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Abstract 
Due to their closed-loop structure and kinematic 

constraints, dynamic modeling of parallel 
manipulators presents an inherent complexity. 
In this paper an approach based on the manipulator 

generalized momentum is proposed. This approach is 
used to obtain the dynamic model of a six degrees-of-
freedom parallel manipulator. The computational 
effort is evaluated and compared with the one 
involved within the classic Lagrange’s formulation. It 
is showed the proposed approach presents a much 
lower computational burden. 
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1 Introduction 
The dynamic model of a parallel manipulator 

operated in free space can be mathematically 
represented, in the Cartesian space, by a system of 
nonlinear differential equations that may be written in 
matrix form as: 
 ( ) ( ) ( ) fxGxxxVxxI =+⋅+⋅ &&&& ,  (1) 

( )xI being the inertia matrix, ( )xxV &,  the Coriolis and 
centripetal terms matrix, ( )xG  a vector of 
gravitational generalized forces, x the generalized 
position of the mobile platform (end-effector) and  f  
the controlled generalized force applied on the end-
effector. Thus, 

 ( ) τxJf ⋅= T  (2) 

where τ is the generalized force developed by the 
actuators and J(x) is a jacobian matrix. 
The dynamic model of a parallel manipulator is 

usually developed using one of two approaches: the 
Newton-Euler or the Lagrange methods. The Newton-

Euler approach uses the free body diagrams of the 
rigid bodies. [Do and Yang, 1988] and [Reboulet and 
Berthomieu, 1991] use this method on the dynamic 
modeling of a Stewart platform. [Ji, 1994] presents a 
study on the influence of leg inertia on the dynamic 
model of a Stewart platform. [Dasgupta and 
Mruthyunjaya, 1998] used the Newton-Euler 
approach to develop a closed-form dynamic model of 
the Stewart platform. This method was also used by 
[Khalil and Ibrahim, 2007; Riebe and Ulbrich, 2003; 
Guo and Li, 2006], among others. 
The Lagrange method describes the dynamics of a 

mechanical system from the concepts of work and 
energy. [Nguyen and Pooran, 1989] use this method 
to model a Stewart platform, modeling the legs as 
point masses. [Lebret et al., 1993] follow an approach 
similar to the one used by [Nguyen and Pooran, 
1989]. Lagrange’s method was also used by [Gregório 
and Parenti-Castelli, 2004] and [Caccavale et al., 
2003], for example. 
Unfortunately the dynamic models obtained from 

these classical approaches usually present high 
computational loads. Therefore, alternative methods 
have been searched, namely the ones based on the 
principle of virtual work [Staicu et al., 2007; Tsai, 
2000], and screw theory [Gallardo et al., 2003]. 
In this paper the author presents a new approach to 

the dynamic modeling of a six degrees-of-freedom 
(dof) parallel manipulator: the use of the generalized 
momentum concept.  
 

2 Manipulator Kinematic Structure 
Manipulator kinematic structure comprises a fixed 

(base) platform and a moving (payload) platform, 
linked together by six independent, identical, open 
kinematic chains (Figure 1). Each chain comprises 
two links: the first link (linear actuator) is always 
normal to the base and has a variable length, li, with 
one of its ends fixed to the base and the other one 



attached, by a universal joint, to the second link; the 
second link (fixed-length link) has a fixed length, L, 
and is attached to the mobile platform by a spherical 
joint. Points Bi and Pi are the connecting points to the 
base and mobile platforms. 
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Figure 1. Manipulator kinematic structure. 

For kinematic modeling purposes, two frames, {P} 
and {B}, are attached to the mobile and base 
platforms, respectively. The generalized position of 
frame {P} relative to frame {B} may be represented 
by the vector:  
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where ( ) [ ]TPPPBposP
B zyx=x  is the position of 

the origin of frame {P} relative to frame {B}, and 

( ) [ ]TPPPEoP
B ϕθψ=x  defines an Euler angle 

system representing orientation of frame {P} relative 
to {B}. The used Euler angle system corresponds to 
the basic rotations [Vukobratovic and Kircanski, 
1986]: ψP about zP; θP about the rotated axis yP’; and 
ϕP about the rotated axis xP’’. The rotation matrix is 
given by: 
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  (4) 
S(⋅) and C(⋅) correspond to the sine and cosine 
functions, respectively. 
The manipulator position and velocity kinematic 

models are known [Merlet and Gosselin, 1991], being 
obtainable from the geometrical analysis of the 
kinematics chains. The velocity kinematics is 
represented by the Euler angles jacobian matrix, JE, or 
the kinematics jacobian, JC. These jacobians relate the 
velocities of the active joints (actuators) with the 
generalized velocity of the mobile platform: 
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with 
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 ( ) EoP
B

