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Abstract 
There is an increasing interest in the study of 

genetic regulatory networks, and in addition to 
experimental tools, specific tools for modelling and 
simulation recently emerged, allowing systematic 
behaviour prediction of large complex systems. 
Since there is a usual lack of information of 
biochemical reaction networks, qualitative 
simulation tools, requiring only specification of 
inequality-like algebraic constraints, are preferred to 
quantitative ones. Starting from a simple piecewise-
linear model of a two genes regulatory network 
(TGNR) described in the literature, this paper 
proposes an alternate qualitative modelling 
technique, which extends a hybrid control systems 
(HCS) framework from control engineering. The 
thresholds protein concentrations partition the state 
space into hyperrectangular open regions and the 
resulting qualitative model is basically a logical 
abstraction of the families of continuous trajectories 
mapped to this partition. The relations of this model 
to numerical simulation results and a comparison 
with the corresponding qualitative model in the 
Genetic Network Analyzer (GNA) approach are 
presented. 

Key words 
biological systems, hybrid control systems, 

piecewise-linear systems, qualitative models. 

1 Introduction and motivation 
In addition to experimental approaches, computer 

tools for modelling and simulation of cellular 
processes, involving diverse components and 
complex interactions, receive an increasing interest 
from researchers [Takashi et al., 2002]. The basic 
challenge is: given sufficient information about the 
biochemical system, can the software tool predict its 
behaviour? Quantitative models of biological 

reaction networks, based on differential equations, 
require specification of numerical values for kinetic 
parameters and molecular concentrations, which 
usually are not exactly known.  

In contrast, qualitative modelling and simulation 
tools, based on algebraic inequality-like restrictions 
imposed to the state variables, have recently 
emerged as an efficient approach in systems biology. 
Such an example is the Genetic Network Analyzer 
(GNA), adapted for qualitative simulation of genetic 
regulatory networks [de Jong et al., 2003a;b]. The 
basic model is a piecewise-linear (PL) differential 
system, whose right-hand side changes when the 
state variables, represented by protein 
concentrations, reach given threshold values. The 
evolution of continuous trajectories through the 
partition derived from the threshold limits is 
abstracted to a qualitative model, which is basically 
a logic automaton: the discrete states correspond to 
partition domains in the continuous state space while 
transitions occur when threshold limits are crossed.  

This paper proposes an alternate qualitative 
modelling approach, based on a hybrid control 
systems (HCS) framework, firstly introduced by 
Antsaklis and his co-workers [Stiver, Anstaklis and 
Lemmon, 1994]. For a two-genes regulatory 
network (TGNR) PL model, a discrete event 
abstraction, called DES-plant, is constructed and 
compared to the corresponding GNA qualitative 
model reported in the literature. Also, a switching 
control law is deduced and implemented in 
MATLAB simulation experiments, making possible 
a comparison between the TGNR qualitative 
evolutions and their numerical counterparts in the 
partitioned state space. The paper is organized as 
follows. The basic PL model of genetic regulatory 
networks is presented in Section 2, followed by a 
presentation of the HCS framework in Section 3. 
The core is the construction of the DES-plant 
abstraction, which translates the interaction between 
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the continuous trajectories and the hypersurfaces of 
the state partition. The qualitative DES-plant model 
of the TGNR, simulation experiments and a 
comparative discussion are presented in Section 4, 
followed by concluding remarks. 

2 A piecewise linear model of a TGNR 
The piecewise-linear model of genetic regulatory 

networks dynamics, firstly introduced by [Glass and 
Kaufmann, 1973] and used by [de Jong et al., 2003] 
for qualitative simulation with the GNA tool is 
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3 A HCS framework and the DES-plant model 
In the HCS structure, the continuous plant is 

controlled, through an interface, by a discrete event 
controller (Figure 2).  

Starting from a partition of the continuous state-
space, the plant coupled to the interface is abstracted 
to a discrete event system (DES), called DES-plant, 
and then the controller is built within the DES 
theory.  

In the sequel, a technique used for DES-plant 
model construction is applied to design a qualitative 
model of the TGNR. Firstly, the structure of the 
HCS is reviewed in brief. 

