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by stochastic equations is analyzed.
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1. INTRODUCTION

Necessary optimum control conditions of nonlinear sto-
chastic systems with delay are analyzed. Using phase space
extension, the initial process, which is described by a
system of stochastic differential equations with delay, is
reduced to a diffusion markovian process. To research the
necessary optimum conditions, proof patterns, described
in Rodnishev (2001 a,c) are used.

2. THE PROBLEM STATEMENT

It is required to define the optimum control u, which gives
minimum to a terminal functional

I0 () =
∫
Ω

Φ0(x, a)p(tk, x)dx (1)

characterizing the effectiveness of a controlled system. The
behavior of the controlled system over time-interval [t0, tk]
is described by nonlinear stochastic differential equations
with delay

dXi = ϕi (t,X (t) , X (t− τ) , u, a) dt

+
n∑

j=1

σij (t,X (t)) dηj (t), (2)

X (t) = φ (t) , t ∈ [t0 − τ, t0] .
Here t is a time; t0, tk – initial and final points of the time-
interval being considered [t0, tk]; τ is a constant delay; X(t)
is n-dimensional vector function of phase coordinates state
being defined over time-segment [t0 − τ, t0] by a function
φ (t); dηj(t) are stochastic Stratonovich differentials of
uncorrelated Wiener processes ηj(t), with intensities Gη

j ;
u(t) is a deterministic r−dimensional section-continuous
vector control function; a is a deterministic l−dimensional
vector of controlling parameters, which defines construc-
tive as well as energy parameters of the system; p(tk, x)
– a distribution density of the state vector components of

the system at a finite time-point tk; x is a realization of
the state vector; Φ0(x, a) is a given function, and∫

Ω

=

∞∫
−∞

· · ·
∞∫

−∞︸ ︷︷ ︸
n

is n - fold multiple integral.

As it is known, the process described by (2), in the general
case, is not marcovian, and Kolmogorov–Fokker–Plank
(KFP) techniques cannot be applicable to it. So, to bring
the process (2) to the markovian one, let us expand the
phase space by excluding the delay from the system (2).
To do this, let us cover the time-interval [t0, tk] with a
lattice having increments τ and nodes tq = t0 +qτ, q =
1, . . . , N . Here q is number of an interval [tq−1, tq] with
length tq − tq−1 = τ , N − the number of intervals,
tk = t0 + Nτ . Let us assign to s the current time over
interval [tq−1, tq] = τ and introduce a state vector of the
system

Xq(s) = (X1(tq−1 + s), X2(tq−1 + s), . . . , Xn(tq−1 + s))

over interval [tq−1, tq], where s ∈ [0, τ ] ; the upper index
designates an interval number, the lower index – a number
of a component of the states vector. Let us similarly
designate a control over interval [tq−1, tq] as a vector
function

uq(s) = (u1(tq−1 + s), u2(tq−1 + s), . . . , ur(tq−1 + s)) ,

and additive disturbances

ηq(s) = (η1(tq−1 + s), η2(tq−1 + s), . . . , ηn(tq−1 + s)) .

Let us introduce an extended state vector with phase state
components of the system X1,2,...,q(s) = (X1(s), X2(s), . . . ,
Xq(s)) over consecutively adjoining intervals [tq−1, tq],
q = 1, . . . , N . Then, in accordance with Bellman’s optimal-
ity principle, with control components of the system over
consecutively adjoining intervals [tq−1, tq], q = 1, . . . , N ,



the initial problem (1)–(2) is reduced to the definition of
control u1,2,...,q(s) =

(
u1(s), u2(s), . . . , uq(s)

)
which gives

minimum to the functional

I0 (u) =
∫

ΩN

Φ0(xq, a)p(τ, x1,2,...,N )dx1,2,...,N → min, (3)

characterizing the control efficiency of the system, its
behavior being described by the stochastic differential
equations over the time intervals [t0, tk] by consecutively
adjoining intervals [tq−1, tq], q = 1, . . . , N

dXm
i = ϕi(tm−1 + s,Xm, Xm−1, um, a) ds

+
n∑

j=1

σij (tm−1 + s,Xm) dηm, (4)

s ∈ [0, τ ] , X1
i (t0) = xi0(s) = φi (t0 − τ + s) ,

Xm
i (tm−1) = Xm−1

i (tm−2 + τ),

(i = 1, . . . , n), (m = 1, . . . , q), (q = 1, . . . , N).

