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Abstract. We suggest a two-chamber model of human cochlea. The motion of the �uid is

described by equations of hydrodynamics, which are supplemented by the equation of oscillations of

the membrane. The equations are linearized and their solution is represented as Fourier harmonics

with a given frequency. The harmonics satisfy a system of boundary value problems for ordinary

di�erential equations with variable coe�cients. Numerical solution of this system with a �nite-

di�erence approximation is hardly possible due to a big parameter in the problem and a closeness

of the problem to a singular one. We suggest a new numerical method without saturation, which

allows to solve the problem in a wide range of frequencies with an arbitrary and controlled precision.

Computations con�rmed Bekesy's theory. The low sound frequencies cause the de�ection of the

membrane at the upper part of the cochlea, whereas high sound frequencies cause the de�ection of

the main volute of the cochlea.
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A brief description of human cochlea. Human hear consists of three chambers
(Fig. 1): the external, the middle, and the internal ones. Sound waves go into the external
chamber (1), reach the cochlear partition (2), and cause its oscillations. By means of the
three bones: malleus, anvil, and stirrup, which are situated in the middle chamber (3), the
oscillations are fed into the threshold window (4) and cause pulse-like shifts of the perilymph
of the threshold in the region (5) of the cochlea.

Fig. 1. Transmission of the sound signal (a); cochlea in section (b); the scheme of the
spiral channel.
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Human cochlea represents a spiral bone channel of about two and a half convolutions
and has the length of about 32 mm. An unrolled cochlea looks like a �attened cone with the
base width of about 9 mm and length of 5 mm.

The oscillations of the perilymph are transformed into mechanical oscillations and then
into electrical nerve impulses. Details can be found in books on otorhinolaryngology.

Helmholz and Bekesy's theories are two di�erent explanations of processes taking
place in the inner human hear [1, 2]. Helmholz's theory is considered now as obsolete, so we
concentrate on Bekesy's theory of traveling wave.

According to Bekesy's theory, the sound of a certain frequency generates a traveling wave
on the basilar membrane. The place of the wave crest with biggest membrane shift depends
on the frequency of the sound signal. The low sound frequencies cause the de�ection of
the membrane at the upper part of the cochlea, whereas high sound frequencies cause the
de�ection of the main volute of the cochlea. The basilar membrane in its turn causes the
deformation of hair cells of the spiral organ at the place of the crest of the traveling wave.

System of equations. Theoretical description of hydrodynamical e�ects in the human
cochlea is based on the approximation of the thin layer of the viscous incompressible �uid:
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where x and z are coordinates along and across the thin layer; v(t, x, z), p(t, x, z) and ρ(t, x, z)
are, respectively, longitudinal velocity, pressure, and density in the �uid; µ is the coe�cient
of dynamical viscosity; B is the thickness of layer; q(t, x) is the volumetric �ow rate through
the section x.

A model of two-layer �ow in the cochlea. A spread out spiral bone channel is
shown in Fig. 1 (c). The basilar membrane of the length l separates the upper and the lower
chambers of the channel, which communicate through the helicotrema. The helicotrema is
modeled as an opening BEB′ of the length l2 and of the constant thickness b1.

The basilar membrane is non-uniform along its length. Its Young modulus E(x) depends
on the longitudinal coordinate. According to di�erent sources, the value of E(x) decreases
from x = 0 to x = l by factor of 103 - 104 [3]. We assume exponential low of decreasing of
E(x): E(x) = E0 × 10−4x/l.

The basilar membrane is attached to the side bone boundaries with variable tension
σy(x). The cross tension σy(x) of the membrane causes tensile stress σ(x) through the Poisson
coe�cient ν. Using equations of the linear theory of elasticity, and assuming ν to be constant,
we obtain νσy(x) = (1 − ν)σ(x), from where we derive the exponential low of decreasing
σy(x) = σ0

y × 10−4x/l. Further we assume the Poisson coe�cient ν to be close to unit, and so
the cross tension is negligible in comparison to the tensile stress σ(x).

Perilymph is modeled as a viscous �uid of the density ρ with the dynamical viscosity
coe�cient µ. The basilar membrane is deformed under the in�uence of the pressure di�erences
of the perilymph in the upper (p1) and lower (p2) chambers. We assume that the membrane
does not resist to the bending. The membrane is �lled with endolymph, which is a Newton
�uid with great viscosity. The pressure di�erence p1 − p2 causes membrane bending of the
magnitude h (which is small) in the perpendicular direction to the membrane plane, so we
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neglect terms of higher order in h and assume that the tension of the membrane does not
depend on h.

