PERTURBATION OF SIMPLE EIGENVALUES OF TIME-INVARIANT SINGULAR LINEAR SYSTEMS WITH ALGEBRAIC OUTPUT EQUATION

Sonia Tarragona
Departamento de Matemáticas
Universidad de León
Spain
sonia.tarragona@unileon.es

Abstract

It is well known that the eigenvalues of a linear dynamical system play a key role in determining the response of the system. Small perturbations in these values may change drastically the dynamics of the system. In this work an analysis of the small perturbation of simple eigenvalues of a time-invariant singular linear system is presented.

Key words

Control systems, eigenvalues, perturbation.

1 Introduction

Let us consider a finite-dimensional singular linear time-invariant system

$$
\left.\begin{array}{rl}
E \dot{x}(t) & =A x(t)+B u(t) \tag{1}\\
y(t) & =C x(t)
\end{array}\right\} \quad x\left(t_{0}\right)=x_{0}
$$

where x is the state vector, u is the input (or control) vector, $E, A \in M_{n \times q}(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})$, $C \in M_{p \times q}(\mathbb{C})$ and $\dot{x}=d x / d t$. We will represent the systems as 4 -tuples of matrices (E, A, B, C). In this paper we will consider the case where $n=q$. For the square case and if $E=I_{n}$ the systems are standard and we will denote them, as 3-tuples (A, B, C).
Singular systems appear in engineering systems such as electrical, chemical processing circuit or power systems, aircraft guidance and Control, mechanical industrial plants, acoustic noise control, among others, and they have attracted interest in recent years.
It is well known that the eigenvalues and eigenvectors of the system matrix play a key role in determining the response of the system. Sometimes it is possible to change the value of some eigenvalues introducing proportional and derivative feedback controls in the system and proportional and derivative output
injection. The values of the eigenvalues that can not be modified by any feedback (proportional or derivative) and/or output injection (proportional or derivative), correspond to the eigenvalues of the singular pen$\operatorname{cil}\left(\begin{array}{cr}s E-A & B \\ C & 0\end{array}\right)$, that we will simply call eigenvalues of the system (E, A, B, C).
Perturbation theory of linear systems has been extensively studied over the last years starting from the works of Rayleigh and Schrodinger [Kato, 1980], and more recently different works as [Benner, Mehrmann and $\mathrm{Xu}, 2002$] and [Rigatos, Siano and Pessolano, 2012], can be found. In [García-Planas and Tarragona, 2011],[García-Planas and Tarragona, 2012] M.I. García-Planas and S. Tarragona introduce the study to singular systems without algebraic output equation. The treatment of eigenvalues used is a tool for efficiently approximating the influence of small perturbations on different properties of the unperturbed system.
Small perturbations of simple eigenvalues with a change of parameters is a problem of general interest in applied mathematics and concretely, this study for the kind of systems under consideration have some interest because in the case where $m=p<n$, the most generic types of systems have $n-m$ simple eigenvalues.
This paper is an extended version of the paper presented by M.I. García-Planas and S. Tarragona to Physcon 2013 [García-Planas and Tarragona, 2013], and the key to the study is the given characterization of simple eigenvalues.
In the sequel and without lost of generality, we will consider systems such that matrices B and C have full rank and $m=p<n$.

2 Equivalent systems

An equivalence relation can be considered in the space of singular linear systems

Definition 2.1. Two singular systems ($E^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}$) and (E, A, B, C) will be called equivalent if, and only if, there exist matrices $P, Q \in G l(n ; \mathbb{C}), R \in$ $G l(m ; \mathbb{C}), S \in G l(p ; \mathbb{C}), F_{A}^{B}, F_{E}^{B} \in M_{m \times n}(\mathbb{C})$ and $F_{A}^{C}, F_{E}^{C} \in M_{n \times p}(\mathbb{C})$ such that

$$
\begin{align*}
& \left(E^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)= \\
& \left(Q E P+F_{E}^{C} C P+Q B F_{E}^{B}, Q A P+F_{A}^{C} C P+Q B F_{A}^{B}\right. \\
& Q B R, S C P) . \tag{2}
\end{align*}
$$