Here ϕi(tm−1 + s, xm, xm−1, um) , σ
(
ijtm−1 + s, xm) are

given non-random, non-anticipative functions. Right-hand
members of (4) uniformly satisfy known requirements
(Gikhman and Skorokhod, 1977) about the existence of
(4) over the control um. The control uq(s), defined over
interval [tq−1, tq], in accordance with Bellman’s optimality
principle, does not worsen the optimal control over preced-
ing intervals. Therefore, expanding the state vector of the
system over consequently adjoining intervals [tq−1, tq], the
equations (4) consider the control

u1,2,...,q(s) = (u∗1(s), u∗2(s), . . . ,

u∗m(s), . . . , u∗q−1(s), uq(s)),

where the asterisk indicates the optimum controls defined
over preceding intervals. The equations (4) describe a
diffusion markovian process over the time interval [t0, tk]
in a consecutive manner over adjoining segments[tq−1, tq].
The probability density p(s, x1,2,...,q) of the process states
X1,2,...,q(s) =

(
X1(s), X2(s), . . . , Xq(s)

)
over consecu-

tively adjoining segments [tq−1, tq] satisfies the KFP- equa-
tion. (6), at nodes tq – conjugation conditions (7).

Thus, expanding the state vector of the system, the
stochastic problem (3), (4) is reduced to the equivalent
deterministic problem with distributed parameters (5) -
(7) relative to the probability density p(s, x1,2,...,q) of the
state vector of the system:

I0(u) =
∫

ΩN

Φ0(xq, a)p(τ, x1,2,...,N )dx1,2,...,N → min, (5)

∂p(s, x1,2,...,q)
∂s

= L(s, x1,2,...,q, u
q, a)p(s, x1,2,...,q), (6)

p(s, x1,2,...,q) =

= p(s, x1)p(s, x2|τ, x1)p(s, x3|τ, x2) · · · p(s, xq|τ, xq−1)

p(0, x1) = δ(x1 − x0), p(0, xq) = p(τ, xq−1), (7)

(q = 1, . . . , N), ∈ [0, τ ].

Here in (5), (6)

ΩN =
N⋃

m=1

Ωm;
∫

Ωm

=

∞∫
−∞

· · ·
∞∫

−∞︸ ︷︷ ︸
n

;

L(s, x1,2,...,q, u
q, a)p(s, x1,2,...,q) =

q∑
m=1

n∑
i=1

∂

∂xm
i

Am
i (s, xm, xm−1, um)p(s, x1,2,...,q)

+
1
2

q∑
m=1

n∑
i=1

∂2

(∂xm
i )2

[Bm
ii (s, xm) p(s, x1,2,...,q)],

where Am
i (s, xm, xm−1, um, a) are the drift coefficients of

the process described in (4),

Am
i (s, xm, xm−1, um, a) = ϕi(tm−1 + s, xm, xm−1, um, a)

+
1
2

n∑
j=1

∂σij(tm−1 + s, xm)
∂xm

i

σij(tm−1 + s, xm) Gη
j ;

Bm
ii (s, xm) are coefficients of diffusion:

Bm
ii (s, xm) =

n∑
j=1

(σij(tm−1 + s, xm))2Gη
j .

3. NECESSARY CONDITIONS OF OPTIMUM
PROGRAM CONTROL

The conditions of optimum control of the problem (5)–(7),
are set by theorem 1, similarly to Rodnishev (2001a).