The Newton low for the membrane with variable tension takes the form

m(x)
∂2h

∂t2
= p2 − p1 + σ(x)

∂2h

∂x2
− k

∂h

∂t
, (2)

where m(x) is the mass of the endolymph per unit of length, k is the coe�cient of friction.
In the upper and lower chambers AB and A′B′ and in the opening BEB′ of the cross-

section b1 = b(l) (Fig. 1 (c) we take the system of equations (1).
The unperturbed length of the layers b1 and b2 is the same and equal to b(x). In linear

approximation with respect to the variables h, v, p, we take bi = b(x).

Boundary values. All functions are assumed to be continuous. The velocity satis�es
no-slip conditions at the boundaries. The periodic signal at the entrance x = 0 has the
frequency ω and

q(t, 0) = q0e
iωt.

The ends of the membrane are �xed:

h(t, 0) = 0, h(t, l) = 0.

The solution of the above equations has the form

v = ṽ(x, z)eiωt, h = h̃(x)eiωt, q = q̃(x)eiωt, p = p̃(x)eiωt.

Then, after some transformations, we obtain boundary value problems for the functions
h̃(x), q̃(x), p̃(x).

We have three ODEs

ρωλq̃ + (λb− 2)i
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+
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= 0,
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(3)

with the boundary conditions

q̃(0) = q0, h̃(0) = h̃(l) = 0, ρωλq̃(l) + (λb1 − 2)i

(
2p̃(l)

l2

)
= 0, (4)

The non-dimensional values. The values of the parameters are taken as follows: ρ0 ∼
1g/cm3, b0 = b(0) ∼ 0.2cm, b1 = b(l) ∼ 0.1cm, µ ∼ 0.01g/(cm/, sec), k = 103g cm/sec,
m ∼ ρb0, σ(x) changes from σ0 = σ(0) = 107Dyne/cm to σ1 = σ(l) = 103Dyne/cm, l = 3,
l2 = 4cm. Note that the force 1Dyne = 10−3G, hence the tension changes from 10 Kg/cm
to 1 G/ñì. This is con�rmed by the research on the coe�cient of elasticity of the membrane
[3].

The function Σ(X) = σ(x)/σ(0) decreases monotonously from Σ(0) = 1 to Σ(1) ∼
10−4. The functions B(X) and M(X) are almost constant. The function B(X) decreases
monotonously from B(0) = 1 to B(1) = 1/2, and M(X) = 1.

The non-dimensional frequency Ω = ω/ω0 is expressed through the characteristic frequency

ω0 =

√
σ0b0

ρ0l4
≈ 157radian/sec.
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The non-dimensional frequency Ω changes signi�cantly and serves as a parameter of the
problem.

Further, we make substitutions

x = lX, h̃(x) = b0H(X), q̃(x) = iωlb0Q(X),

P̃ (x) = σ0b0P (X)/l2, ω = ω0Ω, ω0 =
√

σ0b0/ρ/l2, σ(x) = σ0Σ(X),

m(x) = ρb0M(X), b(x) = b0B(X), b0 = b(0), b1 = b(l),

µ0 =
µ√

ρσ0b0

, k0 =
kω0l

2

σ0

,

into the equations (3), (4) and use method without saturation [4] for solution of the non-
dimensional equations.

The results of computation. Fig. 2 shows the results of computation for 10 functions
|H(X)| corresponding to the frequencies Ω = 2n, n = 0, 1, 2, . . . , 9. These functions are the
amplitude envelopes of Bekesy's traveling waves. As it is seen on the Fig. 2, the maximum
of |H(X)| shifts to the point X = 0 as Ω increases.

Fig. 2. Envelopes of Bekesy's traveling waves.

Fig. 3 shows various phases of the traveling waves for Ω = 1, 64, that corresponds to the
frequencies 25 and 1600 Hz. These results are in agreement with the Bekesy's theory, which
was never obtained before in a mathematical model.

We note that the computational problems here are on such a scale that ordinary numerical
methods were not able to obtain a solution. It is due to the problem being almost singular,
and a very big parameter in the equations, that causes solutions to be very unstable.
Numerical methods without saturation [4] are not subject to these di�culties.
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Fig. 3. phases of the traveling waves for Ω = 1, 64.
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