ABP
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and [Vukobratovic and Kircanski, 1986] 
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Vectors ( ) BP
B

BposP
B vx ≡&  and 

BP
Bω represent the 

linear and angular velocity of the mobile platform 
relative to {B}, and ( ) EoP

B x& represents the Euler 

angles time derivative. 
 

3 Dynamic Modeling Using the Generalized 
Momentum Approach 

The generalized momentum of a rigid body, qc, may 
be obtained using the following general expression: 
 ccc uIq ⋅=  (10) 

Vector uc represents the generalized velocity (linear 
and angular) of the body and Ic is its inertia matrix. 
Vectors qc and uc, and inertia matrix Ic must be 
expressed in the same referential. 
Equation (10) may also be written as: 
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where Qc is the linear momentum vector due to rigid 
body translation, and Hc is the angular momentum 
vector due to body rotation. Ic(tra) is the translational 
inertia matrix, and Ic(rot) the rotational inertia matrix. 
vc and ωc are the body linear and angular velocities. 
The kinetic component of the generalized force 

acting on the body can be computed from the time 
derivative of equation (10): 

 ( ) ccccckinc uIuIqf &&& ⋅+⋅==  (12) 

with force and momentum expressed in the same 
frame. 
 
3.1 Mobile Platform Modeling 
The linear momentum of the mobile platform, 

written in frame {B}, may be obtained from the 
following expression: 
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IP(tra) is the translational inertia matrix of the mobile 
platform, 
 ])diag([)( PPPtraP mmm=I  (14) 

mP being its mass. 
The angular momentum, also written in frame {B}, 

is: 

Mobile platform 

Base 



 
BP

B

BrotPBP ωIH ⋅= )(  (15) 

BrotP )(I  represents the rotational inertia matrix of the 

mobile platform, expressed in the base frame {B}. 
The inertia matrix of a rigid body is constant when 

expressed in a frame that is fixed relative to that body. 
Furthermore if the frame axes coincide with the 
principal directions of inertia of the body, then all 
inertia products are zero and the inertia matrix is 
diagonal. Therefore, the rotational inertia matrix of 
the mobile platform, when expressed in frame {P}, 
may be written as: 
 ])diag([)( zzyyxx PPPProtP III=I  (16) 

This inertia matrix can be written in frame {B} using 
the following transformation [Torby, 1984]: 
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P

B
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The generalized momentum of the mobile platform, 
expressed in frame {B}, can be obtained from the 
simultaneous use of equations (13) and (15):  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=

BP
B

BP
B

BrotP

traP

BP ω
v

I0
0I

q
)(

)(  (18) 

where 
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is the mobile platform inertia matrix written in the 
base frame {B}. 
The combination of equations (8) and (15) results 

into: 
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Accordingly, equation (18) may be rewritten as: 
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T being a matrix transformation defined by: 
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The time derivative of equation (22) results into: 
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( ) BkinP
P f  is the kinetic component of the generalized 

force acting on {P} due to the mobile platform 
motion, expressed in frame {B}. The corresponding 
actuating forces, τP(kin), may be computed from the 
following relation: 

 ( ) ( )
B
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PT

CkinP fJτ ⋅= −  (25) 

where 
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Vector ( ) BkinP
P F represents the force vector acting on 

the centre of mass of the mobile platform, and 

( ) BkinP
P M represents the moment vector acting on the 

mobile platform, expressed in the base frame, {B}. 
From equation (24) it can be concluded that two 

matrices playing the roles of the inertia matrix and the 
Coriolis and centripetal terms matrix are: 
 TI ⋅

BP  (27) 

 ( )TI ⋅
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d  (28) 

It must be emphasized that these matrices do not 
have the properties of inertia or Coriolis and 
centripetal terms matrices and therefore should not, 
strictly, be named as such. Nevertheless, throughout 
the paper the names “inertia matrix” and “Coriolis 
and centripetal terms matrix” may be used if there is 
no risk of misunderstanding. 
 