A B 

1 2  
Figure 1. The example of  TGNR in [de Jong et al., 2003]; the 
genes 1 and 2 code each one for regulatory protein (A and B). 
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Figure 2. The architecture of a HCS. 

 

3.1 The structure of the HCS 
The continuous plant is modelled by the 

differential system 
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where and  are the 
state and control vector respectively, at time 
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X is the continuous state space. The set of admissible 
control values },,{ 1 MU uu K=  is bijectively 
mapped to the alphabet of control-symbols 

},,{~
1 MrrR K= . (6) 

The interface converts signals between the plant 
and the controller and it comprises the actuator and 
the event generator. Consider the bijective function 
between control values and the related alphabet, 
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The actuator converts a string of control-symbols 
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logical time - to a vector of piecewise constant 
control-signals for the plant 
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The state space partition. The event generator 

converts the plant’s state trajectory , evolving in 
the partitioned state space, into a string of plant-
symbols. Consider a set of N indexed smooth 
functionals, with  a natural number,  
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which defines the partition of the state space X. 
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The cellular space  is the set of all 
classes of equivalence of the relation rel. 
Consequently, in each cell, any functional , 

, has a constant sign. Each cell is 
bijectively labelled with a symbol from the alphabet 
of the plant’s discrete states 
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with )ker(),,(),,( iqsisqi hpphApphA ⊆= .  

A plant-event denoted (i+) or (i−), , occurs 
whenever the continuous trajectory  crosses the 

hypersurface , , in the positive or 
negative direction, respectively. A sufficient 
condition for the occurrence of a plant-event (i+) at 
the time 

Ni :1∈
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0))(( =ei th x  ∧ ,  0))(( >ei th x& (14) 

which means that, at R∈et , the continuous 
trajectory )(⋅x  crosses  in the positive 

direction, from  to . A similar condition can 
be formulated for the plant-event (i−). The alphabet 
of plant-symbols is 
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where ε is the silent event and the plant-symbol 
/ , +iz −iz Ni :1∈ , is sent through the generator 

whenever the associated plant-event (i+)/(i−) occurs 
(Figure 3). 

The DES-plant model is the automaton 
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Figure 3. The occurrence of a plant event (i+) and of a discrete 

state transition  in a DES-plant - an example. sq pp →

If there is no hysterezis, the DES controller 
coupled to the interface behaves like a switching 
control law 
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3.2 A criterion for the qualitative construction of 
the DES-plant model 

Consider the following assumptions. 
A0. In the HCS, the plant events do not occur 
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Consequence of A1: the trajectories do not pass 

through the intersection of two or several 
hypersurfaces of the partition (7). ◊ 
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Based on Criterion 1, the DES-plant automaton can 

be constructed without integrating the equations (5).  

4 The qualitative model of the TGNR as a DES-
plant abstraction in a HCS 

Based on the HCS representation of the TGNR PL 
model, the discrete dynamics deduced from the 
DES-plant automaton is compared to the discrete 
dynamics in the GNA qualitative model, on one 
side, and to numerical simulation results of the PL 
TGNR model, on the other side  

4.1 Construction of the DES-plant automaton 
Based on the model (3) with constraints (4), 

consider the state space partition defined by  
1
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The TGRN model (3) can be rewritten as 
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with the components of the switching law (16) 
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Based on the state space partition and on the 
qualitative states specified in Figure 4a and applying 
Criterion 1, the DES-plant model of the TGNR in 
Figure 4b is obtained.  
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Figure 4. (a) The state space partition of TGNR in the HCS framework, including the qualitative states , the symbolic states ,  

and the local continuous state velocities , 
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Remark 1. Note that A0 does not hold for the 

system (22)-(23). However, this assumption regards 
only isolated trajectories, so it is “generically” true.◊ 

