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In this work we study the problem of optimal estimation in the multivari-
ate uncertain-stochastic observation model by minimax criterion with gener-
alized probabilistic risk functions. The most general results in this area are
obtained using the mean-square error as loss (Martin and Mintz, 1983; Kurzhan-
ski, 1989; Soloviov, 1993; Matasov, 1998; El Ghaoui and Galafiore, 2001; Pankov
and Siemenikhin, 2007). Nevertheless, the statistical references based on the
mean-square error could lead to non-adequate decisions if the exact joint dis-
tribution of random parameters differs from the Gaussian law. At the same
time, given a priori statistical information in terms of restrictions on the mo-
ment characteristics, one can find the tight bounds of various non-mean-square
risk functions at linear decision rules (Karlin and Studden, 1966). This makes
possible to suggest efficient optimization procedures for designing linear esti-
mation algorithms, which are optimal in a minimax sense. The practical and
theoretical interests motivate the following question: whether linear estimators
are minimax-optimal over the class of all measurable decision rules given fixed
second-order moments of random parameters? For various linear uncertain-
stochastic systems this problem has been investigated in detail using the mean-
square risk.

In this work we are going to show that there exists a linear operator that is
minimax over the family of all unbiased estimators for the broad class of risk
functions monotonous with respect to the euclidian norm of the estimation error.
In addition, we treat three kinds of estimation criteria based on expectation,
probability, and quantile risk functions.

Assume that the system state X ∈ R
m is to be estimated from the random

observation vector Y ∈ R
n. Let a priori information concerning the observation

model (X,Y ) be defined by the family P of the distributions P of the augmented
vector Z = col[X,Y ]:

P = {P : EZ = 0, cov{Z,Z} ∈ R}, (1)

where R is a given convex compact set of symmetric positively semidefinite

matrices R =

(
Rx Rxy

Ryx Ry

)
∈ R

p×p (p = m + n).

The accuracy of any feasible estimate X̃ = ϕ(Y ) is measured by the certain
criterion D(ϕ,P) whenever P is known to be the true joint distribution of X
and Y . The criterion D(·) is supposed to have the following structure:
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a) there exists a functional J(·) such that D(ϕ,P) = J
(
P
‖X−ϕ(Y )‖2)

, where

P
‖X−ϕ(Y )‖2

is the distribution of the squared euclidian norm of estimation error;
b) J(π1) ≤ J(π2) whenever π1, π2 ∈ P+ satisfy π1(s,+∞) ≤ π2(s,+∞)

∀ s ≥ 0, where P+ denotes the family of all distributions on [0,∞);
c) γ(µ) = sup{J(π) | π ∈ P+,

∫
s π(ds) = µ} = sup{J(πt,µ) | t ≥ 1} ∀µ ≥ 0,

where πt,µ is the two-point distribution: πt,µ{0} = 1 − 1/t, πt,µ{µt} = 1/t.
d) γ(µ) is left continuous in µ > 0.
The aim of this work is to find an estimate X̂ = ϕ̂(Y ), which is optimal in

a minimax sense. Namely, we say that X̂ = ϕ̂(Y ) is minimax on the class of
estimators Φ w.r.t. D(·) if

ϕ̂ ∈ arg min
ϕ∈Φ

sup
P∈P

D(ϕ,P), (2)

In addition, we are going to construct the least favorable distribution

P̂ ∈ arg max
P∈P

inf
ϕ∈Φ

D(ϕ,P). (3)

Relations (2), (3) are fulfilled if the pair (ϕ̂, P̂) forms a saddle point for the

game (D,Φ,P): D(ϕ̂,P) ≤ D(ϕ̂, P̂) ≤ D(ϕ, P̂) ∀ϕ ∈ Φ ∀P ∈ P.
The first result provides the tight bound of the estimation criterion on (1)

at any linear estimator F .

Theorem 1. For any F ∈ R
m×n, R ∈ R

p×p, R � O, we have

max
P∈P

D(F,P) = γ(max
R∈R

Q(F,R)),

where Q(F,R) = EP

{
‖X − FY ‖2

}
= tr[Rx − 2RxyF ∗ + FRyF ∗] ∀P ∈ P(R).

Thus, the minimax estimation problem with any criterion described above
is reduced to the mean-square case. In other words, F̂ is minimax on the class
of linear estimators w.r.t. D(·) if and only if

F̂ ∈ arg min
F∈Rm×n

max
R∈R

Q(F,R). (4)

Following the approach proposed in (Pankov and Siemenikhin, 2007), the
linear minimax estimator can be found by the rule:

1) if the least favorable covariance R̂ ∈ arg max
R∈R

tr∆R satisfies the condition

R̂y ≻ O, where ∆R = Rx − RxyR+
y Ryx, then F̂ = R̂xyR̂−1

y is a solution of (4);
2) in general, (4) can be obtained as the limit of regularized estimators

F̂ = lim
α↓0

R̂α
xy(R̂α

y + αI)−1, where R̂α ∈ arg max
R∈R

tr
[
Rx − Rxy(Ry + αI)−1Ryx

]
.

Let us describe the construction of the following random vector ζ ∈ R
p:

1) ζ = col[ξ, η], ξ ∈ R
m, η ∈ R

n, ξ = ε + RxyR+
y η, η = I{ε = 0}υ;

2) ε ∈ R
m, ‖ε‖2 ∼ πt,tr∆R

, Eε = 0, cov{ε, ε} = ∆R;

3) υ ∈ R
n, Eυ = 0, cov{υ, υ} = t

t − 1
Ry;

4) ε and υ are independent,
where t > 1, R � O, and I{. . . } denotes the indicator of a random event.

By Πt,R we denote the distribution of the vector ζ introduced above.
The main result of the work is the following.



Theorem 2. Under the previous notation and assumptions, the following as-

sertions are valid:
1) F̂ is minimax w.r.t. D(·) on the class B0 of all unbiased estimators

B0 = {ϕ | ϕ : R
n → R

m is a Borel mapping such that ϕ(0) = 0};

2) the duality relation is fulfilled

γ(tr∆R̂) = min
ϕ∈B0

sup
P∈P

D(ϕ,P) = sup
P∈P

inf
ϕ∈B0

D(ϕ,P),

where sup in the right-hand side is achieved on {Πtk,R̂} whenever {tk} is a

sequence of numbers tk > 1 maximizing

sup
t≥1

J(πt,tr∆
R̂
); (5)

3) if in (5) the maximum is achieved at some t̂ > 1, then the pair (F̂ ,Πt̂,R̂)

is a saddle point for (D,B0,P) and hence Πt̂,R̂ is the least favorable distribution

on P.

The results indicated above are applied to several cases: expected loss:
Dλ(ϕ,P) = EP{λ(‖X − ϕ(Y )‖)} with a convex function λ(t); probability cri-

terion: Pδ(ϕ,P) = P{‖X − ϕ(Y )‖ ≥ δ}, where δ is a given positive number;
quantile of level 1 − α: Qα(ϕ,P) = max{s ≥ 0: P{‖X − ϕ(Y )‖ ≥ s} ≥ α},
α ∈ (0, 1).
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