3.2 Actuators Modeling 
As the manipulator actuators can only move 

perpendicularly to the base plane, their angular 
velocity relative to frame {B} is always zero. So, each 
actuator can be modeled as a point mass located at its 
centre of mass. 
The linear momentum of each actuator along 

direction zB, is obtainable from: 
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where mA is the mass and il&  the velocity of actuator i. 
Simultaneously considering the six actuators results 

into: 
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The use of velocity kinematics and matrix 
transformation T in equation (30) leads to: 
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The kinetic component of the actuating forces, 
( )kinAτ , due to actuators translation may be obtained 

from the time derivative of equation (31): 
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Multiplying equation (32) by T
CJ , the inertial 

component of the generalized force acting on {P} due 



to actuators translation, expressed in frame {B}, is 
obtained as: 

 
( )

EBP
B

E
T
CA

EBP
B

E
T
CABkinA

P

m

m

|

|

xJJ

xJJf

&&

&&

⋅⋅⋅

+⋅⋅⋅=
 (33) 

The inertia matrix and the Coriolis and centripetal 
terms matrix will be: 

 E
T
CAm JJ ⋅⋅  (34) 

 E
T
CAm JJ &⋅⋅  (35) 

These matrices represent the inertia matrix and the 
Coriolis and centripetal terms matrix of a virtual 
mobile platform that is equivalent to the six actuators. 
 

3.3 Fixed-length Links Modeling 
If the centre of mass of each fixed-length link, cmL, 

is located at a constant distance bcm from the fixed-
length link to mobile platform connecting point 
(Figure 2), then its position relative to frame {B} is: 
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Figure 2. Position of the centre of mass of a fixed-

length link i. 

Equation (36) may be rewritten as: 
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BL
B

i
p being a vector expressed in frame {B}. 

The linear velocity of the fixed-length link centre of 
mass, 

BL
B

i
p& , relative to {B} and expressed in the 

same frame, may be computed from the time 
derivative of equation (37): 
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Equation (38) can be rewritten as: 
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where the jacobian 
iBJ is given by: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

−−
+−

−
+

−

−

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−−−

⋅⎟
⎠
⎞

⎜
⎝
⎛ −=

654

321

0

0

1
010
001

1

Ci
cm

cm
Ci

cm

cm
Bxi

P
Ci

cm

cm
Byi

P

Bxi
P

Bzi
P

Byi
P

Bzi
P

Ci
cm

cm
Ci

cm

cm
Ci

cm

cm

cm
B

J
bL

b
J

bL
b

pJ
bL

b
p

pp

pp

J
bL

b
J

bL
b

J
bL

bL
b

i
J

 (40) 

being  JCij the elements of line i column j of matrix JC. 
The linear momentum of each fixed-length link, 

BLi
Q , can be represented in frame {B} as: 
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where mL is the fixed-length link mass. 
Introducing jacobian 

iBJ and matrix transformation 
T in the previous equation results into: 
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The kinetic component of the force applied to the 
fixed-length link due to its translation and expressed 
in {B} can be obtained from the time derivative of 
equation (42): 
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When equation (43) is multiplied by T
Bi

J  , the 
kinetic component of the force applied to {P} due to 
each fixed-length link translation is obtained in frame 
{B}: 
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The inertia matrix and the Coriolis and centripetal 
terms matrix of the translating fixed-length link being: 
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These matrices represent the inertia matrix and the 
Coriolis and centripetal terms matrix of a virtual 
mobile platform that is equivalent to each translating 
fixed-length link. 
On the other hand, the angular momentum of each 

fixed-length link can be represented in frame {B} as: 
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It is convenient to express the inertia matrix of the 
rotating fixed-length link in a frame fixed to the fixed-
length link itself, {Li}≡{

iii LLL zyx ,, }. So, 
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where  
iL

