figure 1. Amplitudes and phases of AR

As noted above, the required state can be maintained
by terminating the change of the parameter ζ0(τ) at a
prescribed energy level. Since the amplitude (and en-
ergy) of oscillations can be represented as small fast
fluctuations near the monotonically increasing back-
bone curve, it is convenient to define the terminal time
T ∗ as an instant at which energy of the attached oscil-
lator achieves a required value E∗

1 . It follows from (9),
(12) that T ∗ can be evaluated as T ∗ ≈ (2E∗

1 − 1)/β.
As an illustrative example, we consider a system with
parameters (16) and E∗

1 = 5.5; in this case, a1(T ∗) ≈
3.3, T ∗ ≈ 200. It is seen in Fig. 2 that at τ > T ∗ AR
turns into oscillations with almost constant amplitudes,
and the theoretical value a1(T ∗) ≈ 3.3 is close to the
result presented in Fig. 2.

3 Energy Localization and Transfer in a System
with a Slowly-Changing Forcing Frequency

We now investigate energy transfer in a system of the
second type. First, we consider the time-invariant sys-
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Figure 2. Transitions from AR to oscillations with prescribed ter-
minal energy in the nonlinear (a) and linear (b) oscillators

tem with a slowly-changing forcing frequency. The
dimensionless equations of motion are reduced to the
form similar to (3):

d2u1
dτ20

+ u1 + 2ελ1(u1 − u0) = 0, (17)

d2u0
dτ20

+ (1− 2ζ(τ1))u0 + 8εαu30 + 2ελ0(u0 − u1) =

2εF cos τ0,

where dθ
dτ1

= ζ(τ1), ζ(τ1) = s + bτ1, all other coef-
ficients are defined by formulas (2). As in Sec. 2, the
system is assumed to be initially at rest, and θ(0) =
0. Transformations (4)–(7), applied together with the
change of variables

τ = sτ1, ζ0(τ) = 1 + βτ,

dθ0/dτ = ζ0(τ), ψr = ϕr(exp(iθ0), r = 0, 1.

yield the following dimensionless equations for the
slow complex amplitudes ψr(τ) :

dϕ1
dτ

− iµ1(ϕ1 − ϕ0) + iζ0(τ)ϕ1 = 0, ϕ1(0) = 0,

(18)
dϕ0
dτ

− iµ0(ϕ0 − ϕ1) + i(ζ0(τ)− |ϕ0|2)ϕ0 = −if,

ϕ0(0) = 0.

Note that system (18) has the constant right-hand side
but the time-dependent coefficient ζ0(τ) is now in-
volved in both equations. Similarly to (9), the real-
valued amplitudes and phases of oscillations are de-
fined as follows:

ar = |ϕr| > 0,∆r = arg ϕr, r = 0.1. (19)

As in Sec. 2, the response ϕ̄0(τ) of the nonlinear os-
cillator is presented as ϕ0(τ) = ϕ̄0(τ) + ϕ̃0(τ), where
ϕ̄0(τ) and ϕ̃0(τ) denote the quasi-steady state of sys-
tem (18) and small fast fluctuations near this state, re-
spectively. Assuming µ0 << µ1, we find that the state

ϕ̄0 satisfies the equations similar to (11) and (12). Fast
fluctuations ϕ̃0(τ) can be calculated by linearizing Eqs.
(18) and disregarding the terms proportional to µ0. Af-
ter calculating the nonlinear response ϕ0(τ), the re-
sponse of the linear attachment ϕ1(τ) can be directly
found from (18). Ignoring the effect of small fast fluc-
tuations, we obtain after simple transformations that
the linear response is expressed as:

ϕ1(τ) = −i µ1

2β
K(τ)e−iS(τ)/2β , (20)

K(τ) = K0(τ)−K0(1),

K0(τ) =

S(τ)∫
0

eiz/2β

z1/4
dz, S(τ) = (1 + βτ)2.

Although the expression for K0(τ) cannot be analyti-
cally found, the limiting valueK0(∞) can be explicitly
evaluated, and equals

K0(∞) = (2β)4/3Γ(3/4) exp(3iπ/8),

where Γ is the gamma function [Gradshteyn and
Ryzhik, 2000]. Hence,

a1(τ) = |ϕ1(τ)| → µ1(2β)
4/3Γ(3/4), τ → ∞. (21)

Formula (21) indicates that AR in the nonlinear actu-
ator is unable to generate oscillations with growing en-
ergy in the attached oscillator but it suffices to produce
linear oscillations with bounded amplitude. The substi-
tution of parameters (16) into (21) defines the limiting
amplitude a1∞ = lim

τ→∞
a(τ) ≈ 0.1.