Theorem 1. (weak principle of the minimum). Let
(p∗, u∗q, a∗) is the optimum solution to the problem (5)–
(7). Then, there exists an identically nonzero function
λ(s, x1,2,...,q) ∈ C1,2 that

a) λ(s, x1,2,...,q) satisfies the solution to the Cauchy prob-
lem
∂λ(s, x1,2,...,q)

∂s
+ L∗(s, x1,2,...,q, u

q, a)λ(s, x1,2,...,q) = 0,(8)

s ∈ [τ, 0] , λ (τ, x1,2,...,q) = Φ0 (xq) ;

b) for almost all s ∈ [τ, 0] and all uq(s)

M

(
∂R

∂uq

)
(uq − u∗q) ≥ 0; (9)

c) the parameters a∗ satisfy the condition

M

(
∂0(xq, a)

∂a

)
+

τ∫
0

M

(
∂R

∂a

)
dt = 0. (10)

The optimum control satisfies the expression

M

(
∂R

∂uq

)
= 0. (11)

In relations (8)–(11)
L∗(s, x1,2,...,q, u

q, a)λ(s, x1,2,...,q) =
q∑

m=1

n∑
i=1

∂λ(s, x1,2,...,q)
∂xm

i

Am
i (s, xm, xm−1, um, a)



+
1
2

q∑
m=1

t
n∑

i=1

∂2λ(s, x1,2,...,q)
(∂xm

i )2
Bm

ii (s, xm),

R = L∗(s, x1,2,...,q, u
q, a)λ(s, x1,2,...,q),

and M(·) is the expectation operator.

To establish necessary optimum conditions of a strong
extremum using the time transformation (Girsanov, 1970)
s → µ

s(µ) =

µ∫
0

w(µ)dµ,µ ∈ [0, 1],

µ(1) = τ, w(µ) ≥ 0, (12)

let us pass from the problem (5)–(7) to the equivalent
problem (13)–(16)

I0(u) =
∫

ΩN

Φ0(xq)p(µ(1), x1,2,...,N )dx1,2,...,N → min, (13)

∂p(µ, x1,2,...,q)
∂s

= w(µ)L(µ, x1,2,...,q, u
q, a)p(µ, x1,2,...,q), (14)

p(µ, x1,2,...,q) = p(µ, x1)p(µ, x2|µ(1), x1)p(µ, x3|µ(1), x2) · ··

· · ·p(µ, xq|µ(1), xq−1),

p(0, x1) = δ(x1 − x0), p (0, xq) = p
(
µ(1), xq−1

)
, (15)

( q = 1, . . . , N), µ ∈ [0, 1],

w(µ) ≥ 0. (16)

Here

uq(µ) =
{

uq(s(µ)) at µ ∈ R1,
arbitrary at µ ∈ R2.

R1 = {µ ∈ [0, 1] : w( µ) > 0},
R2 = {µ ∈ [0, 1] : w( µ) = 0}.

It is quite clear, that the solution (p∗, u∗qa∗, w∗) to the
problem (13)–(16) is also the solution to a problem differ-
ent from (13)–(16); the difference is that the control u∗q

is being fixed and the solution (13)–(16) is being searched
over w(µ). Since the limitation (16) has the appearance of
w(µ) ∈ W ⊂ E1 and W is a convex set in E1 having an
internal point (a positive semi-axis) we shall find out that
in accordance with (9) for w∗(µ) the condition

M

(
∂R

∂w

)
(w − w∗) ≥ 0 , (17)

is met when applying the local principal of the min-
imum (theorem 1) to the problem (13)–(16) at the
fixed control u∗q relative to control w(µ) where R̄ =
w(µ)L∗(s, x1,2,...,q, u

q, a)λ(s, x1,2,...,q). Taking into account
the definition of R from (17) we get

M [R(µ, x1,2,...,q, u
∗q, a, λ)](w − w0) ≥ 0 (18)

for almost all µ ∈ [0, 1] and w(µ) ≥ 0. From this, it follows
that M [R(µ, x1,2,...,q, u