It is easy to check that this relation is an equivalence relation.
If system (E, A, B, C), is in such way that there exist matrices F_{E}^{B} and/or F_{E}^{C} such that $E+B F_{E}^{B}+F_{E}^{C} C$ is invertible, then it is called standardizable, and in this case there exist matrices $P, Q, F_{E}^{B}, F_{E}^{C}$ such that $Q E P+Q B F_{E}^{B}+F_{E}^{C} C P=I_{n}$. Consequently this system is equivalent to a standard one. Notice that the property "to be standardizable" is invariant under the equivalence relation being considered.
If the original system is standard and if we want to preserve this condition under the equivalence relation we restrict the operation to the case where $Q=P^{-1}$, $F_{E}^{B}=0$ and $F_{E}^{C}=0$.

2.1 Eigenstructure

The eigenvalue concept defined for standard systems can be generalized to singular systems in the following manner

Definition 2.2. Let (E, A, B, C) be a system. λ_{0} is an eigenvalue of this system if and only if

$$
\operatorname{rank}\left(\begin{array}{cr}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)<\operatorname{rank}\left(\begin{array}{cr}
\lambda E-A & B \\
C & 0
\end{array}\right) .
$$

We denote by $\sigma(E, A, B, C)$ the set of eigenvalues of the system (E, A, B, C) and we call it the spectrum of the system.

Proposition 2.1. Let (E, A, B, C) be a system. The spectrum of this system is invariant under equivalence relation considered.

Proof. It suffices to observe that

$$
\left.\begin{array}{l}
\operatorname{rank}\left(\begin{array}{ccc}
\lambda E-A & B \\
C & 0
\end{array}\right)= \\
\operatorname{rank}\left(\begin{array}{cc}
Q & \lambda F_{E}^{C} \\
0 & \\
0 & S
\end{array}\right)\binom{\lambda E-A}{C}\binom{P}{C F_{E}^{B}-F_{A}^{B}}
\end{array}\right) .
$$

Definition 2.3. i) $v_{0} \in M_{n \times 1}(\mathbb{C})$ is an eigenvector of this system corresponding to the eigenvalue λ_{0} if and only if, there exist a vector $w_{0} \in M_{m \times 1}(\mathbb{C})$ such that

$$
\left(\begin{array}{cc}
\lambda_{0}\left(E+B F_{E}^{B}\right)-\left(A+B F_{A}^{B}\right) & B \\
C & 0
\end{array}\right)\binom{v_{0}}{w_{0}}=0
$$

for all F_{E}^{B}, F_{A}^{B}.
ii) $u_{0} \in M_{1 \times n}(\mathbb{C})$ is a left eigenvector of the system corresponding to the eigenvalue λ_{0} if and only if, there exist a vector $\omega_{0} \in M_{1 \times p}(\mathbb{C})$ such that

$$
\left(\begin{array}{cc}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{0}\left(E+F_{E}^{C} C\right)-\left(A+F_{A}^{C} C\right) & B \\
C & 0
\end{array}\right)=0
$$

for all F_{E}^{C}, F_{A}^{C}.
Proposition 2.2. Let λ_{0} be an eigenvalue and v_{0} an associated eigenvector of the (E, A, B, C). Then λ_{0} is an eigenvalue and v_{0} an associated eigenvector of $\left(E+B F_{E}^{C}+F_{E}^{C} C, A+B F_{A}^{B}+F_{A}^{C} C, B, C\right)$ for all $F_{E}^{B}, F_{E}^{C}, F_{A}^{B}, F_{A}^{C}$.

Proof. Let $\bar{w}_{0}=w_{0}-\left(\lambda_{0} F_{E}^{B}-F_{A}^{B}\right) v_{0}$.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
I & \lambda_{0} F_{E}^{C}-F_{A}^{C} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\lambda_{0} F_{E}^{B}-F_{A}^{B} & I
\end{array}\right)\binom{v_{0}}{\bar{w}_{0}}= \\
& \left(\begin{array}{lll}
I & \lambda_{0} F_{E}^{C}-F_{A}^{C} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)\binom{v_{0}}{\left(\lambda_{0} F_{E}^{B}-F_{A}^{B}\right) v_{0}+\bar{w}_{0}}= \\
& \left(\begin{array}{ccc}
I & \lambda_{0} F_{E}^{C}-F_{A}^{C} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)\binom{v_{0}}{w_{0}}= \\
& \left(\begin{array}{ll}
I & \lambda_{0} F_{E}^{C}-F_{A}^{C} \\
0 & I
\end{array}\right)\binom{0}{0}=\binom{0}{0}
\end{aligned}
$$