Figure 3 proves that the amplitude of nonlinear os-
cillations (Fig. 3(a)) is very close to its analogue in
Fig. 1(a) but the amplitude of oscillations for the lin-
ear attachment (Fig. 3(b)) differs from that one in Fig.
1(b). The shape of the amplitude a1(τ) is similar to
the resonance curve with a noticeable resonance peak
at an initial stage of motion, where the effect of time-
dependent detuning is negligible, but then it turns into
small oscillations with the limiting amplitude close to
a1∞ ≈ 0.1.
A key conclusion from the obtained results is that in

the system with constant excitation frequency the por-
tion of energy transferred from the nonlinear actuator is
insufficient to sustain oscillations with growing energy
in the attached linear oscillator. The different dynami-
cal behavior can be interpreted as a consequence of dif-
ferent resonance properties of the systems. In the sys-
tem with a constant forcing frequency both oscillators
are captured into resonance. If the forcing frequency
slowly increases but the parameters of the system re-
main constant, AR in the nonlinear oscillator is still
sustained by increasing amplitude, while the frequency
of the linear oscillator falls into the domain beyond the
resonance.
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Figure 3. Amplitudes of oscillations of the nonlinear (a) and linear
(b) oscillators of system (17)

It is important to note that the occurrence of decaying
oscillations is by no means trivial, as the linear oscil-
lator is actually driven by the coupling response with
permanently increasing amplitude. As a counterexam-
ple, we consider a system with a slowly changing lin-
ear stiffness of the actuator. The system dynamics is
described by the following equations:

d2u1
dτ20

+ u1 + 2ελ1(u1 − u0) = 0, (22)

d2u0
dτ20

+ (1− 2ξ(τ1))u0 + 2ελ0(u0 − u1) + 8εαu30 =

2εF cos(τ0 + θ(τ1)),

where dθ
dτ1

= ζ(τ1), ζ(τ1) = s + bτ1, ξ(τ1) = b3τ
3
1 ;all

other coefficients are defined in (2). Our purpose is to
show that slow changes in both the natural frequency
and the forcing frequency of the actuator may sustain
growing oscillations in the coupled linear oscillator.
As in the previous examples, transformations (4)–(7)

are used to derive the following equations for the di-
mensionless complex amplitudes ψr :

dψ1

dτ
− iµ1(ψ1 − ψ0) = 0, ψ1(0) = 0, (23)

dψ0

dτ
− iµ0(ψ0 − ψ1) + i(ξ1(τ)− |ψ0|2)ψ0 = −ifeiθ0(τ),

ψ0(0) = 0,

where τ = sτ1, and

dθ0
dτ

= ζ1(τ), ζ1(τ) = 1 + β1τ, ξ1(τ) = β3τ
3, (24)

β1 = b/s2, β3 = b3/s
4.

Finally, the change of variables ψr = ϕr exp(iθ0), r =
0, 1, transforms (23) into the following system with
a constant right-hand side and time-dependent coeffi-

cients:

dϕ1
dτ

− iµ1(ϕ1 − ϕ0) + iζ1(τ)ϕ1 = 0, ϕ1(0) = 0,

(25)
dϕ0
dτ

− iµ0(ϕ0 − ϕ1) + i(ζ0(τ)− |ϕ0|2)ϕ0 = −if,

ϕ0(0) = 0,

where ζ0(τ) = ζ1(τ)+ξ1(τ).It follows from (12), (24),
(25) that at large times the quasi-steady states ϕ̄r(τ)
and the correspoding backbone curves ār can be eval-
uated as:

ϕ̄0 ≈ ζ
1/2
0 (τ)˜O(τ3/2), ā0 = |ϕ̄0|, (26)

ϕ̄1 ≈
µ1ζ

1/2
0 (τ)

ζ1(τ)− µ1
˜O(τ3/2), ā1 = |ϕ̄1|.

Expressions (26) imply the simultaneous (but not
equal) growth of backbone curves with time, thereby
confirming the growth of energy of both oscillators. We
illustrate this conclusion by numerical results for the
system with the following parameter values:

β1 = 10−3, β3 = 10−5, µ0 = 0.01, µ1 = 0.15, f = 0.34.
(27)

Figure 4 compares the amplitudes of oscillations in the
systems with and without additional time-dependent
stiffness of the actuator. The results presented in Fig.
4 demonstrate that an additional slow change of the ac-
tuator frequency may increase the nonlinear response,
thereby enhancing energy transfer and making it suf-
ficient to sustain growing oscillations of the linear at-
tachment.

Figure 4. Amplitudes of oscillations of the actuator (a) and the lin-
ear attachment (b); solid lines corresponds to system (25) with pa-
rameters (27); dashed lines correspond to the time-independent actu-
ator (β3 = 0)

4 Escape from Resonance in the 2DOF System
In this section we briefly discuss the occurrence

of bounded oscillations in the coupled system. It
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was demonstrated in earlier works [Kovaleva and
Manevitch, 2013a, b] that the transition from AR to
bounded oscillations in a single Duffing oscillator oc-
curs at rate β > β∗. Figure 5 demonstrates a similar ef-
fect in system (3) with detuning rate β = 0.065 > β∗.