∗q, a, λ)] = 0 for almost all µ ∈
R1 = {µ : w∗(µ) > 0} and M [R(µ, x1,2,...,q, u

∗q, a, λ)] ≥ 0
for almost all µ ∈ R2 = {µ : w∗(µ) = 0}. Drawing an

analogy (Girsanov, 1970), the construction w∗(µ), u∗q(µ),
where w∗(µ) is given as

w∗(µ) =
{

τ − 0 , µ ∈ R1,
0 , µ ∈ R2 = [0, 1]\R1,

after the transfer from µ → s : µ(s) = inf {µ : s(µ) = s},
we get:

M [R(s, x1,2,...,q, u
∗q, a, λ)] = 0,

M [R(s, x1,2,...,q, u
q, a, λ)] ≥ 0

for almost all s ∈ [0, τ ].

Thus, using the reduction of the problem (5)–(7) in the
form (13)–(16) and applying the theorem 1 to it, we get
necessary optimum conditions of the strong extremum,
which is formulated as the principle of minimum by

Theorem 2 (the strong local minimum). Let (p∗, u∗q, a∗)
be the optimum solution to the problem (5)–(7). Then
there exists an identically nonzero function λ(s, x1,2,...,q) ∈
C1,2 that

a) λ(s, x1,2,...,q) satisfies the solution to the boundary
problem (8),

b) for almost all s ∈ [0, τ ], the minimum M [R(s, x1,2,...,q,
uq, a, λ)] with respect to the variable uq corresponds to the
optimum control u∗q.

4. NECESSARY CONDITIONS OF OPTIMUM
CONTROL WITH FEEDBACK

From theorem 2, at fixing the realizations of control vec-
tor Xq(s), the conditions of optimum control with feed-
back are ensued as limiting (Rodnishev, 1991a). Optimum
control u∗q = u∗q(s, xq) is defined as a local control;
this local control is connected with the program control
u∗q(t) = u∗q(s, xq, t), t ∈ [s, τ ] and its corresponding state
xq = Xq(s) relative to the fixed initial point (s, xq) with
the expression

u∗q(t) = u∗q(s, xq, t)||t=s =u∗q(s, xq)

over each time point s ∈ [0, τ ]. The solution to the
equation (6) is defined by the probability density of the
transition p(s, xq, τ, Xq(τ)) relative to the point (s, xq).
As the efficiency assessment of the control, the following
criteria is considered:

Iq
0 (s, xq) = minMs,xq (Φ0 [Xq(τ), a]) . (19)

This criteria represents the function of a point xq(s) =
Xq(s) of the phase space of the system at the time point
s, which characterizes the effectiveness of control uq(t)
over the time segment [s, τ ] under the condition that the
representation point in the phase space was in the state
Xq(s) = xq at the time point s. The functional (18),
relatively to the point (s, xq) and the probability density
of the transition p(s, xq, t, yq), is considered at it as a
conditional mathematical expectation at the time point
τ under the condition that the system was in the state
Xq(s) = xq at the time point s.

The theorem 3 establishes the necessary optimum control
conditions uq = uq(s, xq).



Theorem 3. Let u∗q = u∗q(s, xq) be optimum control,
which delivers minimum to the criteria (18) at each (s, xq).
Then there exists such a function λ(s, x1,2,...,q) ∈ C1,2 that

a) λ(s, x1,2,...,q) satisfies the Bellman’s equation
∂λ(s, x1,2,...,q)

∂s
+

min
uq

L∗(s, x1,2,...,q, u
q, a)λ(s, x1,2,...,q) = 0, (20)

s ∈ [τ, 0], λ(τ, x1,2,...,q) = Φ0(xq);

b) the optimal control uq = uq(s, xq) satisfies the condition
L∗(u∗q(s, xq), ·)λ(s, x1,2,...,q) =

= min
u(q)