Proposition 2.3. Let λ_{0} be an eigenvalue and u_{0} an associated left eigenvector of the (E, A, B, C). Then λ_{0} is an eigenvalue and u_{0} an associated left eigenvector of $\left(E+B F_{E}^{C}+F_{E}^{C} C, A+B F_{A}^{B}+F_{A}^{C} C, B, C\right)$ for all $F_{E}^{B}, F_{E}^{C}, F_{A}^{B}, F_{A}^{C}$.

Proof. Analogous to the proof of proposition 2.2, taking $\bar{\omega}_{0}=\omega_{0}-u_{0}\left(\lambda_{0} F_{E}^{C}-F_{A}^{C}\right)$.

Remark 2.1. Unlike the case of triples of matrices (E, A, B) (see [García-Planas and Tarragona, 2012]) If λ_{0} is an eigenvalue of the 4-tuple (E, A, B, C) it is not necessarily a generalized eigenvalue of the pair (E, A), as we can see in the following example.

Example 2.1. Let (E, A, B, C) be a system with $E=$ $I, A=\left(\begin{array}{ll}0 & 0 \\ 1 & 2\end{array}\right), B=\binom{3}{0}, C=\left(\begin{array}{ll}1 & 1\end{array}\right)$.

$$
\operatorname{det}\left(\begin{array}{rr}
\lambda E-A & B \\
C & 0
\end{array}\right)=-3 \lambda+3=0
$$

Then, the eigenvalue of the system is $\lambda=1$. Observe that $v_{0}=(-3,3)^{t}$ is an eigenvector associated to $\lambda=$ 1 (there exist $w_{0}=1$).
But $\operatorname{det}(\lambda E-A)=\lambda(\lambda-2)$, so the eigenvalues of the pair (E, A) are $\lambda_{1}=0$ and $\lambda_{2}=2$.

We will distinguish one type of eigenvalue that in some sense is generic.

Definition 2.4. An eigenvalue λ_{0} of the system (E, A, B, C) is called simple if and only if verifies the following conditions

$$
\begin{aligned}
& \text { i) } \begin{aligned}
\operatorname{rank}\left(\begin{array}{cr}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)=\operatorname{rank}\left(\begin{array}{rr}
\lambda E-A & B \\
C & 0
\end{array}\right)-1, \\
\quad \text { and } \\
\quad \operatorname{rank}\left(\begin{array}{cccc}
\lambda_{0} E-A & B & 0 & 0 \\
C & 0 & 0 & 0 \\
E & 0 & \lambda_{0} E-A & B \\
0 & 0 & C & 0
\end{array}\right)= \\
\quad \operatorname{rank}\left(\begin{array}{cr}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)+\operatorname{rank}\left(\begin{array}{cr}
\lambda E-A & B \\
C & 0
\end{array}\right) .
\end{aligned} .
\end{aligned}
$$

It is easy to proof the following proposition.
Proposition 2.4. The simple character is invariant under equivalence relation considered.

Proposition 2.5. Let λ_{0} be a simple eigenvalue of the standard system (A, B, C). Then, there exist an associate eigenvector v_{0} and an associate left eigenvector u_{0} such that $u_{0} v_{0}=1$.

Proof. If λ_{0} is a simple eigenvalue, the system, this can be reduced to $\left(\left(\begin{array}{cc}A_{1} & 0 \\ 0 & \lambda_{0}\end{array}\right),\binom{B_{1}}{0},\left(\begin{array}{ll}C_{1} & 0\end{array}\right)\right)$, with $\operatorname{rank}\left(\begin{array}{cc}\lambda_{0} I-A_{1} & B_{1} \\ C_{1} & 0\end{array}\right)=n-1$.
In this reduced form it is easy to observe that $v_{0}=$ $(0, \ldots, 0,1)^{t}$ is an eigenvector and $v_{0}=(0, \ldots, 0,1)$ is a left eigenvector verifying $u_{0} v_{0}=1$. Now, taking into account propositions 2.2 and 2.3 , we can check easily that $P v_{0}$ is an eigenvector of the system (A, B, C) and $u_{0} P^{-1}$ is a left eigenvector for some invertible matrix P.

