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Abstract

Due to their closed-loop structure and kinematic
constraints,  dynamic  modeling of  parallel
manipulators presents an inherent complexity.

In this paper an approach based on the manipulator
generalized momentum is proposed. This approach is
used to obtain the dynamic model of a six degrees-of-
freedom parallel manipulator. The computational
effort is evaluated and compared with the one
involved within the classic Lagrange’s formulation. It
is showed the proposed approach presents a much
lower computational burden.
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1 Introduction

The dynamic model of a parallel manipulator
operated in free space can be mathematically
represented, in the Cartesian space, by a system of
nonlinear differential equations that may be written in
matrix form as:

I(x)- X+ V(xX) - x+G(x)=f (1)

I(x)being the inertia matrix, V(xx) the Coriolis and
centripetal terms matrix, G(x) a vector of
gravitational generalized forces, x the generalized
position of the mobile platform (end-effector) and f
the controlled generalized force applied on the end-
effector. Thus,

f=J"(x)7 (2

where t is the generalized force developed by the
actuators and J(x) is a jacobian matrix.

The dynamic model of a parallel manipulator is
usually developed using one of two approaches: the
Newton-Euler or the Lagrange methods. The Newton-

Euler approach uses the free body diagrams of the
rigid bodies. [Do and Yang, 1988] and [Reboulet and
Berthomieu, 1991] use this method on the dynamic
modeling of a Stewart platform. [Ji, 1994] presents a
study on the influence of leg inertia on the dynamic
model of a Stewart platform. [Dasgupta and
Mruthyunjaya, 1998] wused the Newton-Euler
approach to develop a closed-form dynamic model of
the Stewart platform. This method was also used by
[Khalil and Ibrahim, 2007; Riebe and Ulbrich, 2003;
Guo and Li, 2006], among others.

The Lagrange method describes the dynamics of a
mechanical system from the concepts of work and
energy. [Nguyen and Pooran, 1989] use this method
to model a Stewart platform, modeling the legs as
point masses. [Lebret et al., 1993] follow an approach
similar to the one used by [Nguyen and Pooran,
1989]. Lagrange’s method was also used by [Gregdrio
and Parenti-Castelli, 2004] and [Caccavale et al.,
2003], for example.

Unfortunately the dynamic models obtained from
these classical approaches usually present high
computational loads. Therefore, alternative methods
have been searched, namely the ones based on the
principle of virtual work [Staicu et al., 2007; Tsali,
2000], and screw theory [Gallardo et al., 2003].

In this paper the author presents a new approach to
the dynamic modeling of a six degrees-of-freedom
(dof) parallel manipulator: the use of the generalized
momentum concept.

2 Manipulator Kinematic Structure

Manipulator kinematic structure comprises a fixed
(base) platform and a moving (payload) platform,
linked together by six independent, identical, open
kinematic chains (Figure 1). Each chain comprises
two links: the first link (linear actuator) is always
normal to the base and has a variable length, I;, with
one of its ends fixed to the base and the other one



attached, by a universal joint, to the second link; the
second link (fixed-length link) has a fixed length, L,
and is attached to the mobile platform by a spherical
joint. Points B; and P; are the connecting points to the
base and mobile platforms.

Mobile platform P

Figure 1. Manipulator kinematic structure.

For kinematic modeling purposes, two frames, {P}
and {B}, are attached to the mobile and base
platforms, respectively. The generalized position of
frame {P} relative to frame {B} may be represented
by the vector:

XP\BlE:[XP Yo Zp ¥ Op ¢P]T

[t ot ] ®
- P(pos) |g P(o) g

where ®Xp( 1 =[% Ve z,]" is the position of

the origin of frame {P} relative to frame {B}, and
®Xp(o) = [wvo 6, .| defines an Euler angle

system representing orientation of frame {P} relative
to {B}. The used Euler angle system corresponds to
the basic rotations [Vukobratovic and Kircanski,
1986]: yp about zp; & about the rotated axis yp+; and
op about the rotated axis xp-. The rotation matrix is
given by:

*R; =| SypCOp  SYpSO:Spp +CyeCp  SYpSO,Cop —CypSep

CypCl CypSO:5¢, —SypCop CuwpS6,Cop +SypSe,
-S6, CO,Sp;

C0:Cop

(4)
S() and C(-) correspond to the sine and cosine
functions, respectively.
The manipulator position and velocity kinematic
models are known [Merlet and Gosselin, 1991], being
obtainable from the geometrical analysis of the
kinematics chains. The velocity kinematics is
represented by the Euler angles jacobian matrix, Jg, or
the kinematics jacobian, Jc. These jacobians relate the
velocities of the active joints (actuators) with the
generalized velocity of the mobile platform:

B -
: : Xp(pos)
':JE'B"PBEJE{ o B} ©

B -
Xp(0) le

®x
- : P(pos)
I=Jc%%, :Jc'[ Bmpos B] (6)
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i=[i, i, i, ] @)
B(DP‘B :JA.BXP(OHE (8)

and [Vukobratovic and Kircanski, 1986]
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e 0 Cyr  ClSyp 9)
1 0 -S6,
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Vectors “x; ="Ve and "o, |, epresent the

pos) |g
linear and angular velocity of the mobile platform
relative to {B}, and B5;F,(0HErepresents the Euler

angles time derivative.

3 Dynamic Modeling Using the Generalized
Momentum Approach
The generalized momentum of a rigid body, q., may
be obtained using the following general expression:

q. :Ic L (10)

Vector u, represents the generalized velocity (linear
and angular) of the body and I is its inertia matrix.
Vectors . and u, and inertia matrix I, must be
expressed in the same referential.

Equation (10) may also be written as:

| 0
qc _ Qc _ c(tra) . Vc (11)
Hc 0 IC(rOf) O,

where Q. is the linear momentum vector due to rigid
body translation, and H; is the angular momentum
vector due to body rotation. I is the translational
inertia matrix, and Iy the rotational inertia matrix.
ve and o, are the body linear and angular velocities.
The kinetic component of the generalized force
acting on the body can be computed from the time
derivative of equation (10):

fc(kin) = qc :ic ‘U +Ic 'l.lc (12)

with force and momentum expressed in the same
frame.

3.1 Mobile Platform Modeling

The linear momentum of the mobile platform,
written in frame {B}, may be obtained from the
following expression:

QP\B :mP'BVP\B :IP(tra)'BVP\B (13)

Ingray is the translational inertia matrix of the mobile
platform,

Lo (e = diag([m,  m, m;]) (14)

mp being its mass.
The angular momentum, also written in frame {B},
is:



H, | =Ty t0n (15)

Togary |, FEPTesents the rotational inertia matrix of the

mobile platform, expressed in the base frame {B}.

The inertia matrix of a rigid body is constant when
expressed in a frame that is fixed relative to that body.
Furthermore if the frame axes coincide with the
principal directions of inertia of the body, then all
inertia products are zero and the inertia matrix is
diagonal. Therefore, the rotational inertia matrix of
the mobile platform, when expressed in frame {P},

may be written as:
IP(rot) b = diag([lpXx I IPZZ D (16)

This inertia matrix can be written in frame {B} using
the following transformation [Torby, 1984]:

I :BRP 'IP(rot)\P'BRL 17

Py

P(rot) |g

The generalized momentum of the mobile platform,
expressed in frame {B}, can be obtained from the
simultaneous use of equations (13) and (15):

B
g, = Teww 0 ) Ve (18)
Pls 0 lP(rot)\B BmP\B

IP(tra) 0
IPB{ o 1 (19)

P(rot) |g

where

is the mobile platform inertia matrix written in the
base frame {B}.

The combination of equations (8) and (15) results
into:

HP\B :IP(rot)\B 'JA'BXP(O)\E (20)

Accordingly, equation (18) may be rewritten as:

~ B
q :|:IP(tra) 0 ][J 0 } Ve g 21)
P B,
‘B 0 IP(rot) ‘B 0 JA XP(O) ‘E

dp |, :IP\B .T.BXP‘B\E (22)
T being a matrix transformation defined by:
I 0
T=|" (23)
0o J,

The time derivative of equation (22) results into:

P .
fP(kin) lg ~dr g

d

5. NG
:E(IP s ~T) Xp \B|E+IP s ‘T-"x, -

pr(km) s is the kinetic component of the generalized

force acting on {P} due to the mobile platform
motion, expressed in frame {B}. The corresponding
actuating forces, tpwin), may be computed from the
following relation:

Togin =J¢ " Fogin s (25)
where
P f _ [P FT P MT ]T (26)
P(kin) |g — P(kin) |g P(kin) |g

Vector PFP(kin) , represents the force vector acting on

the centre of mass of the mobile platform, and
PMP( )|, EPresents the moment vector acting on the

kin
mobile platform, expressed in the base frame, {B}.

From equation (24) it can be concluded that two
matrices playing the roles of the inertia matrix and the
Coriolis and centripetal terms matrix are:

I, T @7)

Plg

%(1P LT (28)

It must be emphasized that these matrices do not
have the properties of inertia or Coriolis and
centripetal terms matrices and therefore should not,
strictly, be named as such. Nevertheless, throughout
the paper the names “inertia matrix” and “Coriolis
and centripetal terms matrix” may be used if there is
no risk of misunderstanding.