Figure 5. Amplitudes of bounded oscillations of the nonlinear (a)
and linear (b) oscillators (solid lines); straight lines depict the limit-
ing levels ā0 and ā1 ; dotted line corresponds to autoresonance at β
= 0.03

It was shown [Kovaleva and Manevitch, 2013a, b] that
the transition from AR to oscillations with relatively
small amplitudes in a single Duffing oscillator is of
the same nature as the transition from large to small
oscillations in the system with constant parameters
[Manevitch, Kovaleva, and Shepelev, 2011]. Figure 5
demonstrates a similar process in the coupled system.
We underline that the limit values ār = limτ→∞ ar(τ),
r = 0, 1 (straight lines in Fig. 5) cannot be interpreted
as the quasi-steady states of system (8) at the “frozen”
ζ0.
The slow complex amplitudes of bounded oscillations

can be approximately calculated with the help of the it-
eration procedure. In the first step, the initial iterations
Ψr to the amplitudes ψr are computed as the solutions
of the linear system

dΨ1

dτ
− iµ1(Ψ1 −Ψ0) = 0,Ψ1(0) = 0, (28)

dΨ0

dτ
+ iζ0(τ)Ψ0 = −if,Ψ0(0) = 0.

The solution Ψ0(τ) is expressed through the Fresnel
integral. The calculation of Ψ1(τ) from the first equa-
tion (28) requires integration of a complicated combi-
nation of the Fresnel integrals and exponential func-
tions. So, although explicit closed-form approxima-
tions are formally available, the functions Ψr(τ), as
well as the amplitudes ar(τ) = | Ψr(τ) and the limit
values ār = limτ→∞ ar(τ), r = 0, 1, require numeri-
cal computation. Higher-order iterations at n ≥ 1 can
be found from the equations

dΨ
(n)
1

dτ
− iµ1(Ψ

(n)
1 −Ψ

(n)
0 ) = 0,Ψ

(n)
1 (0) = 0, (29)

dΨ
(n)
0

dτ
+ iζ0(τ)Ψ

(n)
0 = −if + |Ψ(n−1)

0 |2Ψ(n−1)
0 +

iµ0(Ψ
(n−1)
0 −Ψ

(n−1)
1 ),Ψ

(n)
0 (0) = 0.

5 Conclusions
It was shown in early works on particle accelera-

tion that autoresonance (AR) could potentially serve
as a tool for excitation and control of the high-energy
regime in a single oscillator. However, the behavior of
coupled oscillators may drastically differ from the dy-
namics of a single oscillator. In particular, the capture
into resonance may not exist or AR in one part of the
system may be insufficient to enhance the response of
other oscillators.
This paper has illustrated this effect by an example

of an oscillator system consisting of a linear time-
invariant oscillator weakly coupled to a nonlinear ac-
tuator. Two types of excitation have been considered in
details: (1) a periodic force with constant (resonance)
frequency is applied to the nonlinear (Duffing) oscilla-
tor with slowly time-decreasing linear stiffness; (2) the
time-invariant nonlinear oscillator is excited by a force
with a slowly increasing frequency. In both cases, the
system is initially engaged in resonance. It has been
shown that in the system of the first type AR occurs
in both oscillators but in the system of the second type
energy transfer from the forced nonlinear actuator is in-
sufficient to excite high-energy motion in the attached
oscillator. This implies that energy transfer from the
nonlinear oscillator may generate a high-energy regime
in the linear oscillator only in the system of the first
type, while in the system of the second type energy re-
mains localized on the excited nonlinear actuator.
It has been shown that the different dynamical behav-

ior arises due to different resonant properties of the sys-
tems under consideration. In the system with a con-
stant excitation frequency both oscillators are captured
into resonance: the nonlinear oscillator remains cap-
tured into resonance due to an increase of the amplitude
compensating the change of stiffness, while the partial
frequency of the linear oscillators is always close to the
excitation frequency. However, if the forcing frequency
slowly increases, AR in the nonlinear oscillator is still
sustained by the growing amplitude, while the linear
oscillator escapes from resonance. Also, it has been
noted that escape from resonance does not immediately
result in decreasing energy of the coupled linear oscil-
lator, as this oscillator is actually driven by the grow-
ing coupling response. This implies that the response
of the linear oscillator depends on the relationship be-
tween the growth of incoming energy and the loss of
energy due to escape from resonance. This effect is
illustrated by an example.
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Note that a mechanical model is chosen for clarity. An
analogy of the derived equations for slow complex am-
plitudes to inhomogeneous Schrödinger equations sug-
gests that the results obtained in this work may be po-
tentially applied to a wide variety of physical systems.
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