Remark 2.2. In general, for singular systems this result fails.

But, we have the following more general result.
Proposition 2.6. Let λ_{0} be a simple eigenvalue of the singular system (E, A, B, C) with $m=p=1$ and $\operatorname{rank}\left(\begin{array}{cr}\lambda E-A & B \\ C & 0\end{array}\right)=n+1$. Then, there exist an associate eigenvector v_{0} and an associate left eigenvector u_{0} such that $u_{0} E v_{0} \neq 0$.

$$
\left(\begin{array}{cccc}
\lambda_{0} E-A & B & 0 & 0 \\
C & 0 & 0 & 0 \\
E & 0 & \lambda_{0} E-A & B \\
0 & 0 & C & 0
\end{array}\right)\left(\begin{array}{c}
v_{0} \\
w_{0} \\
v_{1} \\
w_{1}
\end{array}\right) \neq 0
$$

for all v_{1} and w_{1}. So taking $v_{1}=0$ and $w_{1}=0$ we have that $E v_{0} \neq 0$.
Suppose now that $u_{0} E v_{0}=0$, in this case we have that

$$
0 \neq\binom{ E v_{0}}{0} \in \operatorname{Ker}\left(u_{0} \omega_{0}\right)=\operatorname{Im}\left(\begin{array}{cc}
\lambda_{0} E-A & B \\
C & 0
\end{array}\right)
$$

Then, $\binom{E v_{0}}{0}=\left(\begin{array}{cc}\lambda_{0} A-A & B \\ C & 0\end{array}\right)\binom{v_{1}}{w_{1}}$ for some $\left(v_{1}, w_{1}\right) \neq\left(v_{0}, w_{0}\right)$ because $E v_{0} \neq 0$.
So

$$
\left(\begin{array}{cccc}
\lambda_{0} E-A & B & 0 & 0 \\
C & 0 & 0 & 0 \\
E & 0 & \lambda_{0} E-A & B \\
0 & 0 & C & 0
\end{array}\right)\left(\begin{array}{c}
v_{0} \\
w_{0} \\
v_{1} \\
w_{1}
\end{array}\right)=0
$$

ans λ_{0} can not be simple. Therefore $u_{0} E v_{0} \neq 0$.
Remark 2.3. Notice that, if $E=I$ the result coincides with the case of standard systems.

3 Perturbation Analysis of Simple Eigenvalues
 3.1 Perturbation Analysis of Simple Eigenvalues of Standard Systems

First of all we will remember the study done for the standard case. So, we consider systems in the form $\dot{x}=$ $A x+B u, y=C x$ with $A \in M_{n}(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})$ and $C \in M_{m \times n}(\mathbb{C})$ represented as a triple of matrices (A, B, C).
Let (A, B, C) be a linear system and assume that the matrices A, B, C smoothly depend on the vector $p=\left(p_{1}, \ldots, p_{r}\right)$ of real parameters. The function $(A(p), B(p), C(p))$ is called a multi-parameter family of linear systems. Eigenvalues of linear system functions are continuous functions $\lambda(p)$ of the vector of parameters. In this section, we are going to study the behavior of a simple eigenvalue of the family of linear systems $(A(p), B(p), C(p))$.
Let us consider a point p_{0} in the parameter space and assume that $\lambda\left(p_{0}\right)=\lambda_{0}$ is a simple eigenvalue of $\left(A\left(p_{0}\right), B\left(p_{0}\right), C\left(p_{0}\right)\right)=\left(A_{0}, B_{0}, C_{0}\right)$, and $v\left(p_{0}\right)=$ v_{0} is an eigenvector, i.e. there exists $w_{0} \in M_{m \times 1}(\mathbb{C})$ such that

$$
\left.\begin{array}{rl}
A_{0} v_{0}-B_{0} w_{0} & =\lambda_{0} v_{0} \\
C_{0} v_{0} & =0
\end{array}\right\}
$$

Proof. If λ_{0} is a simple eigenvalue

Equivalently

$$
\left.\begin{array}{rl}
\left(A_{0}+B_{0} F_{A}^{B}\right) v_{0}-B_{0} w_{0} & =\lambda_{0} v_{0} \\
C_{0} v_{0} & =0
\end{array}\right\}
$$