L∗(uq(s, xq), ·)λ(s, x1,2,...,q), ) at alls ∈ [0, τ ] ; (21)

c) the parameters a∗ satisfy the condition

∂Φ0(xq, a)
∂a

+

τ∫
0

∂R

∂a
dt = 0. (22)

5. EXAMPLE

As an example, let us consider the problem of optimum
control synthesis, which is formulated in the following way.
It is required to define the control u = u(t, x) under the
condition |u | ≤ 1, which gives minimum to the functional:

M((x(3))2) → min, (23)

which characterizes the state deviation of the system X(t),
relative to the mathematical expectation mx(t) = 0 at
t = 0. The functioning of the controlled system with the
constant delay τ = 1 at t ∈ [ 0; 3 ] is described by the
equation:

ẋ(t) = −3.2x(t) + 3.2x(t− 1) + 3.2u(t) + ξ(t). (24)

To exclude the delay, let us introduce notations:
s ∈ [0; 1],
x(1)(s) = x(s); x(2)(s) = x(1 + s); x(3)(s) = x(2 + s);
u(1)(s) = u(s); u(2)(s) = u(1 + s); u(3)(s) = u(2 + s);
ξ(1)(s) = ξ(s); ξ(2)(s) = ξ(1 + s); ξ(3)(s) = ξ(2 + s).

Then, the problem (22)–(24) is reduced to the following
sequence of problems:

M((x(1)(1))2) → min,

ẋ(1)(s) = −3.2x(1)(s) + 3.2u(1)(s) + ξ(1)(s),
x(1)(0) = 0, t ∈ [0; 1].

(25)

M((x(3))(1)2) → min,

ẋ(1)(s) = −3.2x(1)(s) + 3.2u∗(1)(s) + ξ(1)(s), (26)

ẋ(2)(s) = −3.2x(2)(s) + 3.2x(1)(s) + 3.2u(2)(s) + ξ(2)(s),

x(1)(0) = 0, x(2)(0) = x(1)(1), t ∈ [1; 2].

M((x(3)(1))2) → min

ẋ(1)(s) = −3.2x(1)(s) + 3.2u∗(1)(s) + ξ(1)(s) (27)

ẋ(2)(s) = −3.2x(2)(s) + 3.2x(1)(s) + 3.2u∗(2)(s) + ξ(2)(s),

ẋ(3)(s) = −3.2x(3)(s) + 3.2x(2)(s) + 3.2u(3)(s) + ξ(3)(s),

x(1)(0) = 0, x(2)(0) = x(1)(1), x(3)(0) = x(1)(2), t ∈ [2; 3].

where u∗(1)(s) and u∗(2)(s) are known functions of the
variable s being defined by the solutions (25) and (26).

In compliance with the theorem 2, we will search for the
optimum control u∗(1)(s) in problem (25) considering the
conditions of the minimum:

R(s, x(1), u(1), λ) = −3.2x(1) ∂λ

∂x(1)

+3.2u(1) ∂λ

∂x(1)
+

1
2

∂2λ(
∂x(1)

)2 .

It follows from this, that the optimal control is defined by
the expression:

u∗(1)(s) = −sign
∂λ

∂x(1)

where λ = λ
(
s, x(1)

)
for s ∈ [1; 0] is defined by the solution

to equation (29) in the reverse time:
∂λ

∂s
= 3.2x(1) ∂λ

∂x(1)
+ 3.2

∣∣∣∣ ∂λ

∂x(1)

∣∣∣∣− 1
2

∂2λ(
∂x(1)

)2 , (28)

λ
(
1, x(1)

)
=

(
x(1)(1)

)2

.

To define the solution (28) in the straight time, let us
introduce a substitute τ = 1−s; then we get the following:

∂λ

∂τ
= −3.2x(1) ∂λ

∂x(1)
− 3.2

∣∣∣∣ ∂λ

∂x(1)

∣∣∣∣ +
1
2

∂2λ(
∂x(1)

)2 , (29)

λ
(
0, x(1)

)
=

(
x(1) (1)

)2

.

