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Abstract: This paper presents an adaptive control experiment by piezoelectric
actuator to cancel the vibration from a flexible arm. In real systems with external
disturbances, the vibration effect due to the inherent elastic deformation of flexible
arm makes the satisfactory control results can not be obtained. To reduce the
vibration effect, based on an external disturbance model with consideration of
dynamics of the piezoelectric actuator, adaptive vibration control experimental
system designed, where the controller is based on Youla-Kucera parametrization
and right coprime factorization. As a practical appeal, experimental results are
shown to support the proposal on the control system design.
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1. INTRODUCTION

Since piezoelectric material actuator is light weight
and high operational speed, the use of this kind
of actuator has been paid attention. Also, since
the piezoelectric actuator can be bonded or em-
bedded along a robot arm easily, in robotic re-
search approach, many researches have been un-
dertaken. As a result, better control performance
can be obtained. Concerning with the selection of
a piezoelectric actuator, it is useful to know how
the physical parameters of the actuator can af-
fect control performance (Dadfarnia, et al., 2003).
That is, the dynamics of the actuator needs to be
considered. In this paper, piezoelectric actuator
based adaptive vibration control of flexible arm
is considered, where the arm is modeled from the
flexible arm used for wafer conveyance in semi-
conductor manufacture process. The importance
of control of the arm is summarized as follows.
Since the semiconductor wafer under conveyance
is damaged by vibration of the flexible arm, the

vibration control is a very interesting subject (To-
moda et al., 2001). The vibration of the arm tip
can be considered as periodic disturbance, in order
to remove the influence of the periodic distur-
bance, a disturbance model needs to be included
in a control system by the internal model princi-
ple. However, the disturbance model contains un-
known parameter, such as frequency, so it is diffi-
cult to apply conventional control techniques, e.g.
PID control, to the disturbance. In this paper, an
adaptive vibration control experimental system is
designed, where the disturbance removal compen-
sator in which a disturbance model is included as
an internal model is designed using Youla-Kucera
parametrization and right coprime factorization
(Inoue et al., 2004). Further, the piezoelectric el-
ement as an actuator is employed. As a practical
appeal, experimental result is shown in order to
verify the validity of the designed control system.

The organization of the paper is as follows. In
Section 2, experimental system is introduced, and



Fig. 1. The experimental system actuated by a
piezoelectric actuator

preliminary of this paper is considered. The design
of adaptive vibration control system is given in
Section 3. In Section 4, the results of experiment
are given.

2. EXPERIMENTAL SYSTEM AND
PROBLEM SETUP

The experimental system (see Fig.1) has roughly
three parts: 1) Flexible arm; 2) Interface; 3) Com-
puter. The flexible arm part consists of a arm
(500(mm) × 20(mm) × 3(mm)), a piezoelectric
actuator (50(mm)× 20(mm)× 0.2(mm)) bonded
at the end part of the arm, an amplifier linking
with the actuator, and a laser sensor for measuring
the vibrating displacement of the arm. The inter-
face part consists of A/D, D/A and Buffer boards.
Computer (Pentium 4, 2.8GHz, 512MB, Windows
XP) demands to process an adaptive control by
using the controller will be given in Section 3,
where the software is Visual C++. The schema of
the experimental system is shown in Fig.2. In Fig.
3, a control input is a moment Mp generated with
the input voltage to the piezoelectric element. An
observation output is the displacement y(l, t) at
the tip of an arm. The control purpose is presum-
ing a disturbance causes vibration on the arm,
estimating the disturbance with an adaptive com-
pensator, and removing the influence, described
by (1).

lim
t→∞ |y(t) − yM (t)| = 0 (1)

where yM (t) is an ideal output to an input r where
disturbance is not added.

yM (t) = T (s)r(t) (2)

3. ADAPTIVE VIBRATION CONTROL
SYSTEM DESIGN

In this section, model of piezoelectric actuator
and flexible arm is derived, and adaptive vibration
controller based on Youla-Kucera parametrization
and right coprime factorization is given.

Buffer
Digital
   I/O

A/D
conv.

D/A
conv.

Signal bus

PC

actuator

laser sensor
Amp.

Fig. 2. Schema of the experimental system
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Fig. 3. Schema of the flexible arm with the piezo-
electric actuator

3.1 Model of piezoelectric actuator and flexible
arm

The input moment to an arm is generated by ex-
pansion and contraction of a piezoelectric element
which is supplied by input voltage. The moment
acts on the attachment part of a piezoelectric
element uniformly (Dadfarnia, et al., 2003; Inoue
et al., 2004). The moment Mp(t) generated with
input voltage V (t) is described by (3).

Mp(t) = Mp0 · V (t) (3)

where Mp0 is a constant decided by the character-
istic of the arm and the piezoelectric element.

Mp0 = −1
2
bEpd31(tb + tp) (4)

b : Width of piezoelectric element

d31 : Piezoelectric charge constant

tp : Thickness of piezoelectric element

tb : Thickness of arm

Ep : Youngs modulus of piezoelectric element

The dynamics of the arm is described by partial
differential equations.