$\forall F_{A}^{B} \in M_{m \times n}(\mathbb{C})$.
Now, we are going to review the behavior of a simple eigenvalue $\lambda(p)$ of the family of standard linear systems.
The eigenvector $v(p)$ corresponding to the simple eigenvalue $\lambda(p)$ determines a one-dimensional nullsubspace of the matrix operator $\left(\begin{array}{ll}A & B \\ C & 0\end{array}\right)$ smoothly dependent on p. Hence, the eigenvector $v(p)$ (and corresponding $w(p)$ can be chosen as a smooth function of the parameters. We will try to obtain an approximation by means of their derivatives.
We rephrase the eigenvalue problem as follows

$$
\left.\begin{array}{rl}
A(p) v(p)-B(p) w(p) & =\lambda(p) v(p) \tag{3}\\
C(p) v(p) & =0
\end{array}\right\}
$$

Taking the derivatives with respect to p_{i} at the point p_{0}, we obtain

$$
\left.\begin{array}{r}
\left(\frac{\partial \lambda(p)}{\partial p_{i}} I-\frac{\partial A(p)}{\partial p_{i}}\right)_{\mid p_{0}} v_{0}+\frac{\partial B(p)}{\partial p_{i}}{ }_{\mid p_{0}} w_{0}= \\
\left(A_{0}-\lambda_{0} I\right) \frac{\partial v(p)}{\partial p_{i}}{ }_{\mid p_{0}}-B_{0} \frac{\partial w(p)}{\partial p_{i}}{ }_{\mid p_{0}} \tag{4}\\
\frac{\partial C(p)}{\partial p_{i}}{ }_{\mid p_{0}} v_{0}=-C_{0} \frac{\partial v(p)}{\partial p_{i}}{ }_{\mid p_{0}}
\end{array}\right\} .
$$

This is a linear equation system for the unknowns $\frac{\partial \lambda(p)}{\partial p_{i}}, \frac{\partial v(p)}{\partial p_{i}}$ and $\frac{\partial w(p)}{\partial p_{i}}$.

Lemma 3.1. Let v_{0} and u_{0} be an eigenvector and a left eigenvector respectively, corresponding to the simple eigenvalue λ_{0} of the system (E, A, B, C). Then, the matrix

$$
T=\left(\begin{array}{cc}
\lambda_{0} I-A_{0} & B_{0} \\
C_{0} & 0
\end{array}\right)+\left(\begin{array}{cc}
v_{0} u_{0} & 0 \\
0 & 0
\end{array}\right)
$$

has full rank.
Proof. It suffices to consider the system in the reduced form $\left(\left(\begin{array}{cc}A_{1} & 0 \\ 0 & \lambda_{0}\end{array}\right),\binom{B_{1}}{0},\left(\begin{array}{ll}C_{1} & 0\end{array}\right)\right)$.
Theorem 3.1. The system (4) has a solution if and only if

$$
\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial \lambda(p)}{\partial p_{i}} I-\frac{\partial A(p)}{\partial p_{i}} & \frac{\partial B(p)}{\partial p_{i}} \tag{5}\\
\frac{\partial C(p)}{\partial p_{i}} & 0
\end{array}\right)\binom{v_{0}}{w_{0}}=0
$$

where u_{0} is a left eigenvector for the simple eigenvalue λ_{0} of the system $\left(A_{0}, B_{0}, C_{0}\right)$.

Proof. The system (4) can be rewritten as

$$
\begin{align*}
& \left(\begin{array}{cc}
\frac{\partial \lambda(p)}{\partial p_{i}} I-\frac{\partial A(p)}{\partial p_{i}} & \frac{\partial B(p)}{\partial p_{i}} \\
\frac{\partial C\left(p_{i}\right.}{\partial p_{i}} & 0
\end{array}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}}= \\
& \left(\begin{array}{cc}
A_{0}-\lambda_{0} I-B_{0} \\
-C_{0} & 0
\end{array}\right)\binom{\frac{\partial v(p)}{\partial p_{i}}}{\frac{\partial w(p)}{\partial p_{i}}}_{\mid p_{0}} \tag{6}
\end{align*}
$$