B R is the orientation matrix of each fixed-
length link frame, {Li}, relative to the base frame, 
{B}. 
Fixed-length links frames were chosen in the 

following way: axis 
iLx coincides with the fixed-

length link axis and points towards the fixed-length 
link to mobile platform connecting point, meaning 
that it is coincident with vector ai; axis  

iLy  is 

perpendicular to 
iLx and always parallel to the base 

plane, this condition being possible given the 
existence of a universal joint in the fixed-length link 
to actuator connecting point that negates any rotation 
along its own axis; axis 

iLz  completes the referential 
following the right hand rule, and its projection along 
axis zB is always positive. Thus, matrix 

iL
B R becomes: 
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So, the inertia matrices of the fixed-length links can 
be written as 
 ( ) ])diag([

zzyyxxii LLLLrotL III=I  (53) 

where 
xxLI , 

yyLI  and 
zzLI are the fixed-length link 

moments of inertia expressed in its own frame. 
The angular velocity of each fixed-length link can be 

obtained from the linear velocities of two points 
belonging to it. If these two points are taken as the 
fixed-length link to actuator, and the fixed-length link 
to mobile platform connecting points, the following 
expression results: 
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As the fixed-length link cannot rotate along its own 
axis, the angular velocity along iLi
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zero, and vectors ai and 
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This property enables equation (54) to be rewritten 

as: 

 
( )[ ]BiBi

P

BP
B

BP
B

i

BL
B

l
Li

zpωva

ω

⋅−×+×

⋅=

&

2

1
 (55) 

or, 
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where jacobian 
iDJ is given by: 
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  (57) 
Introducing jacobian 

iDJ  and matrix transformation 
T in equation (47) results into: 
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The kinetic component of the generalized force 
applied to the fixed-length link, due to its rotation and 
expressed in {B} can be obtained from the time 
derivative of equation (58): 
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When equation (59) is pre-multiplied by T
Di

J  the 
kinetic component of the generalized force applied to 
{P} due to each fixed-length link rotation is obtained 
in frame {B}: 

( )( ) ( )( )

( )( )
( ) EBP

B
DBrotL

T
D

EBP
B

DBrotL
T
D

BrotkinL
LT

DBrotkinL
P

iii

iii

i
i

ii

dt
d

|

|

xTJIJ

xTJIJ

fJf

&&

&

⋅⋅⋅⋅

+⋅⋅⋅⋅=

⋅=

 

  (60) 
The inertia matrix and the Coriolis and centripetal 

terms matrix of the rotating fixed-length link may be 
written as: 
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These matrices represent the inertia matrix and the 
Coriolis and centripetal terms matrix of a virtual 
mobile platform that is equivalent to each rotating 
fixed-length link. 



It should be noted that equations (24), (33), (44) and 
(60) by providing expressions for the kinetic 
component of the generalized force applied to {P} 
and expressed in {B}, enable a clear physical meaning 
to the moments applied to {P}. 
 
 

3.4 Dynamic Model Gravitational Component 
Given a general frame {x, y, z}, with gz ˆ−≡ , the 

potential energy of a rigid body is given by: 
 ccc zgmP ⋅⋅=  (63) 

where mc is the body mass, g is the modulus of the 
gravitational acceleration and zc the distance, along z, 
from the frame origin to the body centre of mass. 
The gravitational components of the generalized 

forces acting on {P} can be easily obtained from the 
potential energy of the different bodies that compose 
the system: 
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The three vectors ( ) EBgraP
P

|
f , ( ) EBgraA

P
i |

f  and 

( ) EBgraL
P

i |
f represent the gravitational components of 

the generalized forces acting on {P}, expressed using 
the Euler angles system, due to, in that order, the 
mobile platform, each actuator and each fixed-length 
link. Therefore, to be added to the kinetic force 
components, these vectors must be transformed to be 
expressed in frame {B}. This may be done pre-
multiplying the gravitational components force 
vectors by the following matrix: 

 ⎥
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⎤
⎢
⎣

⎡ℑ
−T
AJ0
0

 (67) 

 

4 Computational Effort of the Dynamic Model 
The computational effort of the dynamic model 

obtained through the use of the generalized 
momentum approach is compared with the one 
resulting from applying the Lagrange method using 
the Koditschek representation [Lebret et al., 1993; 
Koditschek, 1984]. 
As the largest difference between the two methods 

rests on how the Coriolis and centripetal terms 
matrices are calculated, the two models are evaluated 
by the number of arithmetic operations involved in 
the computation of these matrices. The results were 
obtained using the symbolic computational software 

Maple®, and are presented in Table 1. 