ρS
∂2y

∂t2
+

∂2

∂x2

[
EI

(
1 + C

∂

∂t

)
∂2y

∂x2

]

=
∂2

∂x2
[Mp {H(x− l1) −H(x− l2)}] (5)



where H(·) is Heavyside function and others are
defined below.

l : Length of arm

l1, l2 : Attachment position of piezoelectric element

ρ : Density of arm

S : Cross-section area of arm

E : Youngs modulus of arm

I : Moment of inertia of area

C : Damping modulus

The detailed calculation is shown in Appendix
(Inoue et al., 2004).

3.2 Adaptive vibration controller design

The arm dynamics considered in this paper is

y(l, t) = T (s){Mp(t) +Md(t)} (6)

where Mp(t) is the control input,

T (s) =
∞∑
m=1

( ωm(l)
ρSψm

{ωm′(l2) − ωm
′(l1)}

s2 + km
2Cs+ km

2

)
(7)

where Md(t) is a virtual disturbance which causes
the vibration and unknown and unmeasurable.
Construct the disturbance removal compensator
to make the influence of disturbance Md(t) not
appear in output y(l, t).

In this section, assuming that the characteristic
polynomial of disturbance is known, a distur-
bance removal compensator is made using Youla
Parametrization based on coprime factrization. In
order to remove disturbance completely, it is nec-
essary to include a disturbance model in a control
system by the internal model principle.

First, disturbance which satisfies (8) is considered.

Δ(s)Md(t) = 0 (8)

where Δ is the model of disturbance of Md.

Considering T (s) factored over the ring of proper
stable rational functions given as

T (s) = N(s)D−1(s) = D̃−1(s)Ñ(s) (9)

Y (s)D(s) +X(s)N(s) = I (10)

D̃(s)Ỹ (s) + Ñ(s)X̃(s) = I (11)

Since T (s) is a proper stable rational function,
Ñ(s), D̃(s) and the solution of a Bezout equation
X̃(s), Ỹ (s) can be decided as follows, respectively.

Ñ(s) = T (s) (12)

D̃(s) = I (13)

X̃(s) = 0 (14)

Ỹ (s) = I (15)

As mentioned above, the Youla-Kucera expression
of a stabilization compensator is expressed as (16).

C(s) = [C1(s),−C2(s)] (16)

C1(s) = (D(s) + C2(s)N(s)K(s))

C2(s) = (X̃(s) +D(s)Q(s))(Ỹ (s) −N(s)Q(s))−1

where K(s) and Q(s) are the free parameters
which a designer can set up arbitrarily. Here,
the flexibility of Q(s) is used. From (14)～(16),
a control input becomes (17)

Mp(t) = D(s)K(s)r(t) −D(s)Q(s)T (s)Md(t)(17)

Using this control input, the output of the plant
is as follows.

y(l, t) = N(s)K(s)r(t) + [I −N(s)Q(s)]T (s)Md(t)(18)

If defined as

K(s) = D−1(s), (19)

the output is as follows.

y(t) = yM (t) + yd(t)

yd(t) = [I −N(s)Q(s)]T (s)Md(t) (20)

yd(t) is the influence of the disturbance to an
output. In order to remove this influence, Q(s)
is determined from (8) so that Δ(s) is included in
yd(t).

If N(s) and Δ(s) are right coprime, there exist
Q(s) ∈ RH∞ such that

N(s)Q(s) + Δ(s)Z(s) = I (21)

and

yd(t) = [I −N(s)Q(s)]T (s)Md(t) (22)

= Z(s)T (s)Δ(s)Md(t) (23)

The influence of disturbance is removed from (8).

Q(s) which satisfies (21) should be used so that
the disturbance compensator contains a distur-
bance model in a closed loop as an internal model.
However, when disturbance model Δ(s) is un-
known, Q(s) which satisfies (21) is also unknown.
Then, expressing the unknown coefficients of Q(s)
as unknown parameter matrix θ∗, Q(s) is identi-
fied by identifying θ∗ using an adaptive adjust-
ment rule.
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Fig. 4. Block diagram of the control system

If disturbance Md(t) is defined below,

Md(t) = a sin(ωt+ ν), (24)

disturbance model Δ(s) becomes (25).

Δ(s) =
(s2 + ω2)
(s− λ)2

(25)

Using this model, adaptive compensator is de-
signed.

Q(s) = θ∗T [1, s]T
1

(s+ λ)2l
(26)

θ∗ = [θ1, θ2]T (27)

θ∗ is presumed with the following adaptive com-
pensator (Kroumov et al., 1993).