We have that (4) has a solution if and only if (6) has. Premultiplying both sides of the equation (6), by $\left(u_{0}, \omega_{0}\right)$

$$
\left.\begin{array}{l}
\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial \lambda(p)}{\partial p_{i}} I-\frac{\partial A(p)}{\partial p_{i}} & \frac{\partial B(p)}{\partial p_{i}} \\
\frac{\partial C(p)}{\partial p_{i}} & 0
\end{array}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}}= \\
\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial \lambda(p)}{\partial p_{i}} I & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\binom{v_{0}}{w_{0}}- \\
-\frac{\partial A(p)}{\partial p_{i}} \\
-\frac{\partial C(p)}{\partial p_{i}}
\end{array} \quad 0 . \frac{\partial B(p)}{\partial p_{i}}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}}=0 . .
$$

We obtain a solution for $\left.\frac{\partial \lambda(p)}{\partial p_{i}}\right|_{\left(\lambda_{0} ; p_{0}\right)}$.

$$
{\frac{\partial \lambda(p)}{\partial p_{i}}}_{\mid p_{0}}=\frac{\left(u_{0} \omega_{0}\right)\left(\begin{array}{cc}
\frac{\partial A(p)}{\partial p_{i}} & -\frac{\partial B(p)}{\partial p_{i}} \\
-\frac{\partial C(p)}{\partial p_{i}} & 0
\end{array}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}}}{u_{0} v_{0}}
$$

Using the normalization condition, that is to say, taking v_{0} such that $u_{0} v_{0}=1$, we have:

$$
{\frac{\partial \lambda(p)}{\partial p_{i}}{ }_{\mid p_{0}}}^{2}=\left(u_{0} \omega_{0}\right)\left(\begin{array}{cc}
\frac{\partial A(p)}{\partial p_{i}} & -\frac{\partial B(p)}{\partial p_{i}} \\
-\frac{\partial C(p)}{\partial p_{i}} & 0
\end{array}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}} .
$$

Knowing $\frac{\partial \lambda(p)}{\partial p_{i}}{ }_{\mid p_{0}}$ we can deduce $\frac{\partial v(p)}{\partial p_{i}}{ }_{\mid p_{0}}$.
First of all, we observe that if $u_{0} v_{0}=1$, then $u_{0} v(p) \neq 0$ and we can take $v(p)$ such that $u_{0} v(p)=1$ (normalization condition, it suffices to take as $v(p)$ the vector $\left.\frac{1}{u_{0} v(p)} v(p)\right)$. So

$$
\frac{\partial u_{0} v(p)}{\partial p_{i}}=u_{0} \frac{\partial v(p)}{\partial p_{i}}=0
$$

Consequently we can consider the compatible equivalent system:

$$
\begin{align*}
& \left(\begin{array}{cc}
\frac{\partial \lambda(p)}{\partial p_{i}}-\frac{\partial A(p)}{\partial p_{i}} & \frac{\partial B(p)}{\partial p_{i}} \\
\frac{\partial C(p)}{\partial p_{i}} & 0
\end{array}\right)_{\mid p_{0}} \quad\binom{v_{0}}{w_{0}}= \\
& \left(\begin{array}{cc}
A_{0}-\lambda_{0} I+v_{0} u_{0} & -B_{0} \\
-C_{0} & 0
\end{array}\right)\binom{\frac{\partial v(p)}{\partial p_{i}}}{\frac{\partial w(p)}{\partial p_{i}}}_{\mid p_{0}} \tag{7}
\end{align*}
$$

In our particular case where $m=p$, the system has a unique solution

$$
\binom{\frac{\partial v(p)}{\partial p_{i}}}{\frac{\partial w\left(p_{)}\right.}{\partial p_{i}}}_{\mid p_{0}}=T^{-1}\left(\begin{array}{cc}
\frac{\partial \lambda(p)}{\partial p_{i}}-\frac{\partial A(p)}{\partial p_{i}} & \frac{\partial B(p)}{\partial p_{i}} \\
\frac{\partial C(p)}{\partial p_{i}} & 0
\end{array}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}} .
$$

Taking the partial derivative $\partial^{2} / \partial p_{i} \partial p_{j}$ on both sides of both equations in the eigenvalue problem (3), we can obtain a second order approximation for eigenvalues.

