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We present a two-state model of an excitable system with time delayed feedback control. The two-state stochastic
process s(t) = ±1 can be interpreted as a renewal process with history-dependent residence time distributions (RTDs).
We assume that the durations of the excited and the refractory phases τ are equally long and not affected by the
noise. This reduces the problem to the only unknown RTD of the activation time ψ−(t).

Two qualitatively different situations are considered. (i) For small delay times (τ1 ≤ 3τ) the history is non-variable,
i.e. all the activation times are identically distributed with density which depends on the delay time τ1. The history
dependence of the transition rate from the non-excited to the excited state λ− is assumed to be known. It is given
by λ if τ1 seconds ago the system was in the state s = −1 and by λ + p if τ1 seconds ago the system was in the
state s = +1. The RTD ψ−(t) as function of τ1 is computed straight forward. In the case of non-variable history the
results of the renewal theory [1, 2] can be applied directly to yield an analytic expression for the power spectrum of
the noise-induced oscillations.

(ii) For large delay times (τ1 > 3τ) the history becomes variable and the renewal theory is no longer applicable.
To overcome this problem the equilibrium RTDs ψeq

− (t) in the sense of the averaging over all possible histories U are
introduced. Based on this concept we derive an equation for the equilibrium ψeq

− (t) which is valid for an arbitrary
delay time τ1

ψeq
− (t) =

∫

u∈U

P[ψeq
− (u)]ψu

−(t) du.

Here ψ−(u) is the known RTD at given history u and P is the probability density of the history u which has to be
determined separately for any fixed delay time τ1. According to the definition of the equilibrium RTD, the probability
density P depends on u solely through ψeq

− (t).
For the delay times τ1 in the interval [3τ ; 4τ ] the set U is restricted to [0; τ1 − 3τ ] and the equation for ψeq

− (t) can
be written explicitly

ψeq
− (t) = λe−λt

∫ ∞

τ1−3τ

ψeq
− (χ) dχ+ (λ+ p)e−(λ+p)t

∫ τ1−3τ−t

0

ψeq
− (χ) dχ+

λe−λte−p(τ1−3τ)

∫ τ1−3τ

τ1−3τ−t

epχψeq
− (χ) dχ.

Analytic solution of the last equation on the interval t ∈ [0; τ1 − 3τ ] is given by

ψeq
− (t) =

λ(λ+ p)e−(λ+p)t

λ+ p e−(λ+p)(τ1−3τ)
.

Using the combination of the renewal theory power spectrum and the derived analytic expression for the equilibrium
RTD, the piece-wise linear dependence of the main period of the noise-induced oscillations on the delay time is
demonstrated. This confirms the results obtained numerically [3] for the noisy FitzHugh-Nagumo system in the
excitable regime with time-delayed feedback.

To compare the analytic results with the corresponding numerical results calculated for a real excitable system
we design a bistable system with two time delays following the idea of the delay-induced excitability [4]. The first
delay is used to model the excitability, the second delay is assigned to the controlling force. All the parameters of
the two-state model are matched to the parameters of the bistable system via the Kramers formula for the transition
rates (see for instance [5]).

Using the coupling between the transition rate λ− and the noise strength we show the delay-induced onset and
enhancement of the coherence resonance for positive feedback strength. The degree of the coherence measured by
the correlation time is maximal when the delay time is equal to the duration of the excited and the refractory phases



2

taken together.
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