3.2 Actuators Modeling

As the manipulator actuators can only move
perpendicularly to the base plane, their angular
velocity relative to frame {B} is always zero. So, each
actuator can be modeled as a point mass located at its
centre of mass.

The linear momentum of each actuator along
direction zg, is obtainable from:

Ay =M, -, (29)
where my is the mass and I'i the velocity of actuator i.

Simultaneously considering the six actuators results
into:

qu |1
qa = qf\z =my I;Z :mA'i (30)
Upg Iy

The wuse of wvelocity kinematics and matrix
transformation T in equation (30) leads to:

qA:mA'JC'T'BXP\B‘E (31)

The kinetic component of the actuating forces,
T ain)» dUE to actuators translation may be obtained

from the time derivative of equation (31):

e B . B ..
TA(kin)—qA—mA'(JE' Xp \B‘E+JE' Xp ‘BIE) (32)

Multiplying equation (32) by J{, the inertial
component of the generalized force acting on {P} due



to actuators translation, expressed in frame {B}, is
obtained as:

P T i By
fainy |5 =Ma-JcJe- Xplge t 33)
my-Jg-Jg B %, e

The inertia matrix and the Coriolis and centripetal
terms matrix will be:

m,-J.-Jg (34)

mA'JE'jE (35)

These matrices represent the inertia matrix and the
Coriolis and centripetal terms matrix of a virtual
mobile platform that is equivalent to the six actuators.

3.3 Fixed-length Links Modeling

If the centre of mass of each fixed-length link, cm,
is located at a constant distance b, from the fixed-
length link to mobile platform connecting point
(Figure 2), then its position relative to frame {B} is:

b
"Pu s = Kot Py T (36)

- e

Figure 2. Position of the centre of mass of a fixed-
length link i.

Equation (36) may be rewritten as:

b b
B cm | B cm | P
Py I :(1_ L j Xp(pos) s +(1_ L j Pi s + (37

b b
cm 'bi + cm 'di
L L

BpLi s being a vector expressed in frame {B}.

The linear velocity of the fixed-length link centre of
mass, BpLi o relative to {B} and expressed in the

same frame, may be computed from the time
derivative of equation (37):

b
B B. B P
Py, B :(1_ CLmj( Xp(pos) ‘B+ wp‘Bx p; ‘B)+

b,

cm

L
Equation (38) can be rewritten as:

(38)

Az

B
. Ve
BpLi B:JB'.[BQPB:| (39)
B

where the jacobian J is given by:

b 1 0 0
Iy = [lf%) b 0 b 1 b 0
L_Cg Jei L_Cg Jeiz L_CE Jeig+1 (40)
P P
0 Pig, Py,
7Ppi [ 0 ’ Pi

IBx

b b
p P
Prlgy * L—cgm o =Pt Jeis

L-b, ° L—cnl;cm
being Jgjj the elements of line i column j of matrix Jc.
The linear momentum of each fixed-length link,
Q. g+ Can be represented in frame {B} as:

Q,, =M. *by |, (41)

where m_ is the fixed-length link mass.
Introducing jacobian Jg and matrix transformation

T in the previous equation results into:

QLi g — ML Jg 'T'BXP lgjE (42)

The kinetic component of the force applied to the
fixed-length link due to its translation and expressed
in {B} can be obtained from the time derivative of
equation (42):

L B o s
Fior i = Qg =M g U TN %oy + (43)

B:-
m g T,

When equation (43) is multiplied by J , the

kinetic component of the force applied to {P} due to
each fixed-length link translation is obtained in frame

{B}:

P T L
fLi(kin)(tra) s =J B; fLi(kin)(tra) s

d .
=m_-J} -E(JBi T)®x, ot 49

T B
meJg g TR

The inertia matrix and the Coriolis and centripetal
terms matrix of the translating fixed-length link being:

m_-Jg -Jg - T (45)

m, 9G-S 1) (46)
dt

These matrices represent the inertia matrix and the
Coriolis and centripetal terms matrix of a virtual
mobile platform that is equivalent to each translating
fixed-length link.