3.2 Perturbation Analysis of Simple Eigenvalues of Singular Systems

Now we consider singular systems as in (1). In this case the eigenvalue problem is written as

$$
\left.\begin{array}{rl}
A(p) v(p)-B(p) w(p) & =\lambda(p) E(p) v(p) \tag{8}\\
C(p) v(p) & =0 .
\end{array}\right\} .
$$

Taking the derivatives with respect to p_{i}, we have

$$
\left.\begin{array}{r}
\left(\frac{\partial \lambda(p)}{\partial p_{i}} E(p)+\lambda(p) \frac{\partial E(p)}{\partial p_{i}}-\frac{\partial A(p)}{\partial p_{i}}\right) v(p)+\frac{\partial B(p)}{\partial p_{i}} w(p) \\
=(A(p)-\lambda(p) E(p)) \frac{\partial v(p)}{\partial p_{i}}-B(p) \frac{\partial w(p)}{\partial p_{i}} \\
\frac{\partial C(p)}{\partial p_{i}} v(p)=-C(p) \frac{\partial v(p)}{\partial p_{i}}
\end{array}\right\}
$$

At the point p_{0}, we obtain

$$
\left.\begin{array}{r}
\left.\left(\frac{\partial \lambda(p)}{\partial p_{i}} E_{0}+\lambda_{0} \frac{\partial E(p)}{\partial p_{i}}-\frac{\partial A(p)}{\partial p_{i}}\right)_{\mid p_{0}} v_{0}+\frac{\partial B(p)}{\partial p_{i}} \right\rvert\, p_{0} \\
\left.=\left.\left(A_{0}-\lambda_{0} E\right) \frac{\partial v(p)}{\partial p_{i}}\right|_{\mid p_{0}}-B_{0} \frac{\partial w(p)}{\partial p_{i}} \right\rvert\, p_{0} \tag{9}\\
\left.\frac{\partial C(p)}{\partial p_{i}}{ }_{\mid p_{0}} v_{0}=-C_{0} \frac{\partial v(p)}{\partial p_{i}} \right\rvert\, p_{0}
\end{array}\right\} .
$$

This is a linear equation system for the unknowns $\frac{\partial \lambda(p)}{\partial p_{i}}, \frac{\partial v(p)}{\partial p_{i}}$ and $\frac{\partial w(p)}{\partial p_{i}}$.
Suppose now, systems (E, A, B, C) with $m=p=1$ and rank $\left(\begin{array}{cc}\lambda E-A & B \\ C & 0\end{array}\right)=n+1$.

Lemma 3.2. Let v_{0} and u_{0} be an eigenvector and a left eigenvector respectively, corresponding to the simple eigenvalue λ_{0} of the system (E, A, B, C). Then, the matrix

$$
T=\left(\begin{array}{cc}
\lambda_{0} E-A_{0} & B_{0} \\
C_{0} & 0
\end{array}\right)+\left(\begin{array}{cc}
E_{0} v_{0} u_{0} E_{0} & 0 \\
0 & 0
\end{array}\right)
$$

has full rank.

Proof. First of all we proof that $E_{0} v_{0} u_{0} E_{0} \neq 0$.

$$
\left.\begin{array}{l}
\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{c}
\lambda_{0} E_{0}-A_{0}+E_{0} v_{0} u_{0} E_{0} \\
B_{0} \\
C_{0}
\end{array}\right. \\
\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\binom{v_{0}}{w_{0}}= \\
E_{0} v_{0} u_{0} E_{0} \\
0 \\
0
\end{array} \quad 0 . \begin{array}{c}
v_{0} \\
w_{0}
\end{array}\right)=\left(u_{0} E_{0} v_{0}\right)^{2} \neq 0, ~ \$
$$

so, $E_{0} v_{0} u_{0} E_{0} \neq 0$.
In the other hand $v_{0} \notin \operatorname{Ker} E_{0} v_{0} u_{0} E_{0}$, because $0 \neq$ $\left(u_{0} E_{0} v_{0}\right)^{2}=u_{0}\left(E_{0} v_{0} u_{0} E_{0} v_{0}\right)$.
Suppose now, that