4.2 MATLAB simulation experiments. A 
comparison with the GNA qualitative model 

In contrast with the partition in Figure 4a, 
considered in the HCS framework, the partition 
proposed by de Jong and colleagues [2003a;b], 
within the GNA qualitative approach (Figure 5) 
includes, as studied domains, not only open regions, 
but also isolated points (like ) or cell boundaries 
(like  or ); these are not taken into account as 
discrete states in the DES-plant automaton in Figure 
4b. The corresponding differences are illustrated in 
the sub-graphs in Figure 6. 
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The results of simulation experiments based on 
MATLAB implementation of equations (22)-(23), 
are depicted in Figure 7 and 8. Despite that fact that 
the qualitative model in the HCS does not capture 
the trajectories evolving through the intersection of 
the partition hypersurfaces (see Remark 1), such 
continuous evolutions are generated in MATLAB, 
when implementing (22)-(23), as illustrated in 
Figure 7 by the trajectory started in . 03x

In the GNA qualitative approach, there are 
trajectories ending on the switching domains  

and , which belong in fact to the hypersurfaces 
of the partition. 

4D
16D

In the HCS framework, simulation experiments 

show that these trajectories switch on the boundary 
between two adjacent cells and execute a cycle 
between the corresponding discrete states of the 
DES-plant model: examples are the trajectories 
starting in  and  in Figure 7 and also all the 
trajectories in Figure 8. 
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Figure 5. State space partition in [de Jong et al., 2003]:  - 

target equilibria of the regulatory domains , ; , 

- switching domains; compared to Figure 4a, 
.  

)( iDϕ
iD 3:1=i 2D

4D
)ker()ker( 31

7 hhD ∩=

 

1QS
11QS

2QS

6QS

7QS

3QS

4QS

16QS  
(a)  

p2 p3

p5 

r1/z1+ r2/z2+ 
r4/z2− 

r4/z1− 

r4/z3− 

r3/z4+ 

p1

p4

p7

r1/z3+ 

r4/z4−

 
(b) 

Figure 6. (a) Transition graph resulting from GNA simulation of 
the TGNR starting in , - qualitative states associated to 
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the DES-plant model in Figure 4b;  (  has no 
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5 Concluding remarks 
The study of qualitative models is important for 

behaviour prediction in systems biology, where in 
general parameter values are known only to reside 
within regions or intervals. In state space terms, 
biochemical interaction processes are usually 
adequately described by classes of PL differential 
systems, with protein concentrations as state 
variables and first-order discontinuous functions in 
the right-hand side. Qualitative modelling firstly 
implies building a state space partition, based on the 
threshold limits in the discontinuous functions. The 
resulting model has discrete states and discrete 
transitions. 

Starting from the hybrid nature of a family of 
genetic regulatory networks models, for which de 
Jong and colleagues has proposed GNA qualitative 
approaches [2003a;b], this paper introduces an 
alternate procedure for qualitative model building, 
with origins in a framework in control engineering.  

In contrast with the GNA qualitative model, the 
proposed partitioning takes into account only open 
regions as domains or cells, which drives to a less 
detailed but more robust qualitative model. Within 
the limits of assumptions A0-A3, the qualitative 
evolutions of the TGNR studied example are 
successfully checked against MATLAB simulation 
experiments. Only A0 does not hold for the studied 

TGNA model, but the referred trajectories are 
isolated. If the qualitative evolution of the DES-
plant model comprises a final cycle between two 
discrete states, this corresponds to switching of the 
simulated continuous trajectory on the adjacency 
boundary between the corresponding open cells.  

Also, if the assumptions A0-A3 hold, the 
construction procedure is simple and robust, and 
does not imply exact knowledge of numerical values 
for systems parameters: a discrete transition models 
a family of continuous trajectories crossing the 
boundary between adjacent domains. Deducing a 
discrete transition in the DES-plant model implies 
only the evaluation of the sign of the scalar product 
between the state velocity and the gradient of the 
crossed hypersurface on the adjacency boundary. 
Thus it is enough to know if the system parameters 
meet algebraic inequality-like constraints.  

Future research directions imply the investigation 
of procedures for automated DES-plant model 
construction, in view of behaviour prediction of high 
order PL models. Also, automated testing of A0-A3 
can be considered for classes of differential systems.   
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