On the other hand, the angular momentum of each
fixed-length link can be represented in frame {B} as:

B
HLi ‘B :I'—i(l’Ot) ‘B. m'—i ‘B (47)



It is convenient to express the inertia matrix of the
rotating fixed-length link in a frame fixed to the fixed-
length link itself, {Li}={x .y, .z, } So,

I =R I

Li(rot) | i Li(rot) |

PR (48)

where BRLi is the orientation matrix of each fixed-
length link frame, {L;}, relative to the base frame,

{B}.
Fixed-length links frames were chosen in the
following way: axis x, coincides with the fixed-

length link axis and points towards the fixed-length
link to mobile platform connecting point, meaning
that it is coincident with vector a;; axis A is

perpendicular to x, and always parallel to the base

plane, this condition being possible given the
existence of a universal joint in the fixed-length link
to actuator connecting point that negates any rotation
along its own axis; axis z,, completes the referential

following the right hand rule, and its projection along

axis zz is always positive. Thus, matrix
R, becomes:
B
R, = [XLi Yy ZLi] (49)
where
T
a aiy a;
x, == —= £ 50
; { e } (50)
T
a. a.
ly iX
Y =|— 0 (51)
\/aizx+ai2y \/afx+ai2y
Z, =X Xy, (52)

So, the inertia matrices of the fixed-length links can
be written as

ILi(rol) ‘L = diag([l Ly I L

) (53)

and I are the fixed-length link

14
where 1, I

moments of inertia expressed in its own frame.

The angular velocity of each fixed-length link can be
obtained from the linear velocities of two points
belonging to it. If these two points are taken as the
fixed-length link to actuator, and the fixed-length link
to mobile platform connecting points, the following
expression results:

B B B P ]
O |, X8;= Vo |+ @p | XTP; | -1, -z; (54)
As the fixed-length link cannot rotate along its own
axis, the angular velocity along x,, =a, is always
zero, and vectors a; and B(’oLi s are always

perpendicular.
This property enables equation (54) to be rewritten
as:

or,

B
B(’oLi s =In .|:B(DP B} (56)
B

where jacobian J, is given by:
1,
D 12
7a\y‘]cu 7a\y‘]cv2 7a\1 aly(17 ‘]c\z)

a, +a|x‘]cu aux‘sz _au(l_‘Jm)
-a, a, 0
&y(“ Py, fJC,4)+ a,’p faw(“ P, +Jc,5) -a,Jc—a, P
-a,"p, ~Jou 3, Py, +a e, ) —a7p, T adas
-3,"p, -3,"p, a," Py, +a, P

(57)
Introducing jacobian J, and matrix transformation
T in equation (47) results into:

H, , =1 I, - T-Px, o (58)

Li|g Li(rot) |g

The kinetic component of the generalized force
applied to the fixed-length link, due to its rotation and
expressed in {B} can be obtained from the time
derivative of equation (58):

L B
fLi(kin)(rot) ‘B HLi ‘B

d .
:E(ILi(rm) o TP, e 659

I

B:-
i(rot) |g JD, T XP\B|E

When equation (59) is pre-multiplied by JTDi the

kinetic component of the generalized force applied to
{P} due to each fixed-length link rotation is obtained
in frame {B}:
F’fL,(kin)(rot) s = J-II—D, Hf
d
T B .
=Jp, 'E(IL,(rot) 5 Jo ‘T) Xplge T

Li (kin)(rot) |5

T B
Io, 1 ron) ls Jp, - TXp lgje

(60)

The inertia matrix and the Coriolis and centripetal
terms matrix of the rotating fixed-length link may be
written as:

Io Ty Jo T (61)

i .%(ILi(fOt) I .JDi 'T) (62)

These matrices represent the inertia matrix and the

Coriolis and centripetal terms matrix of a virtual
mobile platform that is equivalent to each rotating
fixed-length link.

Jo



It should be noted that equations (24), (33), (44) and
(60) by providing expressions for the Kinetic
component of the generalized force applied to {P}
and expressed in {B}, enable a clear physical meaning
to the moments applied to {P}.

3.4 Dynamic Model Gravitational Component
Given a general frame {x, y, z}, with z=-g, the
potential energy of a rigid body is given by:

Pc:mc'g'zc (63)

where m. is the body mass, g is the modulus of the
gravitational acceleration and z, the distance, along z,
from the frame origin to the body centre of mass.

The gravitational components of the generalized
forces acting on {P} can be easily obtained from the
potential energy of the different bodies that compose
the system:

B
P _épp( XP\B|E) 64
P(gra) ‘B|E - ﬁBXP ‘ ( )
BIE
B
p éPAi ( P ‘B|E ) 65
A(gra) ‘B\E Or;BXP ‘ ( )
BIE
B
P _ éPLi( Yo ‘B|E) 66
Li(gra) ‘B|E - ﬁBXP ‘ ( )
B|E
The three vectors °fy ., e "o (gra) g AN
F’fLi (9) |gie represent the gravitational components of

the generalized forces acting on {P}, expressed using
the Euler angles system, due to, in that order, the
mobile platform, each actuator and each fixed-length
link. Therefore, to be added to the kinetic force
components, these vectors must be transformed to be
expressed in frame {B}. This may be done pre-
multiplying the gravitational components force
vectors by the following matrix:

I 0
{0 JAT} (®7)

4 Computational Effort of the Dynamic Model

The computational effort of the dynamic model
obtained through the use of the generalized
momentum approach is compared with the one
resulting from applying the Lagrange method using
the Koditschek representation [Lebret et al., 1993;

Koditschek, 1984].