$$
\left(\begin{array}{cc}
\lambda_{0} E_{0}-A_{0}+E_{0} v_{0} u_{0} E_{0} & B_{0} \\
C_{0} & 0
\end{array}\right)\binom{v}{w}=0
$$

for some vectors v and w.
Then

$$
\begin{aligned}
& 0=\left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{0} E_{0}-A_{0}+E_{0} v_{0} u_{0} E_{0} & B_{0} \\
C_{0} & 0
\end{array}\right)\binom{v}{w}= \\
& \left(\begin{array}{ll}
u_{0} & \omega_{0}
\end{array}\right)\left(\begin{array}{cc}
E_{0} v_{0} u_{0} E_{0} & 0 \\
0 & 0
\end{array}\right)\binom{v}{w}=u_{0} E_{0} v_{0} u_{0} E_{0} v .
\end{aligned}
$$

Taking into account that $u_{0} E_{0} v_{0} \neq 0$ we have that $u_{0} E_{0} v=0$, so $E_{0} v_{0} u_{0} E_{0} v=0$, then v is an eigenvector of the system corresponding to the eigenvalue λ_{0} linearly independent of v_{0}, but λ_{0} is simple.

Theorem 3.2. The system (9) has a solution if and only if
$\left(\begin{array}{ll}u_{0} & \omega_{0}\end{array}\right)\left(\begin{array}{cc}\frac{\partial \lambda(p)}{\partial p_{i}} E_{0}+\lambda_{0} \frac{\partial E}{\partial p_{i}}-\frac{\partial A(p)}{\partial p_{i}} & \frac{\partial B(p)}{\partial p_{i}} \\ \frac{\partial C(p)}{\partial p_{i}} & 0\end{array}\right)_{\mid p_{0}}\binom{v_{0}}{w_{0}}=0$
where u_{0} is a left eigenvector for the simple eigenvalue λ_{0} of the system $\left(E_{0}, A_{0}, B_{0}, C_{0}\right)$.

Proof. Analogously to the proof of proposition 3.1 we observe that proposition 2.6 permits to clear the unknown $\frac{\partial \lambda(p)}{\partial p_{i}}$ from equation (10).
On the other hand, taking into account that $u_{0} E_{0} v_{0} \neq$ 0 , we have that $u_{0} E(p) v(p) \neq 0$ in a neighborhood of the origin. So, $u_{0} E_{0} \frac{\partial v(p)}{\partial p}=0$. Lemma 3.2 permits to obtain $\frac{\partial v(p)}{\partial p_{i}}$ and $\frac{\partial w(p)}{\partial p_{i}}$.

4 Conclusions

In this work a characterization of simple eigenvalue of a time-invariant singular linear system is given and an analysis of small perturbation of simple eigenvalues is presented.
For the analysis it was considered that a disturbance of the system can be interpreted as a family of systems depending differentiably of a collection of parameters.

References

Andrew, A.L., Chu, K.W.E., and Lancaster, P., (1993). Derivatives of eigenvalues and eigenvectors of matrix functions. SIAM J. Matrix Anal. Appl., 14(4), pp. 903-926.
Benner, P., Mehrmann, V., and Xu, H., (2002). Perturbation analysis for the eigenvalue problem of a formal product of matrices. BIT, Numer. Anal., 42, pp. 1-43.

García-Planas, M.I., and Tarragona, S., (2012). Analysis of behavior of the eigenvalues and eigenvectors of singular linear systems. Wseas Transactions on Mathematics, 11(11), pp 957-965.
García-Planas, M.I., and Tarragona, S., (2011). Perturbation analysis of simple eigenvalues of polynomial matrices smoothly depending on parameters. Recent Researches in Systems Science. pp 100-103.
García-Planas, M.I., and Tarragona, S., (2011). Perturbation analysis of simple eigenvalues of singular
systems. Physcon 2013.
Kato, T., (1980). Perturbation Theory for Linear Operators. Springer-Verlag, Berlin.
Chu, E.K.W. (2004). Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike Theorems. SIAM J. Matrix Anal. Appl., 25(2), pp. 551-573.
Rigatos, G., Siano, P., Pessolano, S., (2012). Design of active suspension control system with the use of Kalman filter-based disturbances estimator. Cybernetics and Physics. 1(4), pp. 279-294.