Internal signal v(t) = T (s)u(t) − y(t)

1st filter ζ(t) =
1

(s+ λ)2
[v(t), sv(t)]

Identification value θ(t)

Control input u(t) = D(s)θT (t)ζ(t)

Output error e(t) = y(t) − yM (t)

Extended error ea(t) = θT (t)N(s)ζ(t)

−N(s)θT (t)ζ(t)

2nd filter ξ(t) = N(s)ζ(s)

Identification error ε(t) = e(t) + ea(t)

Identification rules

θ̇(t) = − Γ(t)ξ(t)ε(t)
c+ ξT (t)Γ(t)ξ(t)

Γ̇(t) = −Γ(t)ξ(t)ξT (t)Γ(t)
c+ ξT (t)Γ(t)ξ(t)

The above compensator is shown in the block di-
agram Fig.4. This adaptive compensator removes
the influence of the disturbance to a plant output.

4. EXPERIMENTAL RESULTS

In this section, two vibration control experiments
are performed. Namely, natural vibration and
forced vibration of the arm are considered.
In the experiment, we set T (s) = TC(s) as follows.

T (s) =
1

αs2 + βs+ γ
(28)

where

α= 4166.6667;β = 623.8553

γ = 12604030.0054

The adaptive compensator is designed for the
modeled portion TC(s) and the dynamics of the
2nd, 3rd and high order mode in real plant is
considered as unmodeled portion. The experiment
is performed using the following parameters.

E = 7 × 1010[N/m2]

ρ= 2700[kg/m3]

l= 0.5[m]

S = 50 × 10−6[m2]

l1 = 0[m]

l2 = 0.1[m]

C = 0.0007

The experimental results for natural vibration are
shown in Fig. 5. Fig.5(top) shows the arm top
point output (dashed line) for without control and
the output (solid line) for the same conditions
using the proposed method, Fig.5(bottom) is the
control input. Further, the experimental results
for forced vibration are shown in Fig. 6. Fig.6(top)
shows the arm top point output (dashed line) for
without control and the output (solid line) for
the same conditions using the proposed method,
Fig.6(bottom) is the control input. Comparing
the results, the proposed compensation algorithm
shows a better vibration control performance. We
note that the controller output to the piezoelectric
actuator is limited as −200[V ] ∼ +200[V ] in the
above experiments.

5. CONCLUSION

Adaptive vibration control experiment by piezo-
electric actuator to cancel the vibration from
a flexible arm has been considered in this pa-
per. The vibration controller is designed by using
Youla-Kucera parametrization and right coprime
factorization approach. Two experimental results
on natural vibration and forced vibration show the
validity of the adaptive vibration controller with
piezoelectric actuator.
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Fig. 5. Experimental result (Natural Vibration)
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Fig. 6. Experimental result (Forced Vibration)
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6. APPENDIX

First, consider the following natural vibration
equation (Inoue et al., 2004).

ρS
∂2y

∂t2
+

∂2

∂x2

[
EI

(
1 + C

∂

∂t

)
∂2y

∂x2

]
= 0 (29)

Using functions ω(x) and f(t), separate y(t) =
ω(x)f(t) by the variables x and t.

d2f(t)
dt2

+ k2C
df(t)
dt

+ k2f(t) = 0 (30)

d4ω(x)
dx4

− λ4ω(x) = 0, λ4 =
k2ρS

EI
(31)

Considering the boundary conditions of an arm,
(32) is derived.

ω(0) = 0,
dω(0)
dx

= 0

d2ω(l)
dx2

= 0,
d3ω(l)
dx3

= 0

1 + cosλl coshλl = 0 (32)

The solution of (32) becomes as follows.

λ1l = 1.875, λ2l = 4.697, λ3l = 7.855, · · ·
With λm(m = 1, 2, 3, · · ·), ωm(x) can be expressed
like the following formula using an arbitrary con-
stant B.

ωm(x) = B[(sinhλml + sinλml)(coshλmx

− cosλmx) − (coshλml + cosλml)

(sinh λmx− sinλmx)](33)

ωm(x) is called the mth order mode function.
Real vibration becomes the added vibration from
the 1st mode to the infinity mode. Therefore, the
displacement of an arm y(x, t) becomes (34).

y(x, t) =
∞∑
m=1

ωm(x)fm(t) (34)

Substituting (34) in to (5), (35) is obtained.

∞∑
m=1

(
d2fm
dt2

+ km
2C

dfm
dt

+ km
2fm(t)

)
ωm(x)



=
1
ρS

∂2

∂x2
[Mp(t) {H(x− l1) −H(x− l2)}]

(35)

Taking into account that

l∫
0

ωm(x)ωn(x)dx =
{

0 (m �= n)
ψm (m = n)

it is apparent that

{
d2fm
dt2

+ km
2C

dfm
dt

+ km
2fm(t)

}
ψm =

Mp(t)
ρS

(
dωm(l2)
dx

− dωm(l1)
dx

)
(36)

Then, we have

y(x, t) =
∞∑
m=1

( ωm(x)
ρSψm

{ωm′(l2) − ωm
′(l1)}

s2 + km
2Cs+ km

2

)
Mp(t)

(37)

where ωm′(l2) = dωm(l2)
dx ,ωm′(l1) = dωm(l1)

dx .