As the largest difference between the two methods
rests on how the Coriolis and centripetal terms
matrices are calculated, the two models are evaluated
by the number of arithmetic operations involved in
the computation of these matrices. The results were
obtained using the symbolic computational software

Maple®, and are presented in Table 1.

Table 1. Computational burden of the dynamic model.

Lagrange Generalized
Momentum

Add Mul |Div | Add | Mul | Div
Mobile platform | 310 590 0 94 226 0
Six actuators 3028 | 4403 | 30 | 724 | 940 18
Translating link 751 1579 6 131 | 279 4
Rotating link 2180 | 3711 7 355 | 664 7
Total operations 20924 |36733 | 108 | 3734 [ 6824 [ 84

The dynamic model obtained using the generalized
momentum approach is computationally much more
efficient, and its superiority manifests precisely in the
computation of the matrices requiring the largest
relative computational effort: the Coriolis and
centripetal terms matrices.

The proposed approach was used in the dynamic
modeling of a 6-dof parallel manipulator similar to
the Stewart platform. Nevertheless, it can be applied
to any mechanism.

5 Numerical Simulation

A 6-dof parallel manipulator presenting the
kinematic and dynamic parameters shown in Table 2
was considered.

Table 2. Manipulator parameters.

Para. Value Para. Value Para. Value

r 1.500m | mp 1.430kg | lpn 0.4 kg-m?
re 0.750m | my 0.123kg | lux 0.0 kg-m?
L 1.837m | m, 0.389kg | Iy 0.1 kg-m?
& 150 Ioxe 0.2kgm? | I 0.1 kg-m?
& 0° oy 0.2kg-m? | bep 0.918 m

A trajectory was specified in task space. The moving
platform initial position is P, = [0, 0, 2000, 0, 0, 0]
(mm; deg). The moving platform is then displaced to
point P, = [-100, -200, 2500, 15, -15, 15] (mm; deg),
and finally it returns to point P;.

Third order trigonometric splines were interpolated
between the specified points, in order to obtain
continuous and smooth trajectories. Figure 3 shows
the corresponding actuators trajectories.
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Figure 3. Actuators trajectories: (a) — position; (b) —

Figure 4 shows the developed actuators forces,
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necessary to follow the specified trajectories.

Figures 5 to 7 show the contribution of the mobile
platform, the six fixed-length links, and the six
actuators to the total developed actuators forces,

presented in Figure 4.

It is important to note, the contribution of both the
mobile platform and the six fixed-length links are
equivalent in magnitude and, therefore, fixed-length
links should not be neglected as they are in several

related works presented in the literature.
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Figure 4. Developed actuators forces.
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Figure 5. Mobile platform contribution to the
developed actuators forces.
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Figure 6. Fixed-length links contribution to the
developed actuators forces.
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Figure 7. Actuators contribution to the developed
actuators forces.

6 Conclusion

Dynamic modeling of parallel manipulators presents
an inherent complexity. Despite the intensive study in
this topic of robotics, mostly conducted in the last two
decades, additional research still has to be done in this
area.

In this paper an approach based on the manipulator
generalized momentum is explored and applied to the
dynamic modeling of parallel manipulators. The
generalized momentum is used to compute the kinetic
component of the generalized force acting on the



mobile platform. Each manipulator rigid body may be
considered and analyzed independently. Analytic
expressions for the rigid bodies’ inertia and Coriolis
and centripetal terms matrices are obtained, which can
be added, as they are expressed in the same frame.
Having these matrices, the kinetic component of the
generalized force acting on the mobile platform may
be easily computed. This component can be added to
the gravitational part of the generalized force, which
is obtained through the manipulator potential energy.

The proposed approach is completely general and
can be used as a dynamic modeling tool applicable to
any mechanism.

The obtained dynamic model was found to be
computationally much more efficient than the one
resulting from applying the Lagrange method using
the Koditschek representation. Its  superiority
manifesting precisely in the computation of the
matrices requiring the largest relative computational
effort: the Coriolis and centripetal terms matrices.
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