Table 1. Computational burden of the dynamic model. 
 Lagrange Generalized 

Momentum
 Add Mul Div Add Mul Div 

Mobile platform 310 590 0 94 226 0 
Six actuators  3028 4403 30 724 940 18 

Translating link 751 1579 6 131 279 4 

Rotating link  2180 3711 7 355 664 7 

Total operations 20924 36733 108 3734 6824 84

 
The dynamic model obtained using the generalized 

momentum approach is computationally much more 
efficient, and its superiority manifests precisely in the 
computation of the matrices requiring the largest 
relative computational effort: the Coriolis and 
centripetal terms matrices. 
The proposed approach was used in the dynamic 

modeling of a 6-dof parallel manipulator similar to 
the Stewart platform. Nevertheless, it can be applied 
to any mechanism. 

 

5 Numerical Simulation 
A 6-dof parallel manipulator presenting the 

kinematic and dynamic parameters shown in Table 2 
was considered. 

Table 2. Manipulator parameters. 
Para. Value Para. Value Para. Value 

rB 1.500 m mP 1.430 kg IPzz 0.4 kg⋅m2 

rP 0.750 m mA 0.123 kg ILxx 0.0 kg⋅m2 

L 1.837 m mL 0.389 kg ILyy 0.1 kg⋅m2 

φB 15º IPxx 0.2 kg⋅m2 ILzz 0.1 kg⋅m2 

φP 0º IPyy 0.2 kg⋅m2 bcm 0.918 m 

A trajectory was specified in task space. The moving 
platform initial position is P1 = [0, 0, 2000, 0, 0, 0] 
(mm; deg). The moving platform is then displaced to 
point P2 = [-100, -200, 2500, 15, -15, 15] (mm; deg), 
and finally it returns to point P1. 
Third order trigonometric splines were interpolated 

between the specified points, in order to obtain 
continuous and smooth trajectories. Figure 3 shows 
the corresponding actuators trajectories. 
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Figure 3. Actuators trajectories: (a) – position; (b) – 
velocity; (c) – acceleration. 

Figure 4 shows the developed actuators forces, 
necessary to follow the specified trajectories. 
Figures 5 to 7 show the contribution of the mobile 

platform, the six fixed-length links, and the six 
actuators to the total developed actuators forces, 
presented in Figure 4. 
It is important to note, the contribution of both the 

mobile platform and the six fixed-length links are 
equivalent in magnitude and, therefore, fixed-length 
links should not be neglected as they are in several 
related works presented in the literature. 
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Figure 4. Developed actuators forces. 
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Figure 5. Mobile platform contribution to the 

developed actuators forces. 
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Figure 6. Fixed-length links contribution to the 

developed actuators forces. 
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Figure 7. Actuators contribution to the developed 

actuators forces. 

 

6 Conclusion 
Dynamic modeling of parallel manipulators presents 

an inherent complexity. Despite the intensive study in 
this topic of robotics, mostly conducted in the last two 
decades, additional research still has to be done in this 
area. 
In this paper an approach based on the manipulator 

generalized momentum is explored and applied to the 
dynamic modeling of parallel manipulators. The 
generalized momentum is used to compute the kinetic 
component of the generalized force acting on the 



mobile platform. Each manipulator rigid body may be 
considered and analyzed independently. Analytic 
expressions for the rigid bodies’ inertia and Coriolis 
and centripetal terms matrices are obtained, which can 
be added, as they are expressed in the same frame. 
Having these matrices, the kinetic component of the 
generalized force acting on the mobile platform may 
be easily computed. This component can be added to 
the gravitational part of the generalized force, which 
is obtained through the manipulator potential energy. 
The proposed approach is completely general and 

can be used as a dynamic modeling tool applicable to 
any mechanism. 
The obtained dynamic model was found to be 

computationally much more efficient than the one 
resulting from applying the Lagrange method using 
the Koditschek representation. Its superiority 
manifesting precisely in the computation of the 
matrices requiring the largest relative computational 
effort: the Coriolis and centripetal terms matrices. 
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