We will search for the solution (29) λ = λ
(
τ, x(1)

)
as a

linear quadratic form with indefinite coefficients

λ(τ, x1) = k0(τ) + k1(τ)x(1) + k11(τ)
(
x(1)

)2

;

with initial conditions, which, in the general case, accord-
ing to (Krasovsky, 1974), are defined by the formula:

k1,2,..,m(0) =
1

(m− 1)!

(
∂mλ

∂x(1)∂x(2)...∂x(m)

)
x(1)=x(2)=...=x(m)=0

. (30)

Substituting derivative values λ = λ
(
τ, x(1)

)
in equation

(29) and equating the coefficients at x(1), we get the
system of ordinary differential equations for defining the
coefficients k0(τ), k1(τ), k11(τ) over the segment [0; 1] for

∂λ
∂x(1) ≥ 0,

k̇0 = −3.2k1 + k11,

k̇1 = −3.2k1 − 6.4k11,

k̇11 = −6.4k11

(31)

and for ∂λ
∂x(1) < 0

k̇0 = 3.2k1 + k11,

k̇1 = −3.2k1 + 6.4k11, (32)

k̇11 = −6.4k11,

which are connected with the function derivatives at the
origin of coordinates by the initial conditions (30):

k0(0) = k1(0) = 0, k11(0) = 2.

Having solved (30) and (32), we get



k1(τ) = 4e−6.4τ − 4e−3.2τ if ∂λ
∂x(1) ≥ 0;

k1(τ) = 4e−3.2τ − 4e−6.4τ if ∂λ
∂x(1) < 0;

k11(τ) = 2e−6.4τ .

Taking into consideration
∂λ

∂x(1)
= k1(τ) + 2k11(τ)x(1),

and definition k1(τ), k11(τ), we get the optimum control
u∗(1) = u∗(1)(τ, x(1)) of the problem (25):

u∗(1)(τ) = 1, if
∂λ

∂x(1)
= 4(e−3.2τ − e−6.4τ + x(1)e−6.4τ ) < 0;

u∗(1)(τ) = −1,

if
∂λ

∂x(1)
= 4(e−6.4τ − e−3.2τ + x(1)e−6.4τ ) ≥ 0.

Similarly, after the substitution of the optimum control
u∗(1) in (26), the optimum control u∗(2) = u∗(2)(s, x(2)) of
the problem (26) is defined; after the substitution of the
optimal control u∗(1), u∗(3) in (27), the optimum control
u∗(3) = u∗(3)(s, x(3)) of the problem (27) is defined.

6. CONCLUSIONS

The formulated principle of the minimum lets us research
the problem of optimum control of nonlinear stochastic
systems with constant delay on the unified methodological
basis. The extension of the phase space of the initial sto-
chastic problem of the optimum control with delay makes
it possible to reduce it to the sequence of optimization
problems of control over time intervals with the length of
delay. This enables to use the theory of diffusion markovian
processes in order to search for the optimum control of the
stochastic systems with delay, which enables to use the
Kolmogorov-Fokker-Plank equation techniques.

It is worth mentioning that the suggested approach to
defining the optimum control of nonlinear stochastic sys-
tems with delay leads to considerable dimensional increase
of each problem; it also requires finding of analytical solu-
tions to Kolmogorov-Fokker-Plank equation and Bellman
equation o being conjugated.

As it is known, the explicit solutions to these problems
can only be obtained for linear systems (Krasovsky, 1974;
Kazakov, 1977) and for few types of nonlinear systems
(Chernous’ko and Kolmanovsky, 1978; Kolosov, 1984) of
no higher than second order. Therefore, to solve the non-
linear stochastic systems of higher order with delay, it is
necessary to use approximate numerical methods of search-
ing for the optimum control (Rodnishev, 2001b) relative
to statistics – semi-invariants (coamulants) (Bodner et al.